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Abstract

Dense surface reconstruction from monocular image se-
quences — known as Non-Rigid Structure from Motion
(NRSfM) — is a highly ill-posed inverse problem. The ob-
jective of NRSfM is to learn 3D shapes from 2D point tracks
in an unsupervised manner. While existing methods rely on
low-rank models, we propose the concept of High Dimen-
sional Space Model (HDSM). In HDSM, time-varying ge-
ometry is encoded by a high-dimensional static structure
projected into different metric subspaces. To express non-
rigid deformations, instead of directly modelling in the 3D
space, we gradually increase space dimensionality as the
complexity of the scene increases. HDSM allows for a com-
pact representation with deformation localisation and can
be interpreted as a generalisation of the previously pro-
posed models for NRSfM. Relying on HDSM, we develop
an algorithm for dense monocular surface recovery. Exper-
iments show that the proposed method achieves high accu-
racy while allowing for the fine-grained control.

1. Introduction
Templateless monocular surface recovery or Non-Rigid

Structure from Motion (NRSfM) exploits motion and defor-
mation cues for unsupervised learning of 3D shapes from
2D point correspondences. Three models for NRSfM have
been proposed so far, i.e., Low-Rank Space Model (LRSM)
[12], Trajectory Space Model (TSM) [9] and Force Space
Model (FSM) [2]. The common for all of them is the mod-
elling of shapes or point trajectories as a linear combination
of basis elements. Both the recovered shapes and the basis
reside in 3D space. It has been shown that LRSM, TSM and
FSM are dual to each other [2, 5].

In this paper, we propose to model time-varying 3D
surface geometry by projecting a multi-dimensional static
structure into different 3D subspaces. The resulting lifted
representation — High-Dimensional Space Model (HDSM)
— generalises previously proposed models for NRSfM and
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Figure 1: An overview of the main idea of the paper. We propose to model
different 3D states of a non-rigid shape by projecting a high-dimensional
structure Φ into different 3D subspaces. Π is a permutation matrix which
relates projective 3D subspaces with the input frames.

allows designing an algorithm with unique properties. Fur-
ther on, we refer to this high-dimensional rigid structure Φ
as lifted geometry. The main motivation for HDSM is to
stay as close as possible to the raw data representation.

HDSM is tightly related to compressed scene repre-
sentations which follows from the main idea of HDSM,
see Fig. 1. The compression in HDSM can be imple-
mented on multiple levels (e.g., frame-to-frame or point
trajectory levels in the lifted space). Thus, HDSM is fur-
nished with lift-compress and decompress-expand opera-
tors. Lift-compress allows to pass into the lifted space, de-
tect frame-to-frame redundancies and suppress small local
deformations and noise whereas decompress-expand gen-
erates human-interpretable 3D representations. The lifted
geometry provides cues for deformation localisation (by
analysing point trajectory patterns) and segmentation from
deformation (segmenting the scene into rigid and non-rigid
regions). A coarse-to-fine or wavelet-decomposition-like
effect is also theoretically possible when applying multiple
lift-compress operators.

To the best of our knowledge, the idea of compressible
representations in the context of NRSfM remained unex-
plored in the literature so far. We believe, however, that es-
pecially in the dense case compression is important, as plain
representations can occupy gigabytes of memory. In em-
bedded systems, a several-times reduction of transmitted or
saved data is particularly relevant. Due to the factorisation



into camera pose and compact lifted geometry occurring in
our approach, the reconstructed scene can be naturally com-
pressed with the compression ratio of 10 and higher.

The introduction of HDSM and initial investigation of
its properties is the main contribution and focus of this pa-
per. We show that HDSM can be interpreted as a generalisa-
tion of the previously proposed models for NRSfM (Sec. 4).
Based on HDSM, we design a new energy-based template-
free method for monocular surface recovery — Lifted Co-
herent Depth Fields (L-CDF, Sec. 5). Our method includes
two terms — the data term and the coherency term (CT)
— a new spatial regularizer [20]. L-CDF requires a mini-
mal number of priors. The low-rank constraint in 3D space
is imposed implicitly, i.e., we do not require any terms
accounting for the low-rank nature of deformations in 3D
space. We achieve this property by maintaining an optimal
non-redundant lifted geometry in every optimisation step.

CT originates in the motion coherence theory [41] and
imposes a soft constraint of coherent displacements on ad-
jacent points in the reproducing kernel Hilbert space. Be-
sides the properties inherited from HDSM, L-CDF is well
parallelisable, robust and easy to implement due to CT.

