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Abstract. This paper presents a novel Structure from Motion (SfM)
framework designed for central projection cameras. The goal is to sup-
port future large scale multi-view 3D reconstruction algorithms. We be-
lieve that these algorithms will be able to benefit from several different
sources of visual information. Accordingly, SfM approaches will need to
handle this variety of image sources, such as perspective, wide-angle and
spherical images. However, this issue has not yet been addressed. Cur-
rent state of the art techniques are not able to handle heterogeneous
images simultaneously. Therefore, we introduce SPHERA, a generalized
SfM framework designed for central projection cameras. By adopting
the unit sphere as underlying model it is possible to treat single effec-
tive viewpoint cameras in a unified way. We validate our framework on
synthetic and real datasets. Results show that SPHERA is a powerful
framework to support upcoming algorithms and applications on large
scale 3D reconstruction.

Keywords: Structure from motion, spherical images, multi-view 3D re-
construction, large scale

1 Introduction

The popularity of full panoramic images has significantly increased during the
past few years. This is confirmed by the growing variety of spherical image acqui-
sition hardware and software packages available nowadays [1–5]. Mobile devices
such as smartphones and tablets feature easy-to-use Apps that allow the user
to capture panoramas within seconds. Additionally, panoramic images offer the
possibility to create immersive environments where the user experiences a first-
person view, such as Google Street View [6]. Immersive visualization systems find
appliance in a number of applications, e.g. documentation, education, preserva-
tion of cultural heritage, gaming, city planing, etc. Clearly, these applications can
further benefit from 3D information. This makes full spherical images specially
attractive for immersive visualization as well as 3D reconstruction.
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There are several ways to classify multi-view 3D reconstruction algorithms.
One of them concerns the distance between the images relative to the scene,
the so called baseline. Recent narrow baseline approaches are capable of simul-
taneously recovering camera poses and 3D geometry from a video sequence [7,
8]. However, these approaches are normally restricted to indoor, office-like, en-
vironments. Wide baseline techniques, on the other hand, are better suited for
large scale reconstruction, but assume camera poses have been previously de-
termined [9, 10]. In other words, they implicitly demand Structure from Motion
(SfM) to recover the camera poses before the 3D model can be computed.

To perform SfM, spherical images are more suitable than standard perspec-
tive images. Due to their wide field of view, scene features are observed in
more images, thus increasing the number of constraints on camera poses. Conse-
quently, methods have been derived to perform SfM on wide field of view cam-
eras. More specifically, [11–13] address SfM on omnidirectional images, while
[14–16] deal with full spherical images. Not surprisingly, perspective SfM has
been extensively studied e.g. by [17–23]. Although these approaches have shown
to work well for the specific image type they were designed for, up to the authors
knowledge they are unable to handle images of any other type.

Another relevant aspect of SfM algorithms is whether the camera poses are
estimated globaly or incrementaly. Usually, global methods split the camera
pose estimation into two parts. The first part aims at recovering the rotation
matrices of all cameras. The second part uses the global rotations obtained in
the first part to determine the translation of all cameras. The later may be
performed independently of the scene structure [20] or along with it [21]. The
main reason for this splitting is that the estimation of relative translations is
inaccurate in case of narrow baseline, whereas relative rotations can be precisely
recovered regardless of the baseline, provided enough point correspondences.
Global methods have the advantages of evenly distributing errors among all
cameras and being independent of an initial pair of cameras. They traditionally
solve a linear system of equations (which minimize an algebraic error), combined
or followed by bundle adjustment (BA) [24] to refine camera poses. However, if
a new camera is added afterwards, the entire pipeline has to be executed again.

Incremenal methods are initialized by computing the poses of a selected cam-
era pair. Then, point correspondences are triangulated and the resulting 3D
points are used to select the next camera. Once the pose of the new camera is
determined, new 3D points are created and the procedure is repeated. In other
words, the poses of all cameras along with a sparse representation of the scene
structure are recovered by alternating between triangulation and resectioning.
An advantage of these methods is the possibility to obtain the optimal pose ev-
ery time a new camera is added. This happens because each pose is estimated
using BA which minimizes the reprojection error, carrying along a meaningful
geometric interpretation, instead of an algebraic error. Another advantage of
incremental methods is the ability to later include new cameras without neces-
sarily rerunning the entire pipeline. Incremenal pipelines may suffer from drift
caused by accumulated errors. Consequently, loop closure may become an issue.
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Nevertheless, it has been shown in [22] that re-triangulation of existing point cor-
respondences is able to redistribute accumulated errors as well as deal with loop
closures. Moreover, one of the most successful SfM algorithms is Bundler [17],
which implements an incremental pipeline.

