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For businesses offering complex customized solutions the capability of 
their sales force to engage in problem-solution discovery is a crucial suc-
cess factor in selling. In this context we investigate the application of func-
tional representations to model design spaces related to situations where a 
salesperson is screening for potential customers (lead qualification). There-
fore we present a conceptual approach on how to cast functional represen-
tations in the domain of lead qualification. We propose computational de-
sign space representations based on probability theory that take account for 
the uncertainties inherent in lead qualification. And we show results from a 
case study in which we test the practicability of the presented approach. 

Introduction 

In industries that offer customized products and services, which meet their 
customer’s individual business needs, vendors are often required to em-
ploy a consultative sales strategy called “solution selling” (cf. [1]). It com-
prises mainly four interdependent processes carried out on a per project 
basis: requirements definition, customization and integration, deployment 
and post-deployment support. The groundwork for these processes is laid 
by the vendor’s sales force screening for potential customers (leads) and 
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assessing their willingness and ability to buy a solution. This task is termed 
“lead qualification”. 

Lead qualification in solution selling industries reflects a critical and 
well-known problem, where the customer isn’t fully aware of its needs and 
the vendor doesn’t exactly know what to offer. In this situation both sides 
jointly explore the design domain while trying to minimize the investiga-
tions needed to gain a shared understanding. However, the usual approach-
es to this problem are not applicable to lead qualification: Organizing a se-
ries of collaborative design workshops would be too expensive to be 
carried out for every potential customer. And further, requirement lists that 
are available at this stage are most often incomplete and ambiguous. 
Therefore the salesperson himself is required to take the role of a designer 
and estimate the fit between lead and vendor. 

Well, this in turn is highly dependent on a salesperson’s individual 
knowledge of a lead’s needs, of products and services offered by the ven-
dor and its partners, and of how certain bundles of products and services 
may be used for problem solving, we term this design knowledge. Using 
his design knowledge the salesperson starts a dialogue with the lead to ex-
plore the design domain. This pretty much resembles Schön’s notion of 
having a conversation with the design situation [2]: a cyclic process of 
“seeing-moving-seeing”, i.e. acquiring and interpreting information from 
the lead about the design situation (seeing), followed by performing 
changes on the conceptualized offer and making these explicit to the lead 
(moving), and gaining further insights on the design situation by rediscuss-
ing the lead’s feedback (seeing). 

A designer constructs the required connections between problem, solu-
tion and its realization through experience. However, salespersons may 
lack this experience for several reasons: Especially external salespersons 
are not directly involved in product development at the employing vendor, 
and thus may have narrow insights on how their work affects downstream 
processes. Experiences from other salespersons may not be considered, 
due to limited reporting or inconsequent knowledge reuse. And limited 
possibilities or rigid policies for inter-organizational communication may 
exclude design insights from partnering organizations. 

To overcome these shortcomings in intra- and inter-organizational de-
sign knowledge reuse for lead qualification, we suggest the use of a for-
malized design space representation, which can be accessed by services 
that support the conceptual design tasks carried out by a salesperson during 
lead qualification. In this paper we present a conceptual approach and 
computational representations of such design spaces that specifically ad-
dress the uncertainty inherent in a salesperson’s picture of a lead. Results 
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from a case study in the field of office fit-out projects underline the practi-
cability of the approach but also highlight further issues. 

Related Work 

The literature on design research holds several approaches to represent the 
reasons behind design decisions made during a design process, the so-
called design rationale. Existing approaches can principally be categorized 
in process-oriented and feature-oriented representation methods [3]. In-
stead of capturing the history of design processes, feature-oriented meth-
ods focus on representing designed artifacts. Functional representations are 
one prominent type of feature-oriented representations [4]. Yet a number 
of functional concept ontologies have been proposed that all share the idea 
of describing a design object in the context of its purpose to solve a prob-
lem or show a wanted effect [5]. Such representations seem especially ap-
propriate for describing design spaces of lead qualification situations as 
they intrinsically support the idea of drawing a conceptual link between a 
lead’s problem space and the solution space that may be offered by a ven-
dor. Though functional concept ontologies have been applied to domains 
of conceptual design [6], to the best of our knowledge there exists no con-
cise approach on how to cast functional representations in the domain of 
lead qualification. 