2. Related Work
Since the first approach for monocular templateless non-

rigid surface recovery was proposed [12], multiple succes-
sor methods elaborated on the idea of constraining surfaces
to lie in the linear subspaces spanned by a few basis shapes
[11, 39, 7, 29]. The main difficulty in modelling with an
explicit basis is the need to decide about the optimal basis
cardinality K since it varies across datasets exhibiting dif-
ferent degrees of deformations and non-linearities. More-
over, there is no guarantee that an optimal K exists which
captures all shape variation while discarding the noise [39].

Due to high ill-posedness of the problem, multiple pri-
ors were proposed over the last years such as basis [40],
shape prior [13] or temporal smoothness [42, 9, 22] con-
straints. Torresani et al. [39] constrain 3D shapes to lie near
a linear subspace in a probabilistic manner, with a Gaussian
prior on every basis shape. To reduce the number of un-
knowns, several methods rely on a known trajectory basis
[9] or model surface deformations with physics-based priors
[3, 2, 6]. Several methods minimise the rank of the stacked
shape matrix through a nuclear norm term [15, 18, 19]. Dai
et al. [15] proposed an energy-based method with a minimal
number of priors which was extended for dense reconstruc-
tions in [18]. To handle large and long occlusions, the re-
cent enhancement imposes a Gaussian prior on the surface
geometry guided by a per-pixel occlusion tensor [19]. Sim-
ilarly, our formulation does not include unknowns account-
ing for the basis, and we perform a low-rank approximation
of the expanded shape matrix.

Localised modelling. To more accurately model non-

linear deformations, Rabaud et al. proposed local LRSM
where basis shapes are valid for a shape neighbourhood
[30]. Related approaches are based on union of subspaces,
i.e., different 3D shapes lie in a disjunction of linear sub-
spaces [43, 23, 24]. Localised modelling is another way
to deal with complex deformations. A recent approach of
Agudo et al. [4] segments surfaces and models deforma-
tions of non-overlapping segments with different LRSM.

A particular type of nonlinearities arises in scenarios
with large deformations. Piecewise methods [37, 16, 25]
address this scenario well. Most of them follow the pipeline
of splitting the scene into overlapping patches, reconstruct-
ing the patches and eventually imposing global policies to
assemble individual patches into the meaningful reconstruc-
tions. The local methods, however, do not allow deforma-
tion localisation in space, as our approach does. Due to the
structure compression, we automatically detect regions with
the highest deformability and cluster the structure into the
rigid (up to the noise level prior) and non-rigid segments.
In computer graphics, a similar technique is used to model
localised and human interpretable shape deformations. One
example is the work of Neumann et al. [28].

Energy-based methods. Energy-based methods in-
creasingly gain the attention in NRSfM [30, 15, 3]. Dif-
ferent energy terms directly express assumptions and soft
constraints such as temporal smoothness [30] or spatial reg-
ularisation [18]. We propose a new spatial regulariser — co-
herency term. Similarly to the total variation (TV) [18, 19],
it requires a point adjacency data structure but allows for
the minimisation at a less computational cost. CT parame-
terises 3D deformations by a 2D function and imposes co-
herency on the point depths. The particular form of CT
used in this paper is most closely related to the variational
regulariser encountered in non-rigid point set registration
[27]. In the introductory work [20], we describe CT as
applied to dense monocular surface recovery and the core
CDF method (without lifting) in greater detail. The empha-
sis of [20] lies on the handling of large and long occlusions.
In contrast, the emphasis of this work lies on HDSM. The
proposed HDSM, lifting and expansion operations can be
implemented on top of other NRSfM approaches.

Compressed and compact representations. Zhu et al.
[42] combine LRSM and a compact shape representation in
the sense of compressive sensing [17], where every shape is
represented as a sparse linear combination of basis shapes
(with few nonzero coefficients). Due to the sparsity con-
straints on the coefficients, the recovered basis shapes were
shown to be closer to the elements of the subspace they
span. A similar idea is pursued in a more recent work. As-
suming 3D structure compressibility, [23] pose NRSfM as
a block sparse dictionary learning problem involving L0-
norm constraint on the coefficient vector. Agudo et al. pro-
posed a deformation model with a reduced basis and a di-



rect physical interpretation [1]. Their approach involves
spectral analysis on point distance matrices and computes
eigenmodes of deformation which are used to model point
displacements relative to the estimated shape at rest.

