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Abstract

Background: The dramatic fall in the cost of genomic sequencing, and the increasing convenience of distributed
cloud computing resources, positions the MapReduce coding pattern as a cornerstone of scalable bioinformatics
algorithm development. In some cases an algorithm will find a natural distribution via use of map functions to
process vectorized components, followed by a reduce of aggregate intermediate results. However, for some data
analysis procedures such as sequence analysis, a more fundamental reformulation may be required.

Results: In this report we describe a solution to sequence comparison that can be thoroughly decomposed into
multiple rounds of map and reduce operations. The route taken makes use of iterated maps, a fractal analysis
technique, that has been found to provide a “alignment-free” solution to sequence analysis and comparison. That
is, a solution that does not require dynamic programming, relying on a numeric Chaos Game Representation (CGR)
data structure. This claim is demonstrated in this report by calculating the length of the longest similar segment by
inspecting only the USM coordinates of two analogous units: with no resort to dynamic programming.

Conclusions: The procedure described is an attempt at extreme decomposition and parallelization of sequence
alignment in anticipation of a volume of genomic sequence data that cannot be met by current algorithmic
frameworks. The solution found is delivered with a browser-based application (webApp), highlighting the browser’s
emergence as an environment for high performance distributed computing.
Availability: Public distribution of accompanying software library with open source and version control at http://
usm.github.com. Also available as a webApp through Google Chrome’s WebStore http://chrome.google.com/
webstore: search with “usm”.

Background
Since 2008 the decrease in sequencing costs is far steeper
than of those of computing [1]. Projecting from these
trends promises to deliver the $1000 genome by 2014,
making it inescapable that the costs of analyzing the raw
sequence data will exceed those of its generation. In con-
trast, the algorithms used to process and compare
sequences largely rely on the dynamic programming
solutions proposed by Smith-Waterman and Needleman-
Wunsch in the 70’s and 80’s [2,3]. This is not to say that
the implementation of alignment algorithms has not
become more efficient, quite the opposite has taken
place. For example, there are several capable algorithmic
solutions [4] to align the vast number of short reads that
next generation sequencing techniques produce a

reference genome. However, better implementations of
dynamic programming do not by themselves remove its
limited scalability, which has motivated research into a
variety of alignment-free methods in the last decade
[5-9].
The efficiency gains in implementation owe some of its

advances to a major improvement in parallelization. A
particularly valuable development is the support of func-
tional programming patterns that explicitly identify
opportunities for parallelization through MapReduce
[10]. This development is a major attraction of cloud
computing services such as Amazon’s Elastic MapReduce
(a hosted Hadoop framework) and is turning high perfor-
mance computing into a commodity [11]. In a nutshell, a
map function is one that is applied independently to each
element of an array whereas a reduce function is one that
aggregates them into a single result. In practice, many
implementations of MapReduce use a key emission
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mechanism to allow for aggregation into multiple results
as illustrated in mapreduce-js.googlecode.com. Neverthe-
less, that higher-level elaboration can be ignored for the
purpose of the decomposition described here. In sum-
mary, map-reduce functions, now natively supported by
many languages, identify opportunities for distribution
and parallelization which can be handled automatically
by the programming environment without exposure to
the procedural overload of message passing interfaces
(MPI). For example, considering the case of a numerical
array, sum and max are reduce functions whereas inter-
nal product is a map function. Accordingly, the use the
MapReduce functional pattern now underlie many of the
leading genomic analysis packages such as GATK [12]
and CloudBurst [13] and is the key cloud computing
abstraction for large scale data management and analysis
[11,14].
Having parallelization handled at the algorithm identi-

fication level creates an opportunity to revisit sequence
analysis for additional fragmentation into map-reduce
patterns functions. In that regard, conventional align-
ment using dynamic programming presents a serious
obstacle to parallelization because it requires the repro-
cessing of the symbolic sequences every time a new pair
of sequences is considered. Specifically, suffix reuse by
dynamic programming locks the analysis of a sequence
position to that of the neighboring positions - every
time a pair-wise comparison is made. That limitation
motivated us to revisit an alignment-free methodology
to identify opportunities for a more extreme use of
map-reduce patterns in sequence analysis.
The use of iterated maps to represent nucleotide

sequences, a fractal projection technique, was intro-
duced by the Chaos Game Representation procedure,
CGR, first proposed over two decades ago [15]. The rea-
lization that this representation is an order independent
Markov transition table was proposed a decade later
[16], followed by the Universal Sequence Map (USM)
variation on the CGR theme the following year [17],
which represents each unit of the sequence with context
as a order-free numerical coordinate.
These explorations of iterated maps as order free

representation on sequence context led to the labeling
of these approaches as being “alignment-free” [5], in the
modern sense that they are free from the reduce
dynamic programming procedure. Numerous applica-
tions and advancements have since been proposed with
approximately two hundred publications currently refer-
ring back to that review. Using the new terminology one
could now describe the appeal of alignment-free
sequence statistics as described, for example, by [18], as
being precisely those of a map function resolved to the
individual sequence unit.