Related problems to lead qualification are contractor pre-qualification 
and the bid/no-bid problem. Contractor pre-qualification views the prob-
lem from the lead’s perspective. It deals with measuring the capabilities of 
potential vendors with respect to a given procurement task (cf. [7]). The 
bid/no-bid problem in turn is a task in organizational selling that follows 
lead qualification. After having assessed enough information about a 
lead’s problem situation the vendor often needs to decide whether it is 
economically feasible to attend in a tender process (cf. [8]). So far there 
has been no approach in the field of contractor pre-qualification or the 
bid/no-bid problem that makes use of functional representations. However, 
especially the works in the field of contractor pre-qualification highlight 
critical representation issues, which apply to lead qualification as well: an 
appropriate representation should account for error-prone and subjective 
judgments of decision makers and it should be able to cope with noisy and 
uncertain data [7]. 

In a previous work [9] we presented a computational functional repre-
sentation of the (situated) Function-Behavior-Structure (FBS) framework 
[10]. It is based on first-order probabilistic belief networks (cf. [11]) in or-
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der to explicitly model uncertainties and thus address the mentioned repre-
sentation issues. Like other models that operationalize the FBS framework 
[12–17] we provided a method to describe the components of a design ob-
ject, their properties, and relations among both. In contrast to previous ap-
proaches we took especially account of the fact that the certainty of a de-
sign component being associated with an attribute may vary throughout the 
design process and we proposed a method to highlight needed information 
that would most useful for reducing uncertainty. 

Similar to our work the parameter analysis approach of [18] describes 
how to reveal the customer’s problem situation (need identification and 
analysis) and how to generate conceptual designs grounding on these in-
sights (parameter analysis). However, there are fundamental differences: 
To promote the ideation of innovative solutions their methodology sug-
gests to maximize the set of potential solutions and thus favors need state-
ments that are least constrained, whereas our approach focuses on finding 
concrete offers as fast as possible and thus favors need statements that are 
most effective in narrowing the set of potential solutions. To avoid the 
generation of need statements that are not solvable, our approach directly 
integrates the problem and solution parts in a single representation. This 
allows for “micro” design cycles, where every added constraint is directly 
evaluated against the current set of potential solutions. A salesperson may 
then discuss complicating constraints just when they arise. 

The contribution of this paper is an extension to the works of [9]. In the 
following we give a detailed description of the conceptual relations be-
tween functional representations and lead qualification, we provide addi-
tional methods for supporting design tasks during lead qualification, and 
we report our findings from an ongoing case study in the domain of office 
fit-out projects. 

Conceptual Approach 

At the beginning of lead qualification the vendor has rather limited insights 
on the lead’s problem situation, and vice versa detailed knowledge about 
solutions mostly resides exclusively at the vendor and its partner organiza-
tions. Thus the design space is ill-structured [19] and adequate offers can-
not be directly identified. In this context a salesperson is asked to engage 
in problem-solution discovery, i.e. developing a clear idea of the lead’s is-
sues and formulating a battery of potential responses [20]. This is typically 
done in a series of sales calls, where the salesperson not only asks for 
problems to be solved but also proves whether the suggested solution can-
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didates actually fit the lead’s expectations. Here a suggested solution is a 
salesperson’s individual projection of how a certain bundle of products and 
services will help to satisfy the lead’s business needs at the time when it is 
implemented in the lead’s organization. 

However, time and resources for problem-solution discovery in lead 
qualification are limited. And if problem-solution discovery is carried out 
by a salesperson that does not have the required design knowledge lead 
qualification is likely to fail, because (1) the salesperson does not assess 
the information needed to narrow down the set of potential solutions or (2) 
the salesperson may draw wrong conclusions on the gathered information 
leading to inadequate solution candidates. 