In this paper, we mean structure compression in the sense
of compact representation and the theory of data compres-
sion [33]. Especially in the case of dense reconstructions,
the size of the reconstructions can be prohibitive for embed-
ded and interactive applications. In contrast to the sparse
settings, this aspect can not be ignored.

Coarse-to-fine recovery. [10] proposes to estimate basis
shapes one at a time imposing the constraint on every new
mode to express as much of remaining (more and more high
frequent) deformations as possible. The method computes
the mean shape and iteratively adds deformation modes.
The search for a new mode leads to the energy decrease
as much as possible, and this is equivalent to the coarse-
to-fine effect. In the proposed L-CDF method, the coarse-
to-fine effect is attained through the iterative thresholding.
Also, the method can influence the desirable deformation
scale. At the same time, we do not have explicit unknowns
accounting for the deformation modes.

Geometry lifting. Several approaches employ manifold
learning [30, 31, 36] and nonlinear dimensionality reduc-
tion (NLDR) [22] techniques. [22] proposed NLDR with
a kernel trick. The method defines a nonlinear mapping
into a high-dimensional space and uses a set of radial ba-
sis functions to locally approximate high non-linearities in
3D. Compared to the manifold-learning and NLDR, a more
precise designation for HDSM is lifting, and the main moti-
vation is to stay as close as possible to the raw data. HDSM
allows to express unions of subspaces and local LRSMs
(though, modelling non-linear deformations is not in the
scope of this paper); frame-to-frame redundancies can also
be modelled (and detected by our method automatically) —
all by projecting into different 3D subspaces. One exam-
ple of applying lifting in computer vision is a framework
for tightest convex relaxations of nonconvex energies with
a TV term [26]. As applied to NRSfM, the idea of lifted
representations remained unexplored in the literature so far,
to the best of our knowledge.

3. Notations
For the convenience, we provide in Table 1 a non-

exhaustive list of symbols used in this paper. We use the
same symbols in Secs. 4 and 5 to denote the same structures,
though they refer to different mathematical derivations.

4. High Dimensional Space Model
In this section, we explain the concept of HDSM starting

from the rigid orthographic case and subsequently interpret
it for the non-rigid case.

Symbol/s Signification
W dense correspondences, measurement matrix
F number of frames
N, p number of tracked points
R,S relative camera pose and 3D shape
Π, P permutation matrix
Φ lifted geometry (l dimensional)
U, Σ, V svd(X) = UΣVT, X is an arbitrary matrix
P(·) permutation or shape dimension entangling operator
Ŝ shape in the Fourier space

Table 1: A non-exhaustive list of symbols used in the paper.

4.1. Rigid factorisation

Rigid factorisation-based structure from motion [38] is
the problem of recovering a rigid 3D scene from 2D obser-
vations (point tracks). Such reconstruction represents the
same shape in a different pose for every frame. Suppose
W2×p is the measurement matrix with p points per frame,
S3×p is the observed 3D structure, and R2×3 is the ortho-
graphic camera matrix. Then, W2×p = R2×3S3×p. Ap-
plying the relative camera pose to S leads to the complete
transfer of the pose to the object:

S(t) = R′3×3S3×p. (1)

We can always use Eq. (1), because of the ambiguity be-
tween the camera and object poses. R′ is obtained from
R by adding a third orthonormal row (a cross product of
the first two rows). Our key observation is that the rotated
rigid structure S(t) can be lifted into the 4D space and in-
terpreted as multiple projections of a 4D rigid body Φ into
the 3D space under different angles of view (by different 4D
to 3D orthographic projection matrices R3×4 in this case).
Formally, we can write:

S(t) = R3×4Φ4×p. (2)

The rigid 4D shape Φ can be found using the similar princi-
ples as in the rigid factorisation approach, going from mul-
tiple observations in 3D to 4D. A natural question arises,
whether it is possible to go from multiple 2D observations
directly to a 4D Φ. The further analysis suggests:

W2×p = P2×3R3×4Φ4×p, (3)

where P2×3 = I2×3 is a projection matrix. Factorising
W2×p with svd leads to

svd(W2×p) = U2×pΣ
1
2
p×pΣ

1
2
p×pV

T
p×p, (4)

with Φ = Σ
1
2
4×pV

T
p×p and P2×3R3×4 = U2×pΣ

1
2
4×4.