Methods
CGR and USM
The fundamental iteration of the Chaos Game Repre-
sentation (CGR) technique [15] is that of assigning a
numerical coordinate to each symbol of a sequence, cal-
culated as the previous position plus half the distance to
the next. This procedure graphically illustrated in the
Results section (Figure 1). The Universal Sequence
Maps, USM [17], starts with a variation on the CGR
theme by expanding it to any vocabulary, and by run-
ning the iteration both forward and backward in the
sequence (Equation 1 and 2): for a given sequence, S,
with N units/symbols, S = s1... sN, with si Î A, A is any
alphabet, and with reference to a unit hypercube with h
dimensions, with its edges, E, assigned to individual
units/symbols of the alphabet, A, in order to assign each
symbol, si, to a vector-valued coordinate ci= [ci

forward,
ci
backward] by following the procedure described in Equa-

tion 1 and 2. This procedure is also demonstrated and
illustrated with an example in the Results section.

cforwardi = cforwardi−1 +
E(i) − cforwardi−1

2
, i = 1, · · · ,N, E ∈ {0, 1}h (1)

cbackwardi = cbackwardi+1 +
E(i) − cbackwardi+1

2
, i = 1, · · · ,N, E ∈ [[0, 1]]h (2)

A number of elaborations on the CGR theme were
advanced to produce the USM representation, such as
a) seeding the succession as if the sequence was circular
instead of starting at the 1/2 coordinate, b) identifying
the sequence alphabet to define a unitary hypercube,
and c) resolving both forward (Equation 1) and back-
ward (Equation 2) coordinates. For detailed description
and discussion of computing scale independent motifs
as Universal Sequence Map (USM) coordinates see [19].
For a generalization of the CGR representation without
sacrificing the conveniency of a 2D representation see
[20].
The critical property of CGR coordinates is that they

bijectively map to the symbolic sequence that generated
them: each [0, 1]n coordinate corresponds to a unique
sequence and each sequence corresponds to a unique
[0, 1]n coordinate. The analysis of the CGR/USM pro-
jection has been used to derive measures of sequence
similarity (dissimilarity distance) directly from the coor-
dinates in many of the reports cited above. While some
of these metrics provide a simple algebraic solution to
the lower boundary of sequence similarity, here we will
use the exact iterated solution [21,22] described in
Equation 3, where L (c1, c2) represents the dissimilarity
between coordinates c1 and c2, measured as the length
of the common prefix:
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L(c1, c2) =

∣∣∣∣∣∣∣

x = 0

while (round(c1 · 2x) == round(c2 · 2x)){x = x + 1}
return x

(3)

The critical improvement of USM over the underlying
CGR succession is that one can determine the length of a
shared sub-sequence solely by comparing the USM coor-
dinates of any two homologous sequence units. This
claim could have been anticipated from the results
reported in [17] but its effective realization is only
reported here and relies on a map-reduce composition of
the procedure described in Equation 3. Careful inspec-
tion of the code (usm.js method L) will show that the
implementation of this formulation is bound by the
numerical resolution of the processor to values of L smal-
ler than 64. The practical resolution of this constraint is
straightforward and is detailed in the Alignment subsec-
tion in Results, under “5. Sequence alignment to full gen-
omes": it requires the recalculation of the value of L at
the edges of the 64 similar length segment resolved.
MapReduce
The MapReduce algorithm parallelization pattern [10] is
inspired on two primitives of functional languages, map
and reduce. The map function will process the elements of
an array independently, for example [1-4]. map(function(x)
{return 2 · x}) will produce the result [2,4,6,8]. The reduce
function will instead be applied consecutively to consecu-
tive elements of an array. For example, [2,4,6,8]. reduce
(function(a, b){return a + b}) will add the array elements
one by one, by replacing pairs of elements picked in

arbitrary sequence by their sum, until only one is left with
the value 20. In contrast to the map function which is
applied independently to each array element, the reduce
function is processed iteratively. The MapReduce pattern
then articulates the map and reduce functions through the
emission of keys: each map function issues one or more
keys and each reduce function targets the map results
emitted with a specific key, as elegantly illustrated in [23].
In the sequence analysis decomposition described here the
emission of keys will be omitted because the procedure is
the same in its entirety regardless of the value of the USM
coordinates. In other words, the key emitted by the map
function would always be the same and therefore there is
only one reduce function needed per map operation. The
MapReduce pattern is finding increasing use in Bioinfor-
matics [14], with particularly significant applications to
sequence analysis [12,13]. There is, therefore, ample infra-
structure support for the implementation of the procedure
described here.
JavaScript
The functional decomposition of sequence analysis
described here is best constructed, and verified, in a
functional programming environment. This approach
has the additional advantage of providing a description
of the algorithm that is closer to a mathematical nota-
tion [24]. As highlighted in that seminal work, func-
tional descriptions of computational procedures
(algorithms) facilitate of their analysis as mathematical
objects. An additional criteria in the selection of the
programming environment is that it should be readily

