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Abstract—Solvers for Boolean satisfiability (SAT solvers) are
essential for various hardware and software verification tasks
such as equivalence checking, property checking, coverage
analysis, etc. Nevertheless, despite the fact that very power-
ful solvers have been developed in the recent decades, this
progress often still cannot cope with the exponentially increas-
ing complexity of those verification tasks. As a consequence,
researchers and engineers are investigating complementarily
different verification approaches which require changes in the
core methods as well. Self-verification is such a promising
approach where e.g. SAT solvers have to be executed on the
system itself. This comes with hardware restrictions such as
limited memory and motivates lightweight SAT solvers. This
work provides a case study towards the development of such
solvers. To this end, we consider several core techniques of SAT
solvers (such as clause learning, Boolean constraint propaga-
tion, etc.) and discuss as well as evaluate how they contribute to
both, the run-time performance but also the required memory
requirements. The findings from this case study provide a basis
for the development of dedicated, i.e. lightweight, SAT solvers
to be used in self-verification solutions.

1. Introduction
Embedded and cyber-physical systems, as they fre-

quently occur in microchips in almost all parts of our life,
are usually expected to be error-free. In order to guarantee
correctness, verification methods such as simulation, emu-
lation, or formal verification are applied before production
and deployment of circuits and systems. However, the ever-
increasing complexity as well as time-to-market constraints
often force designers to terminate the verification process
before full functional correctness has be ensured. This fre-
quently allows bugs to escape into the final product – a
problem which is usually associated with the term verifica-
tion gap.

Most of the existing approaches to address this prob-
lem rely on iterative improvements of existing solutions,
e.g. raising the abstraction level [1]–[3] or apply a combina-
tion of complementary verification techniques [4]. However,
these developments will hardly be able to comprehensibly
tackle the (exponentially increasing) complexity posed by
most verification problems. Hence, researchers and engi-
neers need to investigate fundamentally different approaches
to deal with this problem.

One possible direction towards this has recently been
proposed in terms of a method called self-verification [5],
[6]. Here, the general idea is to equip a system with capa-
bilities that allow for completing all the verification tasks
that could not been mastered before. While this still would
require a verification phase prior to deployment (in order to

particularly detect safety-critical errors), 100% completeness
could eventually been achieved by the system itself in the
field1.

However, this direction also requires changes in the
underlying methods which are employed for verification.
Thus far, verification mainly relies on the availability of
powerful reasoning engines. Here, solvers for Boolean satis-
fiability (SAT solvers, [7]) received significant interests and
are employed for many verification tasks such as equivalence
checking [8], model checking [9], coverage analysis [10],
test pattern generation [11], etc. In the past, corresponding
solvers have been significantly improved (leading e.g. to
several derivatives such as Satisfiability modulo theories
(SMT) solvers [12], word-level solvers [13], Quantifier-free
bit-vector (QBF) solvers [14], etc.) – eventually yielding and
enabling very powerful methods for verification.

For the purpose of self-verification, however, these
solvers have to be executed on the system itself, i.e. usu-
ally with restricted hardware resources. However, most of
the modern SAT solvers are optimized towards the best
possible run-time performance – usually relying on high-
speed CPU’s and potentially a large amount of memory.
Since those solvers cannot be applied on cyber-physical or
embedded systems, corresponding lightweight versions of
them have to be available. This significantly changes the
requirements of the verification methods needed for self-
verification: While pure run-time performance is not the
main criteria anymore (in fact, as the verification tasks
are completed after deployment anyway, it is acceptable
to somewhat loose performance), the limited resources of
the system becomes a crucial factor. Designers eventually
need to trade-off between run-time performance and limited
resources.

In this work, we aim to provide a better understanding of
these contradictory issues. To this end, we consider several
core techniques of SAT solvers (such as clause learning,
Boolean constraint propagation, etc.) which got established
in the past. Then, we discuss how they contribute to both,
the run-time performance but also the required hardware
requirements. For the latter, we consider thereby the memory
consumption as this is the most obvious limitation of a
cyber-physical or embedded system. Based on these dis-
cussions, several lightweight versions of a state-of-the-art
SAT solver are derived and experimentally compared. The
results provide insights on how lightweight solving engines
for self-verification should mainly depend on.