From Eq. (4) follows that Φ is ambiguous. Similar to the
3D case, a corrective transformation Q is required, since an
invertible matrix can be inserted between M = PR and Φ:

W2×p = P2×3R3×4︸ ︷︷ ︸
M

Q4×4Q
−1
4×4Φ4×p. (5)



In the rigid case, recovering a 4D representation does not
bring advantages. Eq. (5) provides the first evidence in
favour of HDSM: a 4D rigid body may exist so that its pro-
jections into the 3D space under different angles can encode
rigid transformations of a 3D rigid body.

4.2. Non-rigid factorisation

In the non-rigid case, HDSM instantiates as follows:

W =


R1

2×3 0 . . . 0
0 R2

2×3 . . . 0
...

...
. . .

...
0 0 . . . RF

2×3


︸ ︷︷ ︸

R2F×3F


P1

3×l
P2

3×l
...

PF
3×l


︸ ︷︷ ︸

Π3F×l

[
Φ
]
.︸ ︷︷ ︸

l×p

(6)

In Eq. (6), Φ denotes the high-dimensional structure with l
rows and p points, Pi

3×l are permutation matrices stacked
into the block-matrix Π, and Ri

2×3 are orthographic projec-
tion matrices stacked into R (quasi-block-diagonal matrix).

Pi
3×l always fetch three rows of Φ. As long as the struc-

ture remains unaltered, Φ preserves its dimensionality and
Pi

3×l fetches the same 3D subspace over multiple frames.
If deformations occur, Φ is expanded, i.e., three additional
rows accounting for the new state need to be added to Φ
in the general case. This might lead to a redundancy as Φ
may already contain the newly observed structure. On the
contrary, most of the newly observed deformations are lo-
calised, i.e., they do not affect the whole 3D surface but
rather its regions (e.g., some areas can be rigid throughout
the entire image sequence). The latter observation allows
for further compression of Φ (both lossless and lossy).

4.3. LRSM, TSM, FSM and HDSM

Consider the relation between LRSM — the most widely
used model for NRSfM — and HDSM. In LRSM, an ob-
served Wi can be written as [11]

Wi = [ci1Ri ci2Ri . . . cikRi][B1B2 . . .Bk]> =

Ri(ci1B1 + ci2B2 + . . .+ cikBk) = RiSi, (7)

with k basis shapes Bi and scalar coefficients cij , j ∈
{1, . . . , k}. Stacking all Wi together leads to

Wi = I2×3R3×3FΠ3F×3FS3F×p ⇒ (8)


W1

W2

...
WF

 =


I2×3 0 . . . 0
0 I2×3 . . . 0
...

...
. . .

...
0 0 . . . I2×3




R1
3×3F 0 . . . 0

0 R2
3×3F . . . 0

...
...

. . .
...

0 0 . . . RF
3×3F




I3F×3F

I3F×3F

...
I3F×3F




S1

S2

...
SF

 ,
(9)

where l = 3F and R1
3×3F = [R1|0 . . . 0], R2

3×3F =
[0|R2|0 . . . 0]. In other words, a set of 3D shapes stacked to-
gether forms a high dimensional rigid body; its projections
into different 3D subspaces lead to the initial 3D shapes.
Thus, LRSM can be written and interpreted in terms of
HDSM. The form in Eq. (9) represents a special case and
will not hold when designing a method based on HDSM.

Akhter et al. revealed that TSM is a dual representa-
tion of LRSM [9]. In support of this relation, Agudo et al.
showed that LRSM, TSM and the recently proposed FSM
are all dual to each other [2, 5]. Thus, the connection of
HDSM to all three previous models is established. Besides,
it would be perhaps more correct to describe it not as equiv-
alency, but rather a generalisation, since shapes and cam-
era poses in LRSM can always be rearranged to agree with
HDSM, but the opposite does not generally hold.

Similarly, the formulation of variational approach (VA)
[18] agrees with HDSM, where individual shapes are
stacked together into the combined shape matrix S:

W =


R1

2×3 0 . . . 0
0 R2

2×3 . . . 0
...

...
. . .

...
0 0 . . . Rf

2×3


︸ ︷︷ ︸

(RΠ)2F×3F


S1

S2

...
SF


︸ ︷︷ ︸
Φ3F×N

(10)

In VA, the low-rank constraint is imposed in every optimi-
sation step by minimising the nuclear norm of S. In contrast
to VA, we initialise Φ without duplication and keep it com-
pact and compressed in every optimisation step.