Figure 1 Graphic computation of USM encoding by generating forward (Equation 1) and backward (Equation 2) CGR successions. See
Table 1 for the numeric representation. The graphic format makes it easy to verify that each position is obtained by moving the coordinates
half the distance to the identity edge of the next sequence unit. Note also how the circular seeding, (Figure 2) causes the first coordinate
computed for each map to be at half the distance between the last coordinate and the identity edge of the first sequence unit.
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available to the audience of this report, without requir-
ing the installation of specialized interpreters or other
additional software. Finally, it should also be an environ-
ment where MapReduce is possible as both a native
operation and as a procedure in a distributed computing
environment. JavaScript (ECMAScript ISO/IEC 16262)
satisfies all of these requirements: as the “assembler lan-
guage of the web” with an efficient interpreter in every
modern browser; it supports code injection natively,
removing the need to “install” the libraries provided
with this report; it is a functional programming language
with native map and reduce Array methods; open
source implementations of MapReduce through server
side execution of JavaScript are also readily available, for
example, as part of open source projects such as Apache
Foundation’s CouchDB and MongoDB. Accordingly
both the accompanying reference libraries and the algo-
rithm descriptions in this report were coded in Java-
Script (see Availability).
Referencing code and its execution
The algorithm decomposition described in this report is
delivered as a JavaScript library and also as a versioned
webApp at http://usm.github.com (see Availability).
The use of a version control system will also allow refer-
ring to specific lines in the code for the version in place
at the time of submission of this report (version id
07a39896293a57ecdeec571335ae782bb56c2972). For
example, the similar length calculation, L, described in
Equation 2, at the time corresponded to line 184 of the
usm.js, which can be inspecting by following the link
https://github.com/usm/usm.github.com/blob/07a3989629
3a57ecdeec571335ae782bb56c2972/usm.js#L184. For con-
venience, these links will be treated as literature references
“authored” by the corresponding object variable. For
example, the link above can be found in the list of refer-
ences under [25]. The same procedure will allow the
reader to load the usm object the way it was at that time
by, instead of using the URL https://raw.github.com/us-
m/usm.github.com/master/usm.js described in the pro-
ject’s home page, specifying the version requested as
https://raw.github.com/usm/usm.github.com/07a3989629
3a57ecdeec571335ae782bb56c2972/u sm.js.

Results
Organization of MapReduce decomposition
The MapReduce decomposition of sequence analysis is
organized along the chain of procedures performed
when two arbitrary sequences are compared. The first
step is the encoding of the sequence into a USM
“numerical structure” [Vinga 2011]. Second, the encod-
ing procedure is then verified by decoding back to the
symbolic sequence. Third, the numerical coordinate
based distance calculation is performed. Fourth, all

pieces are brought together in a single MapReduce com-
parison of multiple positions and full sequences.

Open source library
An open source library, usm.js, is provided with all proce-
dures described here (see Availability). An accompanying
interactive webApp that uses that library where the indivi-
dual components can be tried is also included. Note mod-
ern browsers provide access to the command line, details
and screencast video demo included in the open source
project, so all 4 procedures described above can be
engaged directly. For example, u = new usm(’acggctgc-
tatctgcgtacggtcgac’) will automatically extract the ‘acgt’
alphabet and encode the sequence. Individual functions
can be used piecewise, for example u = new usm();u.
encode(’acggctgctatctgcgtacggtcgac’) would have the same
effect. The first syntax style will be used here to takes full
advantage to JavaScript’s functional style by chaining the
call to a specific result of the analysis. For example, to
extract the alphabet (attribute “abc”) one could do
> new usm(’acggctgctatctgcgtacggtc-

gac’).abc
“acgt”

1. Encoding: Alphabet extraction and map compaction
The first pre-processing step is that of using, or extract-
ing if not specified, the list of unique symbols used in
the sequence - the alphabet. That list is then processed
to generate the compact coordinates of a hyper-dimen-
sional unitary cube [17]. Illustrating with the example
above,
ubase = new usm(’acggctgctatctgcg-

tacggtcgac’);ubase.cube
["ac”, “ag"]
which corresponds to the two axis of the original Chaos

Game Representation (CGR) square [15]. In this example,
the cube mapping [26] by the encoding operation [27]
identified of the corners of a 2D plane as being ‘a’ ® [0,
0], ‘c’ ® [0, 1], ‘g’ ® [1, 0], ‘t’ ® [1, 1]. The result of
encoding the illustrative sequence above is displayed in
Table 1 (note detail of where in the usm structure can
the results be found) and Figure 1. The circular applica-
tion (Figure 2) of Equtions1-2 can be verified by noting
that the forward coordinates in the first row are at half
the distance between the coordinates in the last row and
the identity corners. The reverse happens for the back-
ward coordinates: those in the last row are at half the dis-
tance between the coordinates in the first row and the
identity corners.