1. For details on the idea of self-verification as well as a discussion of
possible application scenarios, we refer to [5], [6].



The remainder of this paper is structured as follows: The
next section gives a short overview about modern SAT solver
and the techniques they use. Afterwards, possible directions
towards lightweight SAT solvers are discussed in Section 3.
This eventually yields several possible configurations which
are described in Section 4 and evaluated in Section 5.
Finally, the paper in concluded in Section 6.

2. Background
This section gives a brief overview on the SAT problem

as well as modern SAT solvers which have been developed
to solve it. Besides that, we briefly review main techniques
of SAT solvers and discuss their effect towards a lightweight
solution.

2.1. Boolean Satisfiability

The Boolean satisfiability problem (SAT problem) is
defined as follows: Let f : Bn → B, where n ∈ N is a
Boolean function. Then, the SAT problem is to determine
an assignment to the variables of f such that f evaluates to 1
or to prove that no such assignment exists. In other words,
SAT asks if ∃Xf for an f over variables X and determines a
satisfying assignment in this case. The Boolean formula f is
often given in Conjunctive Normal Form (CNF). A CNF is a
set of clauses, each clause is a set of literals, and each literal
is a Boolean variable or its negation. The CNF formula is
satisfied if all clauses are satisfied, a clause is satisfied if at
least one of its literals is satisfied, and a variable is satisfied
when 1 is assigned to the variable (the negation of a variable
is satisfied under the assignment 0).

Example 1. Let f = (x1 ∨ x2) ∧ (¬x2 ∨ x3). A possible
satisfying solution would be x1 = 1 and x2 = 0, i.e. f is
satisfiable.

2.2. SAT Solvers

The Boolean Satisfiability problem (SAT) is under re-
search for decades. In 1971, the Cook-Levin theorem
showed that this problem is NP-complete, what means there
is no algorithm known to solve it in polynomial time [15].
Nevertheless, very powerful reasoning engines (so called
SAT solvers) have been proposed in the past (see e.g. [7],
[16]–[19]), which are capable of solving instances composed
of hundreds of thousands of variables and clauses. Most
of them apply the steps depicted in Fig. 1: While there
are free variables left (a), a decision is made to assign a
value to one of these variables (c). Then, implications are
determined due to the last assignment (d). This may cause a
conflict (e) that is analyzed. If the conflict can be resolved by
undoing assignments from previous decisions, backtracking
is done (f). Otherwise, the instance is unsatisfiable (g). If no
further decision can be made, i.e. a value is assigned to all
variables and this assignment did not cause a conflict, the
CNF is satisfied (b).

In this context, advanced techniques such as efficient
Boolean constraint propagation [18] or conflict analysis [17]
as well as efficient decision heuristics [19] are common in
state-of-the-art SAT solvers today.

3. Towards Lightweight SAT Solvers
As reviewed in Section 1, SAT solvers have mainly been

optimized with respect to run-time performance. With the
emergence of alternative directions such as self-verification,
also the required memory consumption becomes an issue.
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Figure 1. Main flow of modern SAT solvers

This has hardly been considered thus far. Exceptions might
be the works proposed in [20] and [21], which however fo-
cused more on CPU caches and dedicated hardware designs
for SAT solvers, respectively. In this work, we aim to inves-
tigate the effects of state-of-the-art SAT solving techniques
such as Boolean constraint propagation, conflict analysis,
and heuristics on the resulting memory consumption and in
trade-off with the run-time performance. To this end, these
techniques are reviewed in a bit more detail and discussed
with respect to this issue in this section. This eventually mo-
tivates certain lightweight setups of SAT solvers which are
eventually described and evaluated afterwards in Section 4
and 5, respectively.