Given the current effort to reconstruct ever growing environments [10, 25,
26], every source of visual information shall be taken into account, regardless of
the shape of image surface. This is an issue that has not yet been addressed.
Apart from performance and accuracy, another highly desirable feature of 3D
reconstruction algorithms is to update and improve the scene model whenever
new images are available. Here again, the ability to deal with different camera
types is essential. Therefore, we present SPHERA, a novel Structure fromMotion
framework to bridge the gaps between current SfM methods for central projec-
tion cameras. We build on the model proposed in [27] and adopt the unit sphere
to represent images and to treat heterogeneous camera types in a unified way.
Our approach dynamically selects the best information available to recover cam-
era poses and scene structure, allowing new images to be integrated efficiently.
Experiments on synthetic and real image sequences validate our framework as a
valuable contribution to support large scale 3D reconstruction algorithms.

1.1 Related Work

The work presented in [11] uses epipolar geometry to compute scene structure
from an omnidirectional vision system mounted on a robot platform. However,
the camera pose problem is not addressed. In [12], Micusik and Pajdla focus
on omnidirectional images with a field of view larger than 180o and devise a
camera model specific for that type of image. Although scene structure can be
recovered, the technique is limited to the two-view geometry problem. Conse-
quently, the proposed camera model can hardly be used in a more generic SfM
approach. Bagnato et al. present in [13] a variational approach to achieve ego-
motion estimation and 3D reconstruction from omnidirectional image sequences.
Nonetheless, the environment must be densely sampled so that the relationship
between image derivatives and 3D motion parameters is still valid. Thus, this
approach can not be used in a more general, sparse SfM pipeline.

A method to recover camera poses from a set of spherical images on a sparsely
sampled environment is presented in [14]. However, SfM is performed based on
panoramic cubes computed for each spherical image. The camera poses are recov-
ered by casting the spherical problem back to the standard perspective problem.
In [16], spherical images are used to estimate the relative camera poses and to
build a map of the environment. To simplify the problem, Aly and Bouguet
assume planar motion, i.e. all camera frames must lie on the same plane. This
assumption strongly limits the applicability of the proposed technique. Our ap-
proach is closely related to [15], as both exploit full spherical images to deliver a
sparse representation of the scene along with recovered camera poses. Neverthe-
less, the method presented by Pagani and Stricker was designed exclusively for
spherical cameras, whereas our framework naturally handles any kind of central
projection camera. Additionally, SPHERA allows to dynamically select a subset
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of the cameras to optimize and speed up BA with little to no loss of accuracy,
as detailed in Section 3.

Not surprisingly, our pipeline has similarities with some SfM methods derived
exclusively for perspective images. For instance, Wu proposes an incremental
SfM where loop closure does not need to be explicitly detected [22]. His algo-
rithm tracks under-reconstructed camera pairs, i.e. pairs with low ratio between
their common 3D points and number of point correspondences. Then, based on
a geometric sequence, re-triangulation is performed for all under-reconstructed
camera pairs. Wu shows that this re-triangulation is able to reduce drift errors
without explicitly detecting loops even for long image sequences. Our framework
incorporates this idea. However, as we aim at high accuracy, re-triangulation is
performed during every step of BA, instead of follwoing a predefined sequence.
Another incremental method has been proposed in [23]. The authors introduce
an algebraic cost function formulated on pairwise epipolar constraints as a more
efficient alternative to the traditional reprojection error. Their algorithm elimi-
nates structure from BA aiming at speeding up convergence. Nevertheless, their
final solution lacks the accuracy of geometric based cost functions. Therefore,
their pipeline requires two or three additional iterations of the classical BA
(which takes the structure back into account) at the end to improve precision.
As described in Section 3, we also consider only the camera parameters for BA
to reduce the dimension of the parameter search space. Contrary to [23], we
implicitly model scene structure through the re-triangulation mentioned above.
Moreover, instead of an algebraic error, SPHERA minimizes a reprojection error
defined directly on the surface of the unit sphere.