2. Decoding
As described elsewhere [17,19,20], and can be verified in
the accompanying tool, the value of each of the individual
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coordinates can be decoded bijectively by using equation
3 to map them back to a sequence. For example, starting
with the 7th forward coordinates, highlighted in Table 1
a cytosine, “c”, the binary source binary sequence for
each of the CGR dimensions can be extracted. To make
this illustration more compelling, lets starts with an
instance of the usm object that is devoid of any sequence
information (null) beyond the alphabet (’acgt’):
u = new usm(null,’acgt’)
u.decodeBin(0.4225834224013004)
[0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1,

0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0,
1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1,
0, 1, 1, 0, 1, 0, 1]
u.decodeBin(0.6976523056276487)
[1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0,

1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1,
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0,
1, 0, 1, 1, 1]
The decoding process maps the numeric coordinates

back to the symbolic sequence by identifying the

identity cube edges. Therefore, by applying it to the full
coordinate vector one will retrieve the original sequence,
both preceding (forward map) and succeeding (back-
ward map) the coordinate position for that “c":
u.decode([0.4225834224013004,

0.6976523056276487]).reverse()
“tctgcgtacggtcgac.acggctgctatctgcg-

tacggtcgac.acggctg[c]“
u.decode([0.3390888473255761,

0.8645502159677478])
“[c]tatctgcgtacggtcgac.acggctgctatctgcg-

tacggtcgac.acggct”
This example, because it was performed on a

sequence that is shorter than resolution of the CGR
coordinates, can also be analyzed to illustrate the circu-
lar seeding procedure described in [19]. To make the
decoded sequence clearer, a period (”.”) was inserted to
indicate the origin position, where the two ends of the
sequence were stitched together in the seeding process.
It can then be confirmed that indeed the dynamic cir-
cular seeding procedure will generate cyclic images of
the original sequence. This decoding operation also
illustrates the extensive context information stored in a
single pair of coordinates: the picture represented in
Figure 2 could be built directly from the USM coordi-
nates of each and any of this sequence’s units.

Table 1 Numerical computation of USM encoding by
generating forward (Equation 1) and backward (Equation
2) CGR successions.

[ubase.bin,ubase.cgrForward,ubase.cgrBackward]

["a”, [0, 0], [0.0906, 0.2994], [0.2135, 0.3036]]

["c”, [0, 1], [0.0453, 0.6497], [0.4271, 0.6072]]

["g”, [1, 0], [0.5226, 0.3248], [0.8543, 0.2145]]

["g”, [1, 0], [0.7613, 0.1624], [0.7086, 0.4290]]

["c”, [0, 1], [0.3806, 0.5812], [0.4173, 0.8580]]

["t”, [1, 1], [0.6903, 0.7906], [0.8347, 0.7161]]

["g”, [1, 0], [0.8451, 0.3953], [0.6695, 0.4322]]

["c”, [0, 1], [0.4225, 0.6976], [0.3390, 0.8645]]

["t”, [1, 1], [0.7112, 0.8488], [0.6781, 0.7291]]

["a”, [0, 0], [0.3556, 0.4244], [0.3563, 0.4582]]

["t”, [1, 1], [0.6778, 0.7122], [0.7127, 0.9164]]

["c”, [0, 1], [0.3389, 0.8561], [0.4254, 0.8328]]

["t”, [1, 1], [0.6694, 0.9280], [0.8508, 0.6656]]

["g”, [1, 0], [0.8347, 0.4640], [0.7016, 0.3312]]

["c”, [0, 1], [0.4173, 0.7320], [0.4033, 0.6624]]

["g”, [1, 0], [0.7086, 0.3660], [0.8067, 0.3248]]

["t”, [1, 1], [0.8543, 0.6830], [0.6134, 0.6497]]

["a”, [0, 0], [0.4271, 0.3415], [0.2269, 0.2994]]

["c”, [0, 1], [0.2135, 0.6707], [0.4539, 0.5988]]

["g”, [1, 0], [0.6067, 0.3353], [0.9079, 0.1976]]

["g”, [1, 0], [0.8033, 0.1676], [0.8158, 0.3953]]

["t”, [1, 1], [0.9016, 0.5838], [0.6316, 0.7907]]

["c”, [0, 1], [0.4508, 0.7919], [0.2633, 0.5814]]

["g”, [1, 0], [0.7254, 0.3959], [0.5266, 0.1629]]

["a”, [0, 0], [0.3627, 0.1979], [0.0533, 0.3259]]

["c”, [0, 1], [0.1813, 0.5989], [0.1067, 0.6518]]

See figure 1 for a graphical representation of the same succession. Note
location of results in usm structure in the table’s head.

Figure 2 Encoding and decoding the base sequence. The period
identifies the junction between the beginning and end of the
sequence. Forward encoding (Equation 1, Figure 1 Left) takes place
clockwise and Backward encoding (Equation 2, Figure 1 right) takes
place counterclockwise. Both forward and backward CGR
coordinates are displayed for the 8th unit of the sequence. The
adjacent sequence units can be determined (decoded) from those
coordinate values alone. As shown later, this observation can be
used to assess an alignment by comparing the paired coordinates
directly, demonstrating that sequence alignment can be performed
through (independent) Map functions.
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3. Distance
A number of distance metrics have been identified by us
and by other authors [17,21,22] that calculate the length
of the similar segment shared by two units in two dis-
tinct sequences. As in those reports, the word “distance”
will be used as short form for “dissimilarity distance
metric”, which is really a measure of similarity - the
higher the value of the “distance” the higher the similar-
ity. The defining feature of CGR derived distance
metrics, and the reason for betting on them as replace-
ments for the less scalable dynamic programming align-
ment procedures, is that they rely solely on the
coordinates of the two sequence units being compared.
Here we will use the formulation in Equation 3 as can
be verified by inspecting the coding of method L in [25].
For example, in the comparison of two sequences from
a binary alphabet (corners 0 and 1 in the real axis) with
coordinates 0.01 and 0.001:
u.L(0.01, 0.001)
6
one finds out that they are at the end of a similar sub-