As mentioned above, our conceptual approach to support the identifica-
tion of needed information and the selection of adequate candidate solu-
tions is based on functional representations [4] that model the design space 
of possible solutions. However, especially interpretations of “function” 
vary between the proposed functional representations [5]. The discussion 
of [21] and [22] provides clarification. We now cast their notion in our 
domain. 

Functional Design Space Representation 

Let the world W be a set of variables1 {W1, W2, …} that describe the as-
pects of a generic organization that may be affected by the products and 
services of a design object, and let α be a conceptual model that defines 
dependency relations over these variables. 

Let the design object D be a set of design components {d1, d2, …}, and 
let R ⊂ D × (D ∪ W) be a dependency relation over the set of design com-
ponents and the world, which denotes a structural relationship between two 
design components or between a design component and the world. Moreo-
ver, every design component di is associated with a set of variables Ci = 
{Ci,1, Ci,2, …} describing properties of the design component (note same 
index i). A subset of these properties describe the vendor’s products and 
services used for realizing the design component, we refer to this subset as 
“offer”. Further, let β be a conceptual model that defines dependency rela-
tions over all design component properties. 

Building on this we consider a design object as being a potential solu-
tion if it is integrated in the world, i.e. it is implemented in the lead’s or-
ganization. To define how it is integrated let the mode of deployment γ be 

                                                        
1 Notation: upper-case letters represent variables (e.g. X), bold upper-case let-

ters represent sets of variables (e.g. X), lower-case letters represent value assign-
ments to variables (e.g. x). 
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a conceptual model that defines dependency relations between design 
component properties and world variables. 

The lead’s problem situation is defined as a set of constraints on the 
world and the design object. Let N, FW, and U, represent sets of logical 
constraint functions on world variables W, where a constraint function 
evaluates to true if the value of the variable in its domain meets the con-
straint (otherwise it evaluates to false). FD represents a similar set of con-
straint functions but over variables C1 ∪ C2 ∪ … of design component 
properties. N, FW, U, and FD differ in terms of abstraction from the design 
object. FD has the lowest abstraction and specifies desired behaviors of the 
design object itself. Still close to the design object, FW specifies desired ef-
fects of the design object’s behavior on the behavior of the world in which 
it is embedded; this is also termed “function-as-effect” [21]. Finally, busi-
ness needs N and usage constraints U of the lead have the highest degree 
of abstraction from the design object’s structure. Together N, FW, U, and 
FD are used to characterize the lead’s organization and to set the goals and 
objectives of solution development. 

 
Fig. 1 Exemplary design space 

Example 

Consider the following example from the domain of office fit-out projects, 
which is also graphically depicted in Fig. 1. Office fit-out projects deal 
with the design and construction of scenery (interior elements such as ceil-
ings, partitions and finishes) and settings (furniture and equipment) for of-
fice accommodation [23]. Office accommodation has several influences on 
the business operations of an organization (e.g. [24]). In this simplified ex-
ample we describe the world W as follows: 
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• W1: Workspace flexibility can be low or high. 
• W2: User mobility can be low or high. 
• W3: High office productivity can be mandatory or neglectable. 
• Conceptual model α: 

• W2, W3 → W1: Workspace flexibility should be high if and only if 
high office productivity is a mandatory objective (W3 → W1) and 
user mobility is high (W2 → W1). In any other case workspace 
flexibility cannot be determined. 

Design object D consists of three components: workspace d1, furniture 
d2, and partitions d3. They stand in structural relation R = {(d1, W), (d1, d2), 
(d1, d3)}, i.e. the designed workspace will be implemented in the lead’s or-
ganization (d1, W), and the workspace is made up of workstation furniture 
(d1, d2) and partition elements (d1, d3). The following variables and concep-
tual models describe the components and their dependencies: 
• Workspace d1: 

• C1,1: Workspace layout can be territorial, semi-territorial or non-
territorial. 

• Furniture d2: 
• C2,1: Noise reduction of partitions can be low, moderate or high. 
• C2,2: Adjustability of partitions can be low or high. 
• C2,3: Partition offer can be none, curtains, screens or walls. 