2 Background

2.1 Spherical Images

A spherical image is a 180o × 360o environment mapping that allows an entire
scene to be captured from a single point in space. Consequently, every visible
3D point PW given in world coordinate system can be mapped onto the image
surface. This is done by a two-step process. First, analogue to the perspective
case, PW is represented in the camera coordinate system as PC = RPW + t,
with R and t representing the camera rotation matrix and translation vector.
Second, and different from the perspective projection, PC is projected onto the
image surface by scaling its coordinates, as shown in Fig. 1-(a). Without loss of
generality, we assume a unit sphere. Thus, the scaling becomes a normalization
and p = PC/‖PC‖.

Spherical images are stored as a 2D pixel-map as depicted in Fig. 1-(b). This
map is obtained using a latitude-longitude transformation, with 0 ≤ φ ≤ π and
0 ≤ θ ≤ 2π.

2.2 Sphere as Unifying Model

Our approach is grounded on the seminal work developed in [27], where the
authors proposed a unifying model for the projective geometry of vision sys-
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(a) (b)

Fig. 1. (a) Spherical coordinates and illustration of the spherical projection. (b) Pixel-
map of a spherical image.

tems having a single effective viewpoint. These vision systems are commonly
referred to as central projection cameras and include catadioptric sensors fea-
turing conic mirrors of different shapes, such as parabolic, hyperbolic or elliptic.
Geyer and Daniilidis showed that any central catadioptric projection is equiv-
alent to a two-step mapping via the sphere. It is well known from the pinhole
model that standard perspective imaging characterizes a single viewpoint sys-
tem. Nonetheless, perspective images are also central catadioptric systems with
a virtual planar mirror and are, therefore, covered by the aforementioned model.
In practice, that means it is possible to treat these central projection systems as
spherical cameras, provided the mapping from the original image surface to the
sphere is known. This mapping may be seen as a warping transformation from
the original image to the unit sphere. As an example, Fig. 2 shows the result of
warping a perspective image onto the sphere.

(a) (b)

Fig. 2. Example of (a) an original perspective image [28] and (b) its warped version.
The warped image appears mirrored due to the viewpoint (“outside” the unit sphere).

2.3 Spherical Camera Pose Estimation

Epipolar Geometry The epipolar geometry for full spherical cameras has al-
ready been presented in [29]. Thus, here we provide a short overview. Consider
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a pair of spherical cameras C0 and C1. Let R and t be the associated rotation
matrix and translation vector. A point p0 on the surface of C0, along with the
centers of the cameras, define a plane Π that may be expressed by its normal
vector nΠ = Rp0× t = [t]

×
Rp0, where [t]× is the skew-symmetric matrix repre-

senting the cross-product. For any point p1 on C1 belonging to Π the condition
pT1 nΠ = 0 holds, which is equivalent to pT1 [t]

×
Rp0 = 0, where E = [t]

×
R is

the essential matrix [18]. The condition pT1 Ep0 = 0 is known as the epipolar
constraint and is the same result obtained in the perspective case. This shows
that the epipolar constraint is independent of the shape of the image surface.

nΠ

C0

p
0

,tR
1C

p
1

Π

Fig. 3. Epipolar geometry for two spherical images.

Pose Estimation There are mainly two techniques for computing camera
poses. The first is useful for relative pairwise pose estimation, typically when
only 2D image correspondences (2D-2D correspondences) are available. With-
out loss of generality, one of the cameras is assumed as reference and R and t
represent the pose of the second camera. In this case, R and t may be deter-
mined with e.g. the 5-point algorithm [30]. The second technique is normally
used when a number of 3D scene points and their respective projections onto an
image are known, i.e. a set of 2D-3D correspondences is available. This config-
ures a Perspective-n-point (PnP) problem, which can be solved with a minimum
of 6 correspondences [31].

3 The Proposed Approach

Given a set of images of a scene, our goal is to accurately estimate the pose of
all cameras as well as to recover a sparse 3D point cloud of the underlying scene
representing its geometry. The set of central projection cameras is defined as

C =
{

Cj =
[

R̂j |t̂j

]

| R̂j ∈ SO (3) , t̂j ∈ R
3

}

, (1)

where j = 0, ..,M − 1, M is the total number of cameras and R̂j and t̂j are the
rotation matrix and translation vector representing the estimated pose of camera
Cj . To aid the non-linear optmization, we adopt an axis-angle parameterization
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for the rotation matrix and Cj is then parameterized by a vector ρj ∈ R
6. All

together, the cameras are parameterized by a vector ρ ∈ R
m, with m = 6M .

