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Abstract—Although mereotopological relationship theories and
their qualification problems have been extensively studied in R2,
the qualification of mereotopological relations in R3 remains
challenging. This is due to the limited availability of topological
operators and high costs of boundary intersection tests. In this pa-
per, a novel qualification technique for mereotopological relations
in R3 is presented. Our technique rapidly computes RCC-8 base
relations using precomputed signed distance fields, and makes no
assumptions with regards to complexity or representation method
of the spatial entities under consideration.

I. INTRODUCTION

Qualitative spatial reasoning (QSR) is concerned with
knowledge representations of spatial entities and their con-
figurations as well as with reasoning and query processing
mechanisms for such spatial configurations. It has applications
in areas such as robotic navigation [1], scene understanding [2]
or geographic information systems [3]. During the last two
decades a plethora of QSR calculi has been proposed, perhaps
the most well known being the region connection calculus
(RCC), a theory which uses an axiomatic framework to
describe spatial entities by their pairwise mereotopological
relations. Howsoever and regardless of the peculiarities of
its diverse calculi, QSR research generally addresses the
following problems:
P.1 How to qualitatively represent spatial entities and their

relationships?
P.2 How to infer new relationships from a finite set of

qualitative spatial relationships.
P.3 What kind of techniques to apply for detecting qualitative

from quantitative spatial relationships.
In the scope of this paper, we are concerned with the problem
of Qualification (P.3) and wish to automatically turn quan-
titative descriptions of three-dimensional spatial configura-
tions into qualitative descriptions composed of RCC-8 base
relations. For this purpose, a novel qualification technique
is presented. Our approach rapidly computes RCC-8 base
relations using signed distance fields as lookup data structures,
and it has three main advantages:
A.1 No assumption is made with regards to the 3D represen-

tation techniques of spatial entities.
A.2 Complex spatial entities and configurations can be repre-

sented to any specified resolution.
A.3 Determining the intersection of the boundaries, interiors,

and exteriors of two spatial entities is fast and indepen-
dent of the complexity of the spatial entities.

(a) Joe’s Ice Cream (b) Armadillos [4]

Fig. 1: RCC-8 qualification of (1a) took 1.051 ms and resulted
in externallyConnected(Joe,Ice), disconnected(Joe,Bucket),
disconnected(Ice,Bucket). RCC-8 qualification of (1b) took
7.813 ms and resulted in partiallyOverlapping(A,B).

The remainder of this paper is organised as follows. Sec-
tion II introduces some preliminaries on mereotopological
relationship theories and discusses the related literature on
mereotopological qualification of spatial configurations in R3.
Section III explains the concept of signed distance fields.
We propose our novel qualification algorithm using signed
distance fields in Section IV, and report on implementation and
performance results in Section V. We conclude with summary
in Section VI.

II. MEREOTOPOLOGICAL RELATIONSHIP THEORIES

As a framework for the definition of mereotopological
relations between spatial entities embedded in Rn, some
prominent QSR theories specify a finite number of jointly
exhaustive and pairwise disjoint (JEPD) binary relations in
terms of the topological operators interior ·o, boundary ∂·
and exterior ·e along with the intersection operation from set
theory [5].

For example, the 9-Intersection Model (9IM) [6] defines the
possible relations between two spatial entities A,B ⊂ Rn in
terms of the intersections of A’s boundary (∂A), interior (Ao)
and exterior (Ae) with the boundary (∂B), interior (Bo) and
exterior (Be) of B.

9IM(A,B) =

 Ao ∩Bo Ao ∩ ∂B Ao ∩Be

∂A ∩Bo ∂A ∩ ∂B ∂A ∩Be

Ae ∩Bo Ae ∩ ∂B Ae ∩Be


The existence of intersections is registered in 9IM(A,B) ∈
B3×3, a matrix that precisely describes the topological relation
between A and B.



Fig. 2: The eight basic relations of the RCC-8 calculus.

Based on 9IM(A,B), eight qualitative spatial relations
between A and B can be distinguished [7]. These relations (cf.
Table I) are equivalent to the relations defined by the RCC-
8 calculus [8], a first-order logical language for formalising
topological relationships between abstract spatial regions (cf.
Figure 2).

Although mereotopological relationship theories, e.g. RCC-
8 and 9IM, and their qualification [9] have been extensively
studied in R2, the qualification of mereotopological relations
in R3 remains challenging. This is due to

C.1 the limited availability of topological operators interior
·o, boundary ∂· and exterior ·e, and

C.2 the computational costs of the boundary intersection tests
Ao ∩ ∂B, Ae ∩ ∂B, ∂A ∩ ∂B and Bo ∩ ∂A

with respect to a specific representation technique for three-
dimensional spatial entities. In what follows, we briefly discuss
the related literature in this respect.