• Partitions d3: 
• C3,1: Adjustability of furniture can be low or high. 
• C3,2: Furniture offer can be system A or system B. 

• Conceptual model β: 
• C2,3 → C2,1: Noise reduction will be low if no partitions are includ-

ed in the offer, moderate if curtains or screens are offered, and 
high in case of solid walls. 

• C2,3 → C2,2: Adjustability of partitions will be low if walls are of-
fered, and high in cases of curtains, screens or no partitions. 

• C3,2 → C3,1: Adjustability of furniture will be low if system A is of-
fered, and high in case of system B. 

• C2,1, C2,2, C3,1 → C1,1: Semi-territorial and non-territorial workspac-
es require both a high adjustability of furniture (C3,1 → C1,1) and 
partitions (C2,2 → C1,1) as well as a high noise reduction of parti-
tions (C2,1 → C1,1). 

• Conceptual model γ: 
• C1,1 → W1: When implemented in the lead’s organization, work-

space flexibility will be high if the workspace layout is semi-
territorial or non-territorial and low in case of a territorial layout. 
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If we consider this design space with respect to a specific lead qualifica-
tion situation where the lead’s central need N1 is high office productivity 
(W3), we would constrain W3 with N1(W3) to be in state mandatory. Now 
the conceptual dependency models α, β, and γ allow us to identify con-
straints on a lower abstraction level and even identify candidate offers: α 
suggests that need N1 will be satisfied if the external effect of the design 
object on the lead’s organization is a high workspace flexibility (W1) under 
the premise of the lead’s organization having a high user mobility (W2). 
However, we cannot be sure about W1 unless we know the state of W2. 
Therefore it would be important to assess the information (e.g. in the next 
sales call) whether user mobility (W2) is high or low. Given that W2 was 
constrained with U1(W2) to be in state high, we can implicitly identify the 
constraint FW,1(W1) that workspace flexibility should be high. In the other 
case, i.e. U1(W2) was set to be low, workspace flexibility (W1) is yet un-
known and FW,1(W1) needs to be assed explicitly. In this example we con-
tinue with workspace flexibility (W1) being constrained to state high. Now 
considering the mode of deployment γ the desired “function-as-effect” 
(FW,1) can be achieved with a design object that has either a semi-territorial 
or non-territorial workspace layout (C1,1), which leads to constraint 
FD,1(C1,1). In the end β allows us to identify system B (C3,2) in combination 
with curtains or screens (C2,3) as an adequate offer, as they provide the 
needed adjustability (C3,1, C2,2) and noise reduction properties (C2,1) for im-
plementing semi- and non-territorial workspaces (C1,1). See below for the 
complete list of identified constraint functions: 
• N1(W3)  = {(mandatory, true), (neglectable, false)} 
• U1(W2)  = {(high, true), (low, false)} 
• FW,1(W1)  = {(high, true), (low, false)} 
• FD,1(C1,1)  = {(semi-territorial, true), (non-territorial, true),  

   (territorial, false)} 

Probabilistic Functional Design Space Representation 
The exemplified reasoning tasks can also be expressed in probabilistic 
terms. Probability theory enables us to explicitly address the open world 
assumption regarding a salesperson having incomplete knowledge about 
the actual design space (cf. [25]). The idea is to represent the solution part 
of the design space (design object embedded in the world) as a probabilis-
tic belief network and represent the problem part as constraining prior 
probabilities on the random variables of the belief network [9]. This pro-
vides a framework to automatically infer probability estimates for those 
variables that have not been constrained yet. The computed probability es-
timates can then be used to generate a list of candidate solutions that are 
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most likely to solve the lead’s problem. Further, metrics can be defined to 
determine the uncertainty of variables and their influence on other varia-
bles (herein termed “conclusiveness”). By combining both metrics we’re 
able to identify variables that should be constrained in order to reduce 
overall uncertainty about the design space. A salesperson can then be ad-
vised to specifically assess more information about those variables. 