Likewise, we denote the set of sparse 3D points reconstructed along with the
camera poses as

P =
{

P̂i ∈ R
3

}

, (2)

where i = 0, .., N − 1, N is the number of points and P̂i holds the estimated
coordinates of a scene point Pi.

We then formulate the problem of recovering all camera poses along with a
sparse point representation of the scene as a non-linear optimization problem.
The parameter vector ρ is optimized in order to minimize

min
ρ

N−1
∑

i=0

M−1
∑

j=0

eij (ρ) , (3)

where eij (ρ) is a cost function for each point P̂i and camera Cj . The parameters
ρ+ that minimize Eq. 3 are the sought camera poses. Note that this optimization
depends exclusively on the camera parameters ρ. In a classical BA scenario,
for N 3D points and M cameras, a total of 3N + 6M parameters have to be
optimized. Different from the classical BA, we reduce the complexity of the
problem by dropping the structure and considering only the camera parameters.
This leads to an important advantage: the dimension of the parameter search
space is at most 6M , a significant reduction compared to 3N + 6M , what is
particularly convenient in case of large scale scenes. Nonetheless, structure is
jointly estimated. Inspired by [22], point correspondences are re-triangulated
at every step of our BA, updating the structure with the most recent camera
parameters and reducing drift due to accumulated errors.

3.1 Reprojection Error and Visibility Map Models

The cost function eij (ρ) in Eq. 3 represents the reprojection error of a point P̂i

on camera Cj and is defined as

eij (ρ) = cos−1 (pij p̂ij) , (4)

where pij p̂ij is the scalar product between the expected projection pij and the

measured projection p̂ij obtained with P̂i, R̂j and t̂j . The expected projection
pij is determined by the keypoint location corresponding to Pi. Note that as
−1 ≤ pij p̂ij ≤ 1, we have 0 ≤ eij (ρ) ≤ π and it is not necessary to take the
absolute value in Eq. 4. Furthermore, we do not use any approximation of the
reprojection error as in [15]. As we aim at high accuracy, the error defined in
Eq. 4 is the exact geodesic distance, i.e. the exact angular deviation, between
pij and p̂ij . Additionally, to each point Pi we associate a visibility map

Vi =
{

(Cj , pij) | Cj ∈ C, pij ∈ S2
}

, (5)

where S2 represents the unit sphere. We denote the pair (Cj , pij) as the obser-

vation of a scene point Pi on camera Cj .
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3.2 Sub-set Constraints

SPHERA implements an incremental pipeline, that is, starting from an initial
pair, cameras are sequentially added until all poses have been estimated. More
specifically, we draw from C an initial pair of cameras and once their poses are
determined they are used to initialize a set C

′

representing the current set of
calibrated cameras. Then, one by one, cameras are added to C

′

until |C
′

| = |C|.
After adding a camera to C

′

, BA is performed to refine the poses of all calibrated
cameras. However, this is not always necessary. As calibration progresses, pre-
viously added cameras become more stable, i.e. their poses no longer change
significantly. After some time, refining their poses brings no improvement. This
is often true for large image datasets. The exceptions to this are loop closures
and later addition of new images to the dataset.

To address this issue, we introduce a sub-set C∗ ⊂ C
′

to hold the cameras for
which pose refinement is unnecessary. Cameras belonging to C∗ will be regarded
as fixed and their poses will not be updated during BA. A camera Cj ∈ C

′

is added to C∗ when the update on its pose is no longer significant. This is
achieved with the introduction of two measurements in the following way. After
BA, we measure the update on its rotation matrix δRj

and translation vector
δtj computed as

δRj
= ‖log

(

Rk−1

j

(

Rk
j

)T
)

‖, (6)

δtj =
‖tkj − tk−1

j ‖

‖tk−1

j ‖
, (7)

where k stands for calibration step, i.e. it is incremented after each BA. The
right-hand side of Eq. 6 is a metric in SO (3) and can be efficiently computed
with quaternions [32]. Then, if δRj

< τr and δtj < τt, with τr > 0 and τt > 0,
Cj is added to C∗. Clearly, once Cj is added to C∗, δRj

= 0 and δtj = 0 in the
subsequent calibration steps. Therefore, to correctly handle loop closures and to
locally update camera poses whenever new images are included in the dataset,
a third measurement is required. This measurement allows to remove cameras
from C∗ so that they may be optimized once again. It is based on the visibility
of scene points and works as follows. Assume Cj ∈ C∗ and Cj observes Nj 3D
points. The visibility measurement δvj of a camera Cj is then defined as