3.1. Boolean Constraint Propagation

Every time a variable is assigned a new truth value,
Boolean Constraint Propagation (BCP) checks whether this
assignment satisfies or dissatisfies a clause. Since all clauses
are ANDed in a CNF, a dissatisfied clause would immedi-
ately render the current assignment unsatisfiable – a con-
flict occurs which needs to be resolved (e.g. by backtrack-
ing previously made assignments). Moreover, besides pure
checking, BCP also allows to deduce (propagate) further
assignments: if a clause contains variables that are all set
to false except one, this variable has to be assigned true
in order to avoid a conflict. Such clauses are called unit
clauses.

In its naive implementation BCP would observe every
variable in every clause and propagate its value through the
formula. This technique is very CPU-intensive and takes
a lot of time. In order to improve that, a more sophisti-
cated approach called Two-Watched-Literal scheme (TWL
scheme) has been introduced in [18]. Here, only two literals
of a clause are observed as long as those are unassigned or
evaluate to true. If two literals are unassigned, no deductions
can be made and the clause should not need to be inspected.
If a literal evaluates to true, the clause is satisfied and
also does not need to be inspected. This way, a significant
number of inspections can be saved – yielding substantial
speed-ups.



With respect to memory consumption, it does not make a
significant difference whether the naive or the TWL scheme
of BCP is applied – in both cases the total amount of clauses
needs to be stored. However, one might argue that, in case
of the TWL scheme, an additional data-structure storing
the watched literals is required. While this is true, this
overhead is usually negligible as it usually only requires an
array constant in the size of the number of variables which
includes pointers to clauses. Hence, from a perspective of
developing lightweight SAT solvers, dropping state-of-the-
art methods for BCP such as the TWL scheme does not seem
beneficial as it would significantly decrease performance
while not yielding significant improvements with respect to
memory.

3.2. Conflict-Driven Clause Learning

One challenge all SAT solver have is how to deal with
conflicts. A conflict occurs if the SAT solver determines
a (partial) variable assignment which indeed may satisfy
some (or even almost all) clauses, but leaves one clause
unsatisfied. In this case, the conflict is resolved by undoing
variable assignments – usually through backtracking-like
methods. In its original implementation, SAT solvers simply
backtrack to the previous level and change to the last-made
variable assignment. However, this is often not efficient
as usually several levels (and, hence, assignments) can be
backtracked at once without pruning any part of the search
space that might include satisfying solutions.

Motivated by that, dedicated conflict analysis methods
have been introduced [17]. They cannot only analyze how
far to backtrack but also offer Conflict-Driven Clause Learn-
ing (CDCL). Here, information on the conflict is utilized
in order to generate a new clause for the SAT instance.
This clause basically represents a partial assignment which
eventually led to the conflict. Adding such a conflict clause
could help the SAT solver to enter similar conflicts again
– allowing to prune huge parts of the search space without
missing any potential satisfying solution.

However, SAT solvers usually run into a substantial
number of conflicts and, hence, generate a huge number of
conflict clauses. Furthermore, for a single conflict, several
different conflict clauses can be generated. Accordingly,
further methods have been developed to remove conflict
clauses (in particular if they did not help much in search
space pruning) as well as to minimize conflict clauses (i.e. to
reduce their number of literals). Either way, conflict clauses
increase the number of clauses of a SAT instance and, by
this, usually require a larger memory consumption. Hence,
from a perspective of developing lightweight SAT solvers,
conflict-driven clause learning significantly certainly has an
impact which shall be evaluated.

3.3. Branching Decision Heuristics

SAT solvers are search algorithms. Despite trivial SAT
instances where all variable assignments can be deduced,
this requires “guessing” variable assignments (and back-
tracks as described above if these “guesses” yielded con-
flicts). In this context, the order in which variables are
assigned is crucial to the efficiency of the solver (as different
variables may have different impacts e.g. on possible impli-
cations for further variable assignments). Because of this,
modern SAT solvers employ branching decision heuristics
in order to decide which variable should be assigned a value
next in case no further implications can be conducted.

There are different branching decision heuristics avail-
able. One approach is to choose the variable that satisfies

most of the clauses [18], another approach is to store the
number of conflicts a literal is part of. The Berkmin [19] and
Variable State Independent Decaying Sum (VSIDS, [18])
heuristics are known for those conflict-based heuristics.