sequence of length 6, their common prefix. The accuracy
of this result, obtained without inspecting the coordinates
of the preceding units, can be verified by independently
decoding them into symbolic sequences:
000000101000111... and 000000000100000110..., con-
firming that the length of the shared sequence of 6 zeros
was correctly imputed. This illustrative exercise can be
done using u.decodeBin [28] as described in the Decod-
ing section or, more conveniently, using the single coor-
dinate decoding in the accompanying web tool (Figure 3).

CGR distance - beginning of MapReduce decomposition
Because similar sequence can be determined directly for
the coordinates of individual units, an expanded imple-
mentation of L (Equation 3) can now be produced
(Equation 4) that takes advantage of the MapReduce
parallelization pattern. The distance dcgr between two
coordinates ca and cb is:

dCGR(ca, cb) = {ca1, cb1], ..., [can , cbn]].map(([
cai , c

b
i

])
→ L

([
cai , c

b
i

]))
.reduce

(
(a,b) → min([a,b])

)

with i = 1, ..., n, where n is the number of dimensionsof the CGR cube.

(4)

As described in this equation, and can also be verified
by inspecting [29], the procedure consists of calculating
the L distance between each pair of coordinates (a map
operation) and then take the minimum value of the
resulting array (a reduce operation). It is worth compar-
ing this equation with the code referenced by [29] to
verify how closely the implementation is to the
formulation:
this.distCGR = function (a, b){

var dist = this.L;
return this . transpose([a, b]).map(function(x)
{return dist(x[0], x[1])}).min();

}

USM distance
USM (bidirectional) coordinates, [cforward, cbackward], for a
given sequence position consist of a pair of unidirectional
CGR coordinates, determined forwardly (Equation 1) and
backwardly (Equation 2). Therefore the indexes forward
and backward indicate n numerical values each, as many
as dimensions of the USM cube. Elaborating on the prob-
abilistic metric proposed in [17], the CGR forward and
backward distances are combined here to compute the
exact similar length, in either direction, shared by two
homologous units. This exact sequence dissimilarity dis-
tance metric is a novel result, and represents the length of
the shared similar segment:

dUSM(Ca, Cb) = dforward
CCR (Cforward

a , Cforward
b )

+dbackwardCCR (Cbackward
a , Cbackward

b ) − 1

for unidentical unitsa, b, (dUSM(Ca, Cb) = −1)

→ (dUSM(Ca, Cb) = 0)

(5)

Equation 5 is encoded verbatum in [30]. To clarify the
calculation of dUSM , a second sequence will now be
encoded to be compared (to probe) with the base
sequence used above to illustrate encoding. Close
inspection of the probe sequence will reveal two seg-
ments that are also found in the base sequence, one
with length 8 and the other with length 4. This example
will be used to illustrate the shared similar segment
determination using Equation 5:
uprobe = new usm(’aaagctatctgaaaggtcaa’,ubase.abc)
> usm
As ubase, uprobe is an instance of the usm object but

its creation took an additional input argument, the
alphabet identified for ubase. Although this was not
necessary in the particular case of the probe sequence
because the probe alphabet used the same four nucleo-
tide alphabet, by providing the base alphabet as a second
input argument the new encoding is guaranteed to be
framed by the exact same hyper-dimensional binary
cube. As with Table 1 for the base sequence, the
encoded coordinates for the probe sequence are now
provided in Table 2.
If the two “c” units in the base and probe sequences,

positions 14th and 5th, highlighted, respectively, in Table
1 and Table 2 were to be compared by this method, only
their USM coordinates would be needed to determine
their distance, dUSM., defined as the length of the shared
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Figure 3 Annotated snapshot of using the companion webApp at usm.github.com to run the examples used to illustrate Equations 5,
6 and 7. The code hosting project site cgr.googlecode.com includes a tutorial and a video also describing the command line use of the
libraries implementing the map-reduce decomposition of sequence analysis.
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similar segment. The step by step calculation of the coor-
dinates for the two positions is reviewed in Table 3.

4. USM MapReduced to compare full sequences
The MapReduce decomposition described in Equation
5 can be encapsulated in one more MapReduce paral-
lelization operation to tabulate the comparison
between full sequences (Eq. 6). The map component is
straightforward application of Equation 5, and the

reduce operation define the statistics that characterize
the probing of the base sequence:

dMap(seqbase, seqprobe) = USMbase.map(
(x) →

(
USMprobe.map

((
y
) → (

dUSM
(
x, y

)))))

where USM =
[[
Cforward

]
,
[
Cbackward

]] (6)

d
(
seqbase, seqprobe

)

= dMap
(
seqbase, seqprobe

)
. reduce

((
x, y

) → S
(
x, y

))
.

reduce
((
x, y

)) → S
((
x, y

))
(7)