δvj = ‖νkj − νk−1

j ‖, with (8)

νj =

Nj−1
∑

n=0

ηn, ηn =

{

1, if Vn increased
0, otherwise

. (9)

Note that δvj is independent of the camera pose. Also, it does not measure how
many new 3D points Cj observes. Instead, it measures, among all 3D points
visible in Cj , how many had their visibility maps updated, i.e. are now visible
in at least one new camera. Then, if δvj > τv, Cj is removed from C∗ and will be
taken into account in the next calibration step. In our implementation, we also
use the visibility measurement along with the first two to decide whether a cam-
era should be added to C∗. Together, τr, τt and τv form the sub-set constraints.
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Remark 1. The re-triangulation of point correspondences is beneficial as it re-
duces drift due to accumulated errors. However, it increases the overall compu-
tational cost. The sub-set constraints prevent the re-triangulation of points P̂i

that are seen exclusively by cameras in C∗, thus further improving performance.

3.3 Minimizing the Reprojection Error

As discussed above, recovering the camera poses and scene structure can be
achieved by solving a bundle adjustment problem [24]. SPHERA minimizes a
reprojection error formulated directly on the surface of the unit sphere (see
Eqs. 3 and 4). This is interpreted as finding the camera poses that maximize the
alignment between the rays defined by all predicted and measured projections.
This is true for any central projection camera.

After the introduction of the visibility map in Section 3.1, we may now rewrite
Eq. 3 in the form shown in Eq. 10. We adopted the framework available in [33]
as the core non-linear solver upon which SPHERA is built.

min
ρ

N−1
∑

i=0

M−1
∑

j=0

γijeij (ρ) , γij =

{

1, if Cj ∈ Vi

0, otherwise
(10)

In practice, we solve a modified version of Eq. 10, where only cameras Cj ∈

C
′

\ C∗ and the most reliable points are used. These points are defined as

P∗ =
{

P̂i ∈ P | eij (ρ) < τe, ∀ (Cj , pij) ∈ Vi

}

, (11)

where τe is a threshold imposed to all individual reprojection errors eij (ρ).

4 Evaluation

4.1 Preliminaries

Keypoints are detected and matched using the method proposed in [34], where
a multi-scale keypoint detector and matcher was developed for high resolution
spherical images. Nonetheless, it is worth mentioning that SPHERA is com-
pletely independent of how keypoints are detected, described and matched.
Consequently, any other keypoint detector and matcher may be adopted (see
Section 4.3).

We validate our framework using synthetic spherical as well as real perspec-
tive and spherical images. The resolution of all spherical images presented below
is 14142× 7071 (100 Mega-pixels). Experiments are divided into four categories:
The first category consists of a set of synthetic spherical cameras where the
goal is to validate our framework on spherical images using groundtruth. The
second is composed exclusively of real perspective images. Here, the idea is to
show that our framework is suitable for standard SfM, i.e. it may be used even
when no spherical image is available. The third category consists of spherical
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images only, where we compared SPHERA to the work presented in [15] in two
different real world scenarios. The fourth and last category is a hybrid dataset
where real perspective and spherical images are used simultaneously. The aim is
to demonstrate SPHERA’s ability to improve scene geometry estimation when-
ever more images are available, independent of their types1. Whenever available,
groundtruth data is used for evaluation. Otherwise, we rely on the global mean
reprojection error computed taking all images and all reconstructed points into
account.

4.2 Synthetic Dataset

An artificial room with dimensions 6x6x3 meters was created using [35] and 72
spherical images were rendered (see Fig. 4-(a)). The poses of these artificially
generated cameras were used as groundtruth. Additionally, the depth map shown
in Fig. 4-(b) was stored and serves to measure the accuracy of the recovered scene
geometry.

(a) (b)

Fig. 4. (a) Sample image of the synthetic dataset. (b) Groundtruth depth map used
to evaluate the accuracy of scene geometry estimation (contrast enhanced to improve
visualization).