5. Monocular Surface Recovery with HDSM
We assume that dense correspondences for an image

batch are given, and the translation is resolved (an ob-
ject is centred relative to the camera). To reconstruct
a deformable structure from F uncalibrated views, we
propose to minimise the energy functional of the form

E(R,Π,Φ, l) =
1

2
‖W −RΠ C−1(Φ)‖2F +

λ

2

∫
R2

|Ŝ(s)|2

Ĝ(s)
ds, subject to rank(P(Π C−1(Φ))) = τ, (11)



with C−1 standing for an expansion operator, Ŝ denoting
a Fourier transformed decompressed and expanded surface
geometry Π C−1(Φ), and Ĝ being a Fourier transformed
reproducing kernel; F denotes Frobenius norm, τ and s are
a natural number (a parameter) and a Fourier space variable
respectively. Let S = Π C−1(Φ). The operator P entangles
dimensions of the expanded shapes:

P(S3F×N ) =
[
S′1S

′
2 . . .S

′
F

]>
F×3N , (12)

with S′i = (vec(S>i ))>. Note that we combine discrete and
continuous notations in our formulation.

The objective (11) with the rank constraint on
P(Π C−1(Φ)) is a nonconvex multi-dimensional optimisa-
tion problem. As no closed-form solution to this type of
problems exists, we minimise it alternatingly.

At the beginning of every optimisation step, we perform
decompression-expansion of Φ. Afterwards, we alternately
optimise for R and S while fixing S and R respectively.
Optimisation for R is performed in a closed form by pro-
jecting an unconstrained update to the SO(3) group by nor-
mal equations. Optimisation for S is carried out by an intro-
duction of an auxiliary variable S̄ and splitting the objective
into two subproblems:

min
S

E1(S) = min
S

1

2θ
‖S− S̄‖2F +

λ

2

∫
R2

|Ŝ(s)|2

Ĝ(s)
ds, (13)

min
S̄

E2(S̄) = min
S̄

1

2θ
‖S− S̄‖2F +

1

2
‖W −RS̄‖2F ,

s.t. rank(P(S̄)) = τ.

(14)

The subproblem (13) results in a convolution equation
which is solved with respect to S:

S = F−1
(
F(S̄) ◦ F(G)

λθJm×n + F(G)

)
, (15)

where Jm×n is an all-one matrix and ◦ is an elementwise
multiplication.

The subproblem (14) is solved for S̄. First, an uncon-
strained S̄′ is obtained as

S̄′ = (
1

θ
+ RTR)−1(RTW +

1

θ
S). (16)

We subsequently impose the rank constraint on S̄′ by pre-
serving τ largest singular values of P(S̄′) and reassembling
the matrix. The whole algorithm is summarised in Alg. 1.
It includes lifting-compression as well as decompression-
expansion operations which are explained further in this
section. Please refer to Appendix A for the details on the
derivation of Eq. (15).

Lifting-compression of S. In every iteration, we per-
form geometry lifting and compression. Taking the ex-
panded updates of S, we automatically detect frame-to-
frame redundancies, i.e., generate an ordered map of pairs

Algorithm 1 Lifted Coherent Depth Fields (L-CDF)
Input: measurements W, parameters λ, θ, τ , σ, µ, ε
Output: permutation matrix Π and lifted geometry Φ

1: Initialisation: [Π,Φ] = C(Srigid) (Alg. 2),
2: l = 3, Π = I3×3 ⊗

[
1 1 1 . . .

]T ∈ RF×1,
3: R2F×3F = diag

[
R1,rigid

2×3 R2,rigid
2×3 . . . RF, rigid

2×3

]
4: while not converge do
5: decompression, Alg. 3: S = Π C−1

µ (Φ)
6: fix S, update R:
7: svd(WS(SST)−1) = UΣV T

8: R = UCV T, where
C = diag(1, 1, . . . , 1, sign(det(UV T)))

9: fix R, update S:
10: initialise S̄ = S
11: while not converge do
12: UΣV T = svd

(
P
(
( 1
θ
I + RTR)−1( 1

θ
S + RTW)

))
13: S̄ = P−1

(
UΣtruncV

T
)

14: S = F−1
(
F(S̄) ◦ F(G)

λθJm×n+F(G)

)
15: end while
16: compression, Alg. 2: [Π,Φ] = Cε(S)
17: end while

x = (‖Si‖F ,Si). Next, we sort x and compare Frobenius
norms. If the difference in Frobenius norms for the consec-
utive shapes is below a scalar value µ, one of the shapes is
considered as redundant and not added into Φ′. The correct
assignment of projective 3D subspaces and the shapes Si

is ensured by constantly updating Πi. Note that the same
principles can be applied to the separate dimensions (imag-
ine the case when two shapes share the same x and y coor-
dinates, and differ solely in the z coordinate). Moreover, if
only parts of the shape change, the structure can be split into
several regions. To obtain S from Φ′, we need to compute
Π Φ′.