 

 
 

Fig. 2 Probabilistic representation of reasoning steps carried out in the world part 
of exemplary design space depicted in Fig. 1 

 
See Fig. 2 for an example: The upper part shows the encoding of con-

ceptual model α as conditional probability distribution P(W1 | W2, W3). 
The lower part shows how it is used in combination with prior probabili-
ties to generate estimates for yet unconstrained variables. After the first 
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sales call high office productivity is known to be mandatory, which is re-
flected by the prior probability P(W3). Multiplying P(W3) with P(W1 | W2, 
W3) produces estimates for P(W2) and P(W1). P(W2) is now the most un-
certain variable since all of its states are equally probable. Given that the 
conclusiveness for all three variables is equal, because the only considered 
influence is P(W1 | W2, W3), the salesperson would be asked to assess W2. 
After the second sales call the answer for W2 is represented as new prior 
probability P(W2). Multiplying P(W2) and P(W3) with P(W1 | W2, W3) now 
suggests that W1 should be very likely in state high. 

However, the structure of the design space needs to be configured for 
each lead qualification situation individually. Therefore we use first-order 
probabilistic models, which provide formalisms for composing probabilis-
tic belief networks [11]. First-order probabilistic models combine probabil-
istic graphical models (Bayesian networks, Markov random fields, or more 
generally factor graphs) with a relational language (e.g. first-order logic) to 
represent probabilistic dependencies among attributes of multiple entities. 
In this case we’re interested in the dependencies among design compo-
nents and the world. In the following we describe how the design space 
model can be implemented as first-order probabilistic model. 

Implementation 

We represent W and C1 ∪ C2 ∪ … as random variables, where each possi-
ble value assignment of a variable is mapped to a probability. This proba-
bility expresses the belief of the vendor that the variable is in a certain 
state. The notion of parameterized random variables (par-variables) allows 
us to define random variables as a function of one or more logical varia-
bles, which are called the par-variable’s parameters (cf. [26]). In this sense 
a par-variable A(X) ∈ A represents a set of normal random variables, one 
for each possible parameter assignment A(x1), A(x2), …, A(xn). In our 
model we use the parameter X to assign a variable to the world or a specif-
ic part of the design object. 

To represent the dependencies of α, β, and γ we use parametric factors 
(par-factors) that define probability distributions over sets of random vari-
ables. A par-factor is a triple 〈B, φ, ω〉 where B ⊂ A is a set of par-
variables, φ is a probability distribution that maps from the Cartesian 
product of ranges of variables in B to a positive real value (a probability), 
and ω is a set of logical terms that constrain the possible value assignments 
to the parameters of B. 
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The used par-variables and par-factors form a parameterized belief net-
work. It can be transformed into a normal belief network (Bayesian net-
work) by considering every possible combination of value assignments to 
the used parameters (grounding). In the following we show how parame-
terized belief networks facilitate different inference tasks for design sup-
port (see also [10] for a discussion of the mentioned design processes). 

Formulation 

In the formulation process a salesperson acquires information about a 
lead’s problem situation through discussions with the lead’s representa-
tives and possibly identifies implicit problems. Since time and possibilities 
for information exchange are limited the salesperson should ask for infor-
mation that is yet uncertain and which allows to draw as many conclusions 
on the solution space as possible. 

To provide a support service that highlights such important questions we 
first compose a design space: By defining par-factors for each type of de-
pendency relation in α, β, and γ we can construct a design space with re-
spect to some given component structure R: 

 
 (1) 

  
This type of par-factor represents a dependency relation between its first 

par-variable A1(X1) and some further variables A2(X2), …, An(Xn), where 
the component (or world) Xi of each variable has to stand in structural rela-
tion to the component (or world) X1 of the first variable. The actual de-
pendency is expressed as a conditional probability distribution φ that maps 
the possible combinations of value assignments of the par-variables to a 
probability. The conditionally dependent variable in φ is the first par-
variable A1(X1). 