In the accompanying web-tool, this is illustrated with
both order statistics (length of maximum common seg-
ment) and parametric statistics (sum of lengths). A
snapshot of the use of this tool to run the examples
used as illustrations in this section is depicted and anno-
tated in Figure 3. The coding of Equation 6 as two map-
ping operations populating a 2D array [31] is almost
exactly as in the formulation. The only additional con-
sideration is that a different encoded base sequence
could be provided as a second input argument. Using
the example in Table 3 these two expression would pro-
duce the same result: ubase.distMap(uprobe), or u.dis-
tMap(uprobe, ubase).
ubase.distMap(uprobe)
[
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,

0, 0, 0, 2, 1, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2,

1, 0, 0, 0, 0, 0],

Table 2 Encoding of a second sequence to compare
(probe) with the base sequence encoded in Table 1.

[uprobe.bin,uprobe.cgrForward,uprobe.cgrBackward]

["a”, [0, 0], [0.0277, 0.0471], [0.0835, 0.0537]]

["a”, [0, 0], [0.0138, 0.0235], [0.1670, 0.1074]]

["a”, [0, 0], [0.0069, 0.0117], [0.3341, 0.2148]]

["g”, [1, 0], [0.5034, 0.0058], [0.6683, 0.4297]]

["c”, [0, 1], [0.2517, 0.5029], [0.3367, 0.8595]]

["t”, [1, 1], [0.6258, 0.7514], [0.6735, 0.7191]]

["a”, [0, 0], [0.3129, 0.3757], [0.3471, 0.4382]]

["t”, [1, 1], [0.6564, 0.6878], [0.6943, 0.8764]]

["c”, [0, 1], [0.3282, 0.8439], [0.3886, 0.7529]]

["t”, [1, 1], [0.6641, 0.9219], [0.7773, 0.5058]]

["g”, [1, 0], [0.8320, 0.4609], [0.5547, 0.0117]]

["a”, [0, 0], [0.4160, 0.2304], [0.1094, 0.0234]]

["a”, [0, 0], [0.2080, 0.1152], [0.2189, 0.0469]]

["a”, [0, 0], [0.1040, 0.0576], [0.4378, 0.0939]]

["g”, [1, 0], [0.5520, 0.0288], [0.8756, 0.1879]]

["g”, [1, 0], [0.7760, 0.0144], [0.7513, 0.3758]]

["t”, [1, 1], [0.8880, 0.5072], [0.5026, 0.7516]]

["c”, [0, 1], [0.4440, 0.7536], [0.0052, 0.5033]]

["a”, [0, 0], [0.2220, 0.3768], [0.0104, 0.0067]]

["a”, [0, 0], [0.1110, 0.1884], [0.0208, 0.0134]]

["a”, [0, 0], [0.0555, 0.0942], [0.0417, 0.0268]]

Table 3 Detailed calculation of length of similar segment, dUSM, from USM coordinates of individual homologous units.

Encoding

ubase = new usm(’acggctgctatctgcgtacggtcgac’)

uprobe = new usm(’aaagctatctgaaaggtcaaa’,ubase.abc)

u = new usm(null, ‘acgt’)

Reviewing coordinates of positions highlighted in Table 1 and 2

ubase.cgrForward[7] uprobe.cgrForward[4]

[0.4225834224013004, 0.6976523056276487] [0.2517343767806896, 0.502943755599859]

ubase.cgrBackward[7] uprobe.cgrBackward[4]

[0.3390888473255761, 0.8645502159677478] [0.33679262961989864, 0.8595585153381897]

Calculating one step at a time, dforwardCGR
and dbackwardCGR

u.distCGR([0.4225834224013004, 0.6976523056276487],[0.2517343767806896, 0.502943755599859]) 2

u.distCGR([0.3390888473255761, 0.8645502159677478],[0.33679262961989864, 0.8595585153381897]) 7

Applying Equation 5 directly to find length of similar segment = 2+7-1 = 8

u.dist(ubase.usm[7],uprobe.usm[4])8

In this illustrative example, the coordinates for base and probe sequences for nucleotide “c” in position 8 and 5 respectively: acggctg[c]tatctgcgtacggtcgac, and
aaag[c]tatctgaaaggtcaaa will be compared using Equation 5. Note array indexes in JavaScript start with 0 (zero), so this corresponds to comparing coordinate
indexes 7 and 4. This distance result is also highlighted in Figure 3.
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[0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
2, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 3, 0, 1, 0, 3, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0],
[0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 8, 0, 1, 0, 2, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 8, 0, 0, 0, 0, 1, 1, 1, 0,

0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 0, 1, 0, 8, 0, 1, 0, 0, 0, 0, 0,

0, 2, 0, 0, 0, 0],
[0, 0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0,

0, 0, 2, 0, 0, 0],
[0, 0, 0, 0, 0, 2, 0, 1, 0, 8, 0, 0, 0, 0, 0,

0, 1, 0, 0, 0, 0],
[0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,

2, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0,

0, 2, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 1, 1, 0,

0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4,

1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,

4, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0,

0, 4, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 0, 4, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 0,

0, 0, 0, 1, 1, 1],
[0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, 0, 2, 0, 0, 0]
]
Using Equation 7 as a template, the maximum shared

segment between the two sequences would then be
done with two reduce operations:
S = function(x, y){return [x, y].max()};
ubase.distMap(uprobe).reduce(S).reduce

(S)
8

It is also interesting to note that the 2D distance map
would not have to be fully resolved to find out what is
the maximum similar length. Since that value, dUSM ,
can be determined from any pair of homologous units, a
result of L only requires that every Lth be analyzed.