Surface Models. Albath et al. introduce RCC-3D [10],
[11], a QSR system based on the Generalised 2D Region
Connection Calculus. In order to determine the mereotopo-
logical relation between two 3D spatial entities, RCC-3D
performs pairwise triangle-triangle intersections in worst-case
time complexity of O(n5) with n being the maximum number
of faces or vertices used to define the spatial domains under
consideration. Sabharwal et al. [12]–[17] present VRCC-3D+,
an extension of RCC-3D that relies on a decision framework
for more efficient calculations of boundary intersections using
either triangle-triangle intersection tests or intersection tests
with AABB trees.

Solid Modelling. Borrmann et al. [18] introduce a QSR
system for the spatial analysis of 3D CAD models. Spatial
domains are individually encoded to any specified resolution
in octrees with each octree node specifying if it lies completely
inside, outside or on the boundary of the encoded spatial
domain. Mereotopological qualification between two given
spatial domains is performed by synchronised breadth-first
traversals of both octrees and the application of 21 decision
rules on each traversal level. Ben Hmida et al. [19], [20]
present a method to automatically compute 9IM topological
relations between Nef polyhedra. The procedure is based on
the generation of Selective Nef Complexes (SNC), a represen-
tation of Nef polyhedra providing binary Boolean operators
and unary operators such as interior, closure and boundary,
from standard polyhedra, and the redefinition of the 9IM
matrix using solely SNC operators.

Ao ∩ ∂B Ae ∩ ∂B ∂A ∩ ∂B Bo ∩ ∂A
NTPP(A,B) 1 0 0 0

NTPPi(A,B) 0 1 0 1
DC(A,B) 0 1 0 0

TPP(A,B) 1 0 1 0
TPPi(A,B) 0 1 1 1

EC(A,B) 0 1 1 0
PO(A,B) 1 1 1 1
EQ(A,B) 0 0 1 0

TABLE I: Basic relations of RCC-8 in terms of 9IM.

III. SIGNED DISTANCE FIELDS IN BRIEF

Distance fields are a popular data structure in the fields
of computer graphics, geometric modelling and robotics and
serve a vast range of applications including surface reconstruc-
tion [21], shape representation [22] or collision detection [23].

Given a three-dimensional spatial entity P ⊂ R3 with
distance metric d : R3 × R3 → R, we denote with ∂P ⊂ P
the surface (or boundary) of P . A distance field of P is a
scalar field D′ : R3 → R that specifies the minimum distance
from any q ∈ R3 to the closest point p ∈ ∂P such that
D′(q) = minp∈∂P {d(p, q)}. If ∂P is a closed surface, i.e.,
∂P is compact and without boundary, we can define a sign
function σ′ : R3 → {−1, 1} such that

σ′(q) =

{
−1 if q ∈ P
1 if q 6∈ P

for any q ∈ R3. If ∂P is oriented, i.e., a face normal n ∈ R3

is known for every p ∈ ∂P , we can define a sign function
σ : R3 → {−1, 1} such that

σ(q) =

{
−1 if (q − p) · n < 0

1 if (q − p) · n ≥ 0

As noted by Xu et al. [24], we can find for sufficiently
small ∆ ∈ R a point q ∈ R3 for every p ∈ ∂P within
the offset surface ∂∆P =

{
q ∈ R3‖D′(q) = ∆

}
such that

σ(q) = σ′(q). Hence, we can define a signed distance field
D : R3 → R with D(q) = σ(q) · D′(q) for any oriented,
not necessarily boundary-free, three-dimensional spatial entity
P ⊂ R3.

The problem of computing a distance field is fairly well
understood, and there is a wide array of algorithms for trian-
gle meshes, triangle soups, implicit surfaces and parametric
surfaces [25].

IV. QUALIFICATION USING SIGNED DISTANCE FIELDS

Given two spatial entities P1,P2 ⊂ R3 with body-fixed
coordinate systems C1 and C2 and a 6 degree-of-freedom
transformation P between C1 and C2, our objective is to
turn this quantitative geometric description into a qualitative
description composed of RCC-8 base relations.

We propose to solve this qualification problem using
precomputed signed distance fields as lookup data structures
for boundary intersection tests.



Algorithm 1 Histogram computation
procedure BUILDHISTOGRAM(P1, P2, P )

B∂ , Bo, Be ← 0
for all x ∈ ∂P2 do

B∂ ← B∂ + 1∂(P1,Px)
Bo ← Bo + 1o(P1,Px)
Be ← Be + 1e(P1,Px)

end for
return B∂ , Bo, Be

end procedure

Algorithm 2 RCC-8 qualification algorithm
procedure QUALIFY(P1, P2, P )

B∂ , Bo, Be ← BUILDHISTOGRAM(P1, P2, P )
if B∂ = Be = 0 then

return NTPP(P1,P2)
else if Bo = Be = 0 then

return EQ(P1,P2)
else if Be = 0 then

return TPP(P1,P2)
else if B∂ = Bo = 0 then
·, Bo, · ← BUILDHISTOGRAM(P2, P1, P )
if Bo = 0 then

return DC(P1,P2)
else

return NPTPi(P1,P2)
end if

else if Bo = 0 then
·, Bo, · ← BUILDHISTOGRAM(P2, P1, P )
if Bo = 0 then

return EC(P1,P2)
else

return TPPi(P1,P2)
end if

else
return PO(P1,P2)

end if
end procedure

For both spatial entities P1 and P2, we assume the
availability of
R.1 signed distance fields DP1

and DP1
precomputed with

one of the methods mentioned in Section III, as well as
R.2 point-based representations of boundaries ∂P1 and ∂P2

obtained either directly from three-dimensional polygonal
models or by point sampling [26] of P1 and P2.