After detecting and matching keypoints with Gava’s approach, camera poses
and scene structure were recovered with SPHERA. Residual errors were com-
puted in the following way. The position error is the Euclidean distance between
the groundtruth and estimated camera positions. To measure the orientation
error, we chose again the function presented in [32], which in this context may

be written as ‖log
(

RR̂T
)

‖, with R the desired rotation and R̂ the estimated

rotation matrix. For details we refer to [32]. The residual error of a reconstructed
point P̂i is computed as ‖P̂i − Pi‖, where the coordinates of Pi are obtained as
follows. A virtual spherical camera is located at the origin of the global coor-
dinate system. The projection of P̂i onto this virtual camera delivers p

′

i. Then

1 Assuming central projection cameras.
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Pi = Idm

(

p
′

i

)

p
′

i, where Idm

(

p
′

i

)

is the groundtruth depth retrieved from the

stored depth map.

We first ran our pipeline ignoring the sub-set constraints and with τe equiva-
lent to 5 pixels. Although τe is an angular deviation, for convenience we converted
and presented it in pixels. Table 1 presents the resulting errors in camera poses
and scene reconstruction.

orient. error [degree] pos. error [mm] recon. error [mm]

µ 0.009 0.68 0.482

σ 0.03 2.8 0.9
Table 1. Errors in camera poses and sparse scene reconstruction for the synthetic
dataset. Mean and standard deviation are identified by µ and σ, respectively.

τv [# points] 100 1000

τt [%] 1 5 1 5

orient. error [degree] 0.0091 0.0091 0.0094 0.0095

pos. error [mm] 0.76 0.78 0.76 0.79

recon. error [mm] 0.487 0.494 0.581 0.604

time [%] 49.7 48.2 15.4 14.9
Table 2. Average errors in camera poses and sparse scene reconstruction for the syn-
thetic dataset with sub-set constraints. The last line shows the running time relative
to the total time needed when no sub-set constraints are used.

Figure 5 shows the reconstructed point cloud, with approximately 156K
points. The rendered spheres and their corresponding coordinate frames reflect
the recovered camera poses. We adopted the Odysseus Studio [36] to visualize
and present our results.

A second experiment aimed at evaluating the impact of the sub-set con-
straints on camera pose estimation, the sparse reconstruction of the scene and
the overall performance gain. We ran our pipeline varying the sub-set con-
straints within the ranges τr = [0.25◦, 2◦] in steps of 0.25◦, τt = [0.01, 0.05]
and τv = [100, 1000]. We noticed that, for this experiment, varying τr had lit-
tle impact on the final results. Thus, Table 2 summarizes the average values.
Time values are relative to the total time required when no sub-set constraints
are used. The standard deviations for the rotation, position and reconstruction
errors were below 0.04◦, 3.25 mm and 1.2 mm, respectively. On the other hand,
the standard deviations for the performance gain were approximately 10% for
τv = 100 and 7% for τv = 1000. This is probably due to different gradient descent
paths chosen by the non-linear optimizer [33].
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Fig. 5. Reconstructed point cloud and recovered camera poses obtained with SPHERA.
Details on the floor and walls can be easily seen.

4.3 Perspective Datasets

To validate our approach on perspective images, we compared it to Bundler [17],
a popular software developed for SfM on standard perspective images. Bundler is
the camera calibration tool currently used in [10, 26, 37], and is publicly available.

The experiments presented in this section were carried out on the datasets
published in [28]. For each dataset, we ran Bundler on the original images and
SPHERA on the corresponding warped images as shown in Fig. 2. To ensure
a fair comparison, we ran our pipeline using the same keypoints detected by
Bundler [38] after warping their coordinates to the unit sphere. This eliminates
the influence of image feature location on the evaluation. Moreover, it shows
SPHERA’s independence of keypoint detectors as pointed out in Section 4.1.
Results on camera pose estimation are summarized in Fig. 6. Orientation errors
were obtained as in the previous section. Position errors, however, were computed
after preprocessing the estimated camera positions. To account for the differences
in scale, the baseline between the closest camera pair was normalized and the
remaining camera positions were scaled accordingly. After that, the Euclidean
distance was measured as in Section 4.2.