However, even though these heuristics are statistic-based
and additional data is needed to create those statistics, their
memory consumption is linear, as only one value is stored
for each literal and the number of literals is fixed. Hence,
from a perspective of developing lightweight SAT solvers,
dropping branching decision heuristics does not seem ben-
eficial as it would significantly decrease performance while
not yielding significant improvements with respect to mem-
ory.

3.4. Preprocessing
Preprocessing is a technique to simplify a given SAT

instance before the actual solving process starts. If a clause
can be simplified, e.g. either the number of clauses or
the number of literals inside a clause can be decreased,
the solver can potentially determine a solution faster. An
efficient preprocessing technique that is based on clause
subsumption has e.g. been proposed in [22].

Since preprocessing usually decreases the size of a SAT
instance, it may also affect memory consumption. Hence,
from a perspective of developing lightweight SAT solvers,
preprocessing certainly has an impact which shall be eval-
uated.

4. Considered Configurations
The discussions from above motivate a consideration of

conflict-driven clause learning as well as preprocessing for
the development of lightweight SAT solvers. Based on that,
we considered corresponding configurations of a SAT solver
for a comparative experimental analysis. In this section, the
respectively considered considerations are briefly reviewed.

4.1. Original
As baseline, we employed MiniSAT in version 2.2.0 and

its original configuration with no default values changed.
This configuration is meant to provide a reference point in
order to compare the results of all other configurations with
respect to their run time and memory consumption. This is
also a good reference point for memory consumption of SAT
solvers in general, as MiniSAT implements a lot of tech-
niques of other SAT solvers, like CDCL [18], VSIDS [18]
and Two-Watched-Literal Scheme [18]. Furthermore, this
SAT solver is widely used and investigated and won many
of SAT competitions already.

In the remainder of this paper, this configuration is
denoted by orig.

4.2. Preprocessing
This configuration uses the internal preprocessing im-

plementation of MiniSAT (based on the principles of
SatELite [22]) in order to try shrinking and simplifying a
given SAT instance. On account of the internal implementa-
tion, we expect that this configuration consumes a bit more
memory as the original one, as it stores lists internally to
mark clauses and variables. It depends highly on the given
instance how much benefit we gain from preprocessing. If
the instance cannot be simplified for any reason than there
probably would be no significant difference between the
original configuration and this one.

In the remainder of this paper, this configuration is
denoted by pre.



4.3. No Conflict Clause Minimization

MiniSAT usually aims for minimizing conflict clauses
generated by conflict analysis. More precisely, each time a
new conflict clause is learned, MiniSAT tries to minimize
it, e.g. by removing redundant literals. This abbreviates the
solving time, as smaller clauses allow for earlier implica-
tions (a smaller number of variables need to be assigned in
order to imply an assignment or detect a conflict). Further-
more, a minimized clause may also decrease the memory
consumption, as small clauses need less memory compared
to larger ones. This technique can be deactivated by chang-
ing the default value using command line parameters.

Changing this configuration should have an effect on
the averaged memory consumption, as larger clauses needs
more space than smaller ones. However, this depends on the
structure of the learned clauses and if there are redundancies
to delete.

In the remainder of this paper, this configuration is
denoted by no ccmin.

4.4. No Conflict Clauses

Finally, a configuration is considered which avoids the
generation of conflict clauses whenever possible.

The last configuration is called no conflict clauses (no
cc). As already mentioned MiniSAT implements the CDCL
technique which has clause learning as its underlying con-
cept. During the solving process a huge amount of clauses
is learned. This configuration removes the learned clauses
as soon as they are learned2. This reduces the number
of learned clauses to a minimum but also significantly
affects the run-time performance of the solver. We expect
that this configuration will significantly reduce the memory
consumption, as significantly less clauses have to be stored.

In the remainder of this paper, this configuration is
denoted by no cc.