5. Sequence alignment to full genomes
Although the results described in the previous 4 sections
and the accompanying webApp describe the decomposi-
tion of the fractal encoding and decoding USM procedure,
the ultimate test is, as the title hints, the ability to align
biological sequences. For this test to be conclusive, it
should also establish that there are no fundamental issues
that would prevent scaling it to the processing of long
sequences. As in the other 4 sections, the results described
in this one relies exclusively on the browser’s computa-
tional environment. As before, a webcast of the procedure
was also included (see Video #2 link in the webApp).

Loading and processing full genomes
Two genomes will be used to demonstrate the proce-
dure, the small genome of Streptococus sp. Phage 2972
(NC007019, gi 66391759), which has close to 34 Kbp,
and the first full genome of a strain of its notorious
host, Streptococcus pneumomiae R6 (NC003098, gi
15902044), with over 2 million base pairs. As in section
1, loading and processing the sequence is handled auto-
matically by the instantiation of the USM object. The
syntax is the same except that we will use the URL of
the fastA file with the full genome rather than the raw
sequence:
uPhage = new usm(’http://ftp:/ / ftp.ncbi.nlm.nih.gov/

genomes/ Viruses/ Streptococcus_pha-
ge_2972_uid15254/ NC_007019.fna’)
which takes approximately 4 seconds to load and pro-

cess by the USM procedure, with the browser using
approximately 40 Mb or RAM;
> uBac = newusm(’ftp://ftp.ncbi.nlm.nih.

gov/genomes/Bacteria/Streptococcus_pneu-
moniae_R6_uid57859/NC_003098.fna’)
which takes approximately 15 seconds to load and

process, with the browser using a little over 1/2 GB of
RAM while going through the USM indexing procedure.
These numbers were obtained using Google’s Chrome
web browser running on a modestly resourced MacBook
Air laptop (1.8 GHz CPU 4 GB RAM). It is also note-
worthy that no attempt was made to optimize memory
usage by storing away USM indexing results as they are
being produced. The screencast of these tests is pro-
vided as “Video#2” in the webApp. The exact times will
depend on the machine and connection available but
these are values that establish the USM procedure, and
iterated maps in general, as not representing an un-scal-
able route to sequence analysis.
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Alignment
The distMap illustration in the previous section of how
to obtain the full USM distance map (Equation 6)
between two sequences suggests that new alignment
algorithms can be devised to make full use of that prop-
erty that each of these distances can be obtained inde-
pendently of each other. For example, each of the
distance diagonals in that illustration identifies a square
where all distance values are smaller than the diagonal.
Therefore, resolving a single distance value in the diago-
nal automatically removes the need to resolve the rest
of the square. The USM library includes an alignment
method, to illustrate this procedure. Applying it to the
two short sequences mapped above will readily align
them by the position of the longest similar segment:
new usm(’acggctgctatctgcgtacggtcgac’).

align(’aaagctatctgaaaggtcaaa’)
largest identical segment has length 8

and aligns with position 6 in base
sequence and position 3 in probe sequence
However, since CGR procedures are limited by the

numerical resolution of the processor, additional steps
will be needed to deal with diagonals longer than what
can be resolved from a single value. A simple solution is
found by repeating the dissimilarity distance calculation
at the edges of the resolvable region. In summary, deter-
mining the identity between long segments should only
require the resolution of one out of each 64 × 64 =
4096 map distance values. Not only can sequence simi-
larity be decomposed into independent (parallelized) dis-
tance calculations, but also only a small fraction of those
calculations are actually needed to resolve the distance
map. Let us start by extracting a longer sequence from
the phage genome than could possibly be resolved by a
single comparison between two USM coordinates. Note
this segment is made of by flanking a 100 unit long seg-
ment with two distinct 20 unit long segments.
someSeq = uPhage.seq.slice(0, 20)+uPh-

age.seq.slice(30000, 30100)+uPhage.seq.
slice (10000, 10020)
“GGTTCGAAAATTACATTAAGCCAATGACTGAAAACGA

CATTCGGAGGGTGTGGCGAGATAATCCAGATGCTAAC
ATTGCACTTAGAACAGATACATTCTTTGTCATTGACGT
GGACATGCCATACGTTGTTGAAGAAGCT”
Let us now align it back to the original sequence:
A = uPhage.align(someSeq)
largest identical segment has length 113

and aligns with position 30000 in
base sequence and position 20 in probe

sequence
This determination is nearly instantaneous, and close

inspection of the A structure will show that the align-
ment required a single step. Inspection of the align
method in the source code of the library will reveal that

the 100 long segment is resolved by extending the diag-
onal with distance calculation 64 positions apart in the
diagonal. It is also interesting how this alignment proce-
dure can be used to identify multiple matches. For
example,
A = uBac.align(’TCCACAGCATGCGTGACGATG

ACACG’)
will produce three 10 unit long matches within the 2

Mbp pneumococcal genome, at positions 1811967
("AGCATGCGTG”), 1895547 ("TCCACAGCAT”) and
1992091 ("GACGATGACA”).