As can be seen, Bundler performs slightly better and the reason is as fol-
lows. Bundler works exclusively on perspective images and optimizes the cam-
era poses along with their individual intrinsic parameters such as focal length
and lens distortion. In contrast, SPHERA has been designed to operate on any
kind of central projection camera, but the optimization of intrinsic parameters
has not been integrated yet. Therefore, for the experiments presented in this
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(a) (b)

Fig. 6. (a) Orientation error and (b) position error on perspective image datasets
obtained with Bundler and SPHERA. See text for details.

section, we used a constant focal length in our pipeline and a variable focal
length for Bundler. In fact, the differences observed in Fig. 6 are proportional
to the variance of the focal length within each dataset, see Table 3. The excep-
tion is Herz-Jesu-P25, where Bundler delivers smaller orientation error whereas
SPHERA provides better camera positions.

dataset σf [pixel] range [pixel]

fountain-P11 8.49 23.02

entry-P10 10.97 28.41

Herz-Jesu-P25 4.01 16.15

castle-P30 20.44 118.86
Table 3. Variation of focal lengths estimated with Bundler. The second column shows
the standard deviation and the third column the difference between maximum and
minimum values. Note that, except for the Herz-Jesu-P25 dataset, the differences in
Fig. 6 are proportional to the variation of the focal length.

4.4 Spherical Datasets

In this section we compare SPHERA and the approach presented in [15]. We
ran both pipelines on two datasets. The first dataset consists of 9 spherical
images captured inside one of the Mogao Caves, in China. The second dataset
contains 35 spherical images taken at the Saint Martin Square in Kaiserslautern,
Germany, and represents outdoors, more challenging, environments. Due to the
lack of groundtruth data for these datasets, we based our evaluation on the
global mean reprojection error. The assumption is that the correlation observed
in Section 4.2 can be used to infer the relative accuracy of the estimated scene
geometry.

As can be seen in Fig. 7, SPHERA improves the reprojection error on both
datasets, specially on the St. Martin Square. In the case of the Mogao Cave, due
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to its simple geometry and rich texture (Fig. 8-(a)), only few points are discarded
based on Eq. 11, what explains the small difference in the reprojection error for
this dataset. The St. Martin Square dataset is more challenging (Fig. 8-(b)).
It contains many low textured regions, depth discontinuites, occlusions as well
as repetitive patterns. Therefore, several points are inconsistent and discarding
them from the camera pose estimation leads to the difference observed in Fig. 7.
These results suggest that SPHERA delivers more accurate scene structures.
Figure 8 displays the sparse point clouds yielded by our framework, where details
of the surroundings are accurately reconstructed.

Fig. 7. Global mean reprojection error on spherical image datasets obtained with [15]
and SPHERA. See text for details.

4.5 Hybrid Dataset

In this section we evaluate the SPHERA framework on a hybrid dataset com-
posed of perspective and spherical images. The idea is to show that our frame-
work naturally handles different central projection cameras simultaneously. This
dataset is composed of the same 35 spherical images used in the previous exper-
iment and additional 11 perspective images of resolution 3888× 2592 pixels. As
shown in Fig. 9, the reprojection error obtained with spherical images (same as
previous experiment) is better than the error for perspective images.

The main reason spherical camera pose estimation is better than its perspec-
tive counterpart is due to their wide field of view. As can be seen in Fig. 10,
matches between spherical images cover the entire scene and thus impose more
constraints on cameras’ poses. As expected, the reprojection error decreases
when perspective and spherical images are used simultaneously.

5 Conclusions

This paper presents SPHERA, a novel unifying Structure from Motion frame-
work designed for central projection cameras. The goal is to cover the gaps
between pipelines developed for perspective, spherical and catadioptric images
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Fig. 8. First row: Sample images of the Mogao Cave and St. Martin Square datasets.
Second to fourth rows: reconstructed point clouds delivered by SPHERA, containing
approximately 106K and 197K 3D points for the Mogao Cave and St. Martin Square,
respectively.
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Fig. 9. Global mean reprojection error for the hybrid St. Martin Square experiment.
Note how it decreases when perspective and spherical images are used together.

and to support future large scale 3D reconstruction algorithms. Through exten-
sive quantitative evaluation on synthetic and real image sequences, we showed
that our approach delivers high quality camera pose as well as scene geometry
estimations when compared to state of the art approaches optimized for specific
camera types.

Future work aims at integrating the optimization of intrinsic parameters to
increase the accuracy of pose estimation of perspective cameras. Additionally,
we plan to validate our framework on larger, hybrid image datasets, supported
by groundtruth data. Finally, SPHERA will be the underlying SfM mechanism
in our upcoming dense multi-view reconstruction approach.

(a) (b)

Fig. 10. (a) Symmetric matches between a warped perspective image and a spherical
image. (b) Symmetric matches between two full spherical images.
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