To compress along the temporal direction, we anal-
yse point trajectories and apply state-to-state compression.
Since the shapes are sorted (either in ascending or descend-
ing order according to the Frobenius norms), the point tra-
jectories in Φ′ are temporally smooth with a high proba-
bility. Thus, we save only non-redundant values, up to an
ε value. The resulting Φ is a sparsified matrix. By saving
only non-zero elements, high compression ratios are pos-
sible. We denote compression by the operator C(·). An
overview of the lift-compress operator is provided in Alg. 2.

Since in our approach, rigid transformations are decou-
pled from shape deformations, trajectory analysis provides
a cue for clustering the points into rigid, nearly rigid and
non-rigid subsets. By analysing groups of trajectories, we
can perform a segmentation-from-deformation and detect
localised and correlated deformations.

Decompression-Expansion of Φ. The reverse opera-
tor to lift-compress is decompress-expand. It replicates the
seed (non-zero) values along the point trajectories in the



Algorithm 2 Lifting-compression of S

Input: S, frame-to-frame threshold µ, granularity parameter ε
Output: [Π,Φ] = Cµ(S)

1: Initialisation: Π = 0
2: step 1, generate an uncompressed Φ′:
3: x = (‖Si‖F ,Si), i ∈ {1, . . . , F}
4: sort x in ascending order based on the Frobenius norms
5: insert non-redandant frames into Φ′, generate Π
6: step 2, compress point trajectories:
7: for points p ∈ {1, . . . , N} do
8: initialise the seed: s = Φ′(p, 1), Φ(p, 1) = Φ′(p, 1)
9: for point trajectory Φ′(p, j), j ∈ {1, . . . , F} do

10: if | ‖s‖ − ‖Φ′(p, j)|‖ < ε then
11: Φ(p, j) = 03×1

12: else
13: s = Φ′(p, j), Φ(p, 1) = Φ′(p, 1)
14: end if
15: end for
16: end for

lifted space (decompression) and applies Π to Φ′ (expan-
sion). The entire procedure is summarised in Alg. 3.

Algorithm 3 Decompression-Expansion of Φ

Input: compressed lifted geometry Φ, permutation matrix Π
Output: expanded shape matrix S = Π C−1(Φ)

1: Initialisation: Φ′ = 0
2: step 1, point trajectory completion, Φ′ = C−1(Φ):
3: for points p ∈ {1, . . . , N} do
4: initialise the seed: s = Φ(p, 1)
5: for point trajectory Φ(p, j), j ∈ {1, . . . , F} do
6: if Φ(p, j) is not a seed then
7: Φ′(p, j) = s
8: else
9: s = Φ(p, j),Φ′(p, j) = Φ(p, j)

10: end if
11: end for
12: end for
13: step 2, expansion: S = ΠΦ′

Initialisation. We initialise S under rigidity assumption
with [38]. P initially always fetches S1, i.e., the only avail-
able element. The threshold ε is a scalar user-specified set-
ting reflecting the noise level expectation, but also serving
as a granularity level parameter.

6. Results
The primary purpose of this section consists in showing

the validity of HDSM and evaluating L-CDF on synthetic
and real world image sequences. All experiments are per-
formed on a server with 32 GB RAM and Intel i7-6700K/4
GHz CPU. We do not require dedicated circuits, though
multiple steps of the algorithm can be accelerated on par-
allel hardware (e.g., matrix multiplications, Fourier trans-

Table 2: Joint average e3D and σe for the synthetic faces [18].