Discussion
In [17] we first noted that by adding the distances of for-
wardly and backwardly encoded coordinates we could esti-
mate the length of the full similar segment. This had the
interesting property that the length of the similar sequence
could be approached by comparing the forward and back-
ward coordinates of any two homologous units. This is the
defining feature explored by the map-reduce decomposi-
tion described here. This composite of forward and back-
ward CGR coordinate encoding for alphabets of any
length was designated as Universal Sequence Maps
(USM). A compact library [usm.m] was then developed in
Mathworks m-code to support motif density kernels [19].
The library provided here (usm.js) advances that work by
producing exact measure of similar length (Equations 3-5),
and weaving its use in Equation 6 with MapReduce paral-
lelization of sequence comparison.
The two preceding reports discussed above, as well as a

more recent exploit [20], sought to expand the CGR solu-
tion [15] to arbitrary alphabets. Although the examples of
map-reduce decomposition in the Results section offer
illustrations for genomic data, the formulations, accompa-
nying libraries and webApp are just as applicable to other
types of symbolic sequence. For example, using the illus-
trative sequence comparison used in [17], “I am a poet. I
am very fond of bananas” and “I am of very fond bananas.
Am I a poet”, two stanzas borrowed by a poem by Wendy
Cope, the same decomposition will encode those
sequences in a 4-dimension CGR/USM space (Figure 4).
As that figure demonstrates, the decoding and the compu-
tation of distance between sequences use the exact same
USM procedure, and the exact same libraries reported
here. In summary, the procedures described here are
applicable to sequences of any alphabet.
The accompanying USM library was developed primar-

ily to demonstrate the decomposition of sequence analysis
allowed by this representation. However this is not free of
computational costs. In order to realize the analytical
advantages of the USM procedure, the sequences have to
be pre-processed/indexed by the CGR iterated function.
Nevertheless, as detailed in section 5 of Results, processing
small genomes is actually achieved in only a few seconds
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in the web browser of a modestly resourced laptop. That
section, under “alignment”, also highlights another surpris-
ing feature of the iterated map representation. Although
they are normally described as “alignment-free”, the
decomposition described here actually offers a very effi-
cient route for aligning sequences. This was demonstrated
by aligning sequences of various lengths by the positions
of their longest identical segments. Further elaborating on
this result by developing iterated map equivalents of well-
established alignment algorithms for local/global, and
with/without recursion features, is beyond the scope of
this report, but it now becomes a distinct possibility.
The use of JavaScript to develop an implementation of

the alignment-free [5] map-reduce decomposition of
sequence analysis could be justified solely on grounds of
convenience. Since web browsers are equipped with
JavaScript interpreters, that is their native language, and
as the accompanying webApp demonstrates, the js
library developed can be conveniently distributed with-
out requiring “download”, “installation” or “updates”. In
modern browsers an argument can also be made for the
efficient performance of this environment as a computa-
tional engine. For example, modern js compilers will
automatically recognize opportunities to use Graphic
Processing Units (GPU). A third argument can be
added, regarding the amenability of js to functional pro-
gramming styles. As described by one of its principal
curators, Douglas Crockford, “JavaScript is LISP with
C’s clothing” [32]. Its functional nature invites the devel-
opment of interpreters for higher-level domain specific
languages, including some that mimic mathematical

notation, such as coffeesript http://coffeescript.org. The
last argument may be the most consequent, even if it
does not presently lend itself to practical verification. It
is not a stretch of imagination to expect the web’s con-
figuration as a high performance computing (HPC)
environment that relies on code migration: unlike data,
JavaScript code migration is not affected by same-
domain origination restrictions. At some point in the
future, the web may offer efficient distributed map-
reduce constructs that span multiple browsers running
in multiple machines. Until then, we are left with more
conventional distributed MapReduce environments,
such as Hadoop and MongoDB, where to attempt scal-
able deployment of the sequence analysis procedures
reported here.

Conclusions
The Universal Sequence Map (USM) procedure expands
the Chaos Game Representation (CGR) approach to
“alignment-free” analysis of sequences of any alphabet.
Not only is the sequence comparison procedure
described here performed without recourse to dynamic
programming alignment, but multiple layers of nested
map-reduce distribution provide maximally parallelized
workflows to find the length of the similar segment
shared by any two sequence units. If this basic align-
ment operation can be streamlined by the USM proce-
dure into the scalable and distributed processing form
described here, the expectation is that other sequence
analysis operations can be similarly decomposed, includ-
ing more advanced types of alignment proceedures. This
may be particularly significant given the large amount of
sequence information now being generated by NextGen
methodologies. The proposed MapReduce decomposi-
tion was implemented in “the language of the web”,
JavaScript (ecmascript), both out of convenience and in
arguable anticipation of the native use of web-browsers
for distributed computing.
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