5. Experimental Evaluation
In this section, we summarize the results obtained by

the experimental evaluation with the four configurations
introduced in the previous section. To this end, we accord-
ingly modified the SAT solver MiniSAT [7] and evaluated
the resulting configurations using 177 problem instances of
different categories provided by the SAT competition 20163.
All evaluations have been conducted on an AMD64 machine
with 3.4 GHz and 32 GB of main memory. Additionally a
timeout of 1h was applied.

As discussed in the previous sections, the amount of
additionally added conflict clauses poses the biggest threat
to any memory limitations. Hence, a first series of eval-
uations considered this aspect. Fig. 2 summarizes the ob-
tained results, i.e. the minimal (min), maximal (max), and
average (avg) number of originally given clauses as well as
the number of conflict clauses generated by the respective
configurations (summarized for all 177 problem instances).

The orig configuration has the largest amount of conflict
clauses on average. Compared to that the pre as well as the
no ccmin configuration have slightly less conflict clauses
on average. Nevertheless, it can be concluded that all these
three configurations do not significantly differ in this regard.
In contrast, the no ccmin configuration obviously stands out.
Only a negligible amount of conflict clauses is generated.

2. Note that cases exists where conflict clauses cannot immediately by
removed; this is however negligible and not further considered here.

3. https://baldur.iti.kit.edu/sat-competition-2016

given conflict
min max avg min max avg

orig 510 35m 703k 2 409k 63k
pre 510 35m 703k 0 442k 61k
no ccmin 510 35m 703k 2 372k 61k
no cc 510 35m 703k 2 319 108

Figure 2. Number of given clauses and conflict clauses
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Figure 3. Memory consumption

Now, the question remains how this “translates” into
the required memory consumption. Fig. 3 provides a corre-
sponding summary of that. More precisely, the figure shows
the required memory consumption (in MB) for all instances
and all configurations. Note that instances which could not
be solved by a configuration within the given timeout are
not displayed in this plot (corresponding performances are
evaluated and discussed later in this section).

Again, the configurations orig, pre, and no ccmin have
a similar memory consumption – even though there are a
few distortions. In contrast, the configuration no cc has the
smallest memory consumption. This confirms that conflict
clauses have a significant impact on memory consumption
and that disabling the generation of them could prove ben-
eficial towards the development of lightweight SAT solvers
with limited memory requirements.

However, despite this benefit, basically disabling conflict
clause learning obviously has an effect on the run-time
performance of the solver. Hence, we evaluated this in a
second series of evaluations. To this end, we considered
how many instances could be solved within the time-limit
of one hour by each configuration (summarized in Fig. 4)
as well as how much run-time was required for this purpose
(summarized in Figure 5; the run-times are provided in
minutes).

As can clearly be seen, dropping conflict clauses sig-
nificantly degrades the performance of SAT solvers. Nev-
ertheless, it can also be observed that such a configuration
does not render the solver completely useless. In fact, a
significant portion of the instances can still be solved in
reasonable time. Additionally considering that significantly
less memory is needed, this could provide a good starting
point for the development of lightweight SAT solvers.



orig pre no ccmin no cc
75 82 75 57

Figure 4. Number of solved instances out of a total of 177
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Figure 5. Run-time

6. Conclusion
In this paper, we conducted evaluations towards the

development of lightweight SAT solvers – with a particular
focus on memory consumption. To this end, we first dis-
cussed what core techniques of modern SAT solvers have
what impact on the total memory consumption. Based on
that, different configurations have been defined and experi-
mentally evaluated. The results clearly showed that disabling
the learning of conflict clauses yields the best solution with
respect to memory requirements. At the same time, the run-
time performance is not completely unacceptable – although
a significant amount of instances could not have been solved
anymore when conflict clauses are deactivated.

Overall, this motivates to re-think “old” SAT solving
strategies when it comes to applications such as self-
verification which do not necessarily rely on the best pos-
sible run-time performance but may have severe hardware
limitations. Future work obviously is focused on developing
SAT solvers and verification methods following this direc-
tion. Before, however, more detailed evaluations (e.g. con-
sidering more sophisticated configurations as well as a
broader variety of instances) shall be conducted first.
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