TB [8] MP [29] VA [18] L-CDF
e3D / σe 9.24 / 5.37 8.81 / 6.15 3.22 / 0.55 8.03 / 0.98

forms, lift-compress and decompress-expand operators).
Synthetic face sequences. We conduct quantitative

evaluation on four synthetic face sequences from [18]. Se-
quences 1 and 2 depict different facial expressions and are
ten frames long each. Sequences 3 and 4 represent interpo-
lated transitions between ten facial expressions and are both
99 frames long. Table 2 reports joint average root-mean-
square errors (RMSE) e3D and standard deviation σe for the
synthetic face sequences and several approaches [29, 9, 18]
supporting dense reconstruction, including the proposed

L-CPD. RMSE is defined as e3D = 1
F

∑F
f=1

‖Sref
f −Sf‖F
‖Sref

f ‖F
,

with Sref
f denoting the ground truth surfaces. Since all

methods reconstruct the relative camera poses, we register
the reconstructions and corresponding Sref

f with Procrustes
analysis. As the point ordering in reconstructions differs
across the methods, we use non-rigid point set registration
techniques [21] to establish correspondences between re-
constructions and Sref

f . L-CDF achieves the second best
result, after VA [18]. Every reconstruction contains 2.9·104

points per frame. With 10 alternations (between estimation
of R and S) and 10 inner primal-dual iterations, the run-
time of L-CDF amounts to 985 seconds, with a potential for
improvement. In this experiment, we set ε = 0 which is
equivalent to disabling compression of Φ.
Remark. CDF can explicitly regularise depth values which makes
it especially robust against inaccurate correspondences. This
comes at the cost of reduced e3D in the cases with clean corre-
spondences. See [20] for further details.

For the case with the activated compression, we set λ =
10−1, θ = 10−2, σ = 10−5, τ = 15 and µ = 10−4 in fur-
ther experiments with the sequences 3 and 4. The value of
ε varies, and we measure its influence on e3D and compres-
sion ratio c =

vuncomp.

vcomp.
, with vuncomp. and vcomp. denoting sizes

of the uncompressed and compressed dynamic reconstruc-
tions respectively. The results are summarised in Fig. 2-
(left, middle). With the increase in ε from 0.0 to 1.6 · 10−3,
e3D does not noticeably drop. At the same time, c exceeds
2.1 for the sequence 4. Thus, a nearly lossless compression
with c = 2.1 is observed. With further increase of ε, com-
pression ratios of up to 100 are possible, accompanied by
noticeable compression artefacts and, as a result, the drop
of e3D. In Fig. 1, several meshed instances of the synthetic
face sequence 3 are shown. Compression artifacts in the
form of curves on the reconstructed surfaces can be seen
with zooming in.

Properties of L-CDF can be appreciated on real and
naturalistic image sequences depicting real-world objects.



Figure 2: e3D and c values as functions of ε, in the experiment with the synthetic faces [18] (left, middle) and real image sequences (right).

heart face back shaman

(a) (b)
Figure 3: Visualisations of (a): final permutation matrices Π (qualitative evaluation); (b): series of final Φs for the face [18] and back [32] sequences.

Those are often prone to frame-to-frame redundancies (ei-
ther consecutive or repetitive) and self-occlusions. More-
over, often only parts of a surface deform, whereas re-
maining areas are transformed rigidly. We evaluate L-CDF
on three real image sequences, i.e., face [18], back [32],
heart [34] as well as shaman sequence from the SINTEL
dataset [14]. In all cases, correspondences are computed
with [35] in a single pass without an explicit occlusion han-
dling. Fig. 2-(right) shows compression ratios as the func-
tions of ε, for all four sequences. Because of the real setting,
more redundancies — frame-to-frame as well as localised
in space — are detected for the same ε, compared to the
synthetic face sequences. As a result, higher compression
ratios for lower ε values are observed. An exception is the
heart sequence, since is deforms entirely up to a few frames
in the diastolic phase. However, due to the periodic nature
of the deformations and a fixed camera, frame-level com-
pression is possible (recall that similar states do not neces-
sarily need to be consecutive). Furthermore, back achieves
the highest c, since rigid motion is dominant and non-rigid
deformations are rather scarce in this sequence. Compared
to the synthetic faces [18], the real face and the naturalis-
tic shaman achieve somewhat higher c values, as expected.
Reconstructions of all sequences are of the same order of
magnitude in scale. This allows comparison of the com-
pression ratios achieved for the same ε values.