We consider assumptions R.1 and R.2 to be justified for
non-deformable spatial entities P1 and P2, and, therefore, in
conformity with related work.

Our qualification technique relies on the fast computation
of histograms specified by the following indicator functions

1∂(Pi,x) =

{
1 if DPi

(x) = 0

0 otherwise
1o(Pi,x) =

{
1 if DPi

(x) < 0

0 otherwise

1e(Pi,x) =

{
1 if DPi

(x) > 0

0 otherwise

The indicator functions 1∂(Pi,x), 1o(Pi,x) and 1e(Pi,x)
employ a precomputed signed distance field DPi

in order to
determine if a given point x ∈ R3 lies completely inside,
outside or on the boundary of the spatial domain Pi.

BUILDHISTOGRAM (cf. Algorithm 1) effectively computes
the boundary intersection tests Po

1 ∩ ∂P2, Pe
1 ∩ ∂P2 and

∂P1 ∩ ∂P2 in time complexity of O(n) with n being the
number of points in ∂P2. Further performance optimisations
are achievable by exploiting obvious loop-level parallelism.

A B #points qualify(A,B) Time (ms)
Joe Ice 6,301 EC(A,B) 0.821
Joe Bucket 6,530 DC(A,B) 0.184
Ice Bucket 723 DC(A,B) 0.046

Armadillo 1 Armadillo 2 172,974 PO(A,B) 7.813

TABLE II: Duration of QUALIFY(A, B) for given models with
SDF of resolution 32x32x32.

(a) (b)

Fig. 3: Scaling behaviour of QUALIFY(A, B) with respect to
(3a) varying SDF resolutions, and (3b) point-based boundary
representations of increasing sizes for Armadillos configura-
tion.

Our overall qualification technique QUALIFY (cf. Algorithm
2) relies on BUILDHISTOGRAM in order to perform the
boundary intersection tests Po

1 ∩ ∂P2, Pe
1 ∩ ∂P2, ∂P1 ∩ ∂P2

and Po
2 ∩ ∂P1. Essentially, QUALIFY is a conditional cascade

of Table I and rather self-explanatory.

V. IMPLEMENTATION AND RESULTS

The implementation of our approach in C++ relies on the
Vega FEM Library [27] for precomputing a signed distance
field for each spatial entity. Furthermore, we utilise a Meshlab
server [28] for precomputing a point-based surface representa-
tion for each spatial entity. All timings reported in this paper
are generated on a MacBook Pro 2,8 GHz Intel Core i7 with
16 GB 1600 MHz DDR3 and an NVIDIA GeForce GT 750M
2048 MB, running MacOS Sierra 10.12.6.

We have applied our approach to the following spatial con-
figurations and measured the duration of computing qualitative
descriptions composed of basic RCC-8 relations. All timings
(in milliseconds) are presented in Table II.

Joe’s Ice Cream (cf. Figure 1a) is composed of three spatial
entities, i.e., Joe (6054 vertices, 12988 faces, 16 connected
components, two-manifold, 6 holes, genus 9), Ice Lolly (247
vertices, 436 faces, 3 connected components, two-manifold,
3 holes, genus 0), and Bucket (476 vertices, 896 faces,
3 connected components, two-manifold, 2 holes, genus 0).
RCC-8 qualification using our approach correctly results in
EC(Joe,Ice), DC(Joe,Bucket) and DC(Ice,Bucket).

Armadillos (cf. Figure 1b) is composed of two overlapping
instances of the Stanford Armadillo [4] (172974 vertices,
345944 faces, 1 connected component, two-manifold, 0 holes,
genus 0). RCC-8 qualification using our approach correctly
results in PO(A,B).



Briefly looking into the scaling behaviour our aproach, we
qualified the Armadillos configuration with varying SDF res-
olutions and fixed-sized point-based boundary representations
(cf. Figure 3a) as well as with point-based boundary repre-
sentations of increasing sizes and a fixed SDF resolution of
32x32x32 (cf. Figure 3b). We discovered the scaling behaviour
of our approach to be nearly invariant with respect to the
resolution of distance fields and to be linear in the size of
point-based boundary representations.

VI. CONLUSIONS

In this paper, we propose a novel qualification technique
for mereotopological relations in R3. Our approach rapidly
computes RCC-8 base relations using precomputed signed
distance fields, and makes no assumptions with regards to
complexity or 3D representation method of the spatial enti-
ties under consideration. Conducted performance evaluations
suggest improvements over relevant related works as well as
favourable scaling behaviour.
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