Fig. 3a visualises the final Π matrices for all four image
sequences and ε = 8 · 10−4. The cyan marks zero entries,
and blue stays for I3×3 matrices. Thus, every Π fetches

a 3 × N submatrix of Φ. Note the irregular structure of
Πs. Since Φ is a compact lifted representation, Π serves
as a key for the assignment of projective 3D subspaces to
the frames. Besides, Πs carry information about the frame-
level compression of the sequence. The grey bars mark ar-
eas with multiple reconstructions originating from the same
3D projections (and thus, detected as redundant by L-CDF,
up to the µ parameter). Fig. 3b shows the series of visu-
alised compressed Φs for different ε values, with the white
and blue areas marking zero and non-zero values respec-
tively. Note, first, the repetitive structure of Φs, and, sec-
ond, how Φs are sparsified with increasing ε. Every point
trajectory in Φ reveals how often the respective point re-
mains rigid in the sequence, up to the ε parameter. More-
over, by analysing the trajectory patterns, it is possible to
detect the areas undergoing similar deformations.

Finally, Fig. 4 shows exemplary reconstructions from
all four sequences. Reconstructions are of a high quality,
with the advantage of the reduced storage requirement. For
the face sequence, we visualise point-to-point distances be-
tween the uncompressed and compressed reconstructions.
With moderately high compression ratios, compression ar-
tifacts become more noticeable. Those, however, do not dis-
rupt the general perception of the scene if c ∈ {5, . . . , 30}.
In the case of c ≈ 80 and higher, the dynamic scene reduces
to almost a single state, with the most of the deformations
lost. It is intuitive that in a sequence with, suppose 100
frames, the compression ratio of 100 would imply a single
most dominant or an average state preserved.



Figure 4: Exemplary reconstructions of real and synthetic image sequences. Frame numbers (comma separated), compression thresholds ε and the achieved
compression ratios c are listed for every sequence. For the shaman sequence [14], the reference frame and the mask are shown on the left. For the face [18],
point-to-point distances between the uncompressed and compressed reconstructions are visualised using Red>Yellow>Green>Blue colour code.

7. Discussion and Conclusion

We propose a new expressive model for monocular sur-
face recovery with geometry lifting — the HDSM. Besides
generalising the previously proposed models for NRSfM —
which was shown theoretically — it can serve as a founda-
tion for a practical approach enabling compression of dense
non-rigid reconstructions. The proposed variational energy-
based L-CDF approach with the new spatial regularizer (co-
herency term) achieves high reconstruction accuracy and
enables nearly lossless compression with the compression
ratios of ≈ 5− 7 on real image sequences.

Not all properties of HDSM were demonstrated exper-
imentally in this paper. The successor paper will address
the remaining parts. A limitation of the current approach is
handling of large deformations. HDSM can support those,
but this is currently not envisaged and experimentally ver-
ified. Thus, HDSM can naturally model a union of sub-
spaces. Another step towards the solution could be an ini-
tialisation policy which more accurately approximates the
local states. An important direction of the future work is
designing an algorithm which does not require expansion,
i.e., inferring Φ directly from 2D observations or, in other
words, performing updates in the lifted space. A further
interesting avenue is to test compressed representations for
shape recognition.

A. Appendix: Derivation of Eq. (15)

In this complementary section, we provide details for the min-
imisation of the energy functional (13). First, we rewrite (13) as

1

2θ

∫
Ω

|S(x)− S̄(x)|2dx+
λ

2

∫
Ω

|Ŝ(s)|2

Ĝ(s)
ds, (17)

with the set of points in the ROI x ∈ Ω. Note that 1) S(x), S̄(x)
parameterise 3D deformations by a 2D function, 2) functional (17)
updates only the point depths and 3) S̄ is fixed. Next, we perform
Fourier transform (FT) of S:

1

2θ

∫
Ω

∣∣∣∣ ∫
R2

Ŝ(s)e2πi〈x,s〉ds− S̄(x)

∣∣∣∣2dx+
λ

2

∫
Ω

|Ŝ(s)|2

Ĝ(s)
ds .

(18)

To optimise the energy functional (18) w.r.t. Ŝ, we take a varia-
tional derivative of E w.r.t. Ŝ(t) and equate it to zero:

∂E(Ŝ)

∂Ŝ(t)
=

1

θ
(S(t)− S̄(t))e2πi〈x,t〉 + λ

Ŝ(−t)
Ĝ(t)

!
= 0. (19)

Applying inverse FT leads to the convolution equation

S(z) =
1

λθ
G(z) ∗ (S̄− S)(z) (20)

which is solved w.r.t. Ŝ, and the solution after discretisation is
given by Eq. (15).
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