In addition to par-factors describing dependencies among variables we 
introduce par-factors representing the constraints of N, U, FW and FD. The-
se provide prior probability distributions π for every par-variable in the 
model: 

 
 (2) 

  
Initially π is uniformly distributed. But changing π by assigning a rela-

tively high probability to some value of the variable would express its 
preference over other values. Information gathered in a sales call may now 
be expressed in terms of high prior probabilities for variable values that 
represent assessed information. Implicit information about the design 
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space can then be determined by applying a belief propagation (BP) algo-
rithm [28]. BP configures the probabilities of each variable in the ground-
ed network with respect to the defined prior probabilities and dependency 
relations. 

Having every variable configured with BP we can apply a scoring func-
tion on each variable to determine its importance for being assessed in fu-
ture dialogues with the lead. In [9] we presented a measure that can be 
used to calculate a variable’s uncertainty and conclusiveness. We define 
U(φ) as measure of uncertainty for a discrete probability distribution φ of 
size n: 

 

 
  
U(φ) → [−1,0] measures the Kullback-Leibler divergence [27] of φ 

with respect to a uniform distribution of same size n. Its maximum 0 is 
reached if φ is close to the uniform distribution, and thus all variable states 
being equally probable. To assess a variable’s uncertainty we simply cal-
culate U(φ) for its probability estimates, which were inferred through BP. 

Assessing the conclusiveness of some variable A(X) is based on its in-
fluence on other variables. A dependency relation par-factor (Eq. 1) has a 
high influence on its variables if its conditional probability distribution 
scores low on the uncertainty measure, i.e. U(φ) is close to -1. Now given 
all dependency par-factors involving A(X), the sum of their uncertainty 
scores should be minimal to have a high conclusiveness. 

Combining both a variable’s uncertainty and conclusiveness we’re able 
to highlight important variables in need of further investigation by the 
salesperson. 

Synthesis 

Having formulated the lead’s problem situation to a certain extent the 
salesperson gives consideration to candidate offers that seem capable of 
providing the expected “function-as-effect”. Aiding the selection of a can-
didate offers that are likely to serve as a solution is intrinsically supported 
by the design space model: BP can be used to propagate gathered evidence 
on the problem situation towards variables describing offerable products 
and services. The joint probability estimate over all offer variables can 
then be seen as a configurational space of alternative offers, where offers 
that are likely to meet the given constraints are given a relatively high 
probability. The most likely offer is the maximum a posteriori (MAP) es-
timate. 
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Analysis & Evaluation 

After choosing a candidate offer, e.g. the MAP-estimate, the salesperson 
should evaluate to what extent the offer fits to the given problem situation. 
To measure this fit we first need to decouple the parts of the design space 
describing the offer from the parts describing the problem situation so that 
we can perform inference on both parts separately. Therefore we simply 
duplicate the design space representation. The first copy represents the 
problem part, which is actually identical to the belief network used for 
formulation and synthesis. The second copy represents the offer. Here we 
remove all prior probabilities (Eq. 2) standing for constraints of N, U, FW 
and FD. Instead we change the prior probabilities of offer variables. By 
choosing prior probabilities of exactly 1 or 0 for offer variables we can ex-
press the selection of a certain candidate offer (clamping). Now we can 
apply BP on both copies separately and compare the resulting probability 
distributions for every pair of corresponding variables. Especially we’re 
interested in differences of variables that can be assigned to N, U, FW and 
FD constraints. 

We use a conditional probability distribution to measure the fit of such a 
variable pair. Two copies A(X) and A′(X) of the same variable, which has 
n possible values, are compared by conditioning a third random variable M 
with range {match, mismatch}: 

 

 
 
Multiplying this with the probability estimates for A(X) and A′(X) gives 

the joint probability for “expected variable” A(X) and “offered variable” 
A′(X) having “matching” or “mismatching” values. We can determine 
such probabilities for each pair of variables separately and then compute a 
mean value to assess the overall fit of an offer with respect to a problem 
situation. The result can be used to guide the process of reformulation. 

Case Study 

The computational representation of the design space and the described in-
ference techniques have been integrated in a prototype application. It real-
izes an information system for supporting the lead qualification process. 
This section presents preliminary results of an ongoing case study, in 
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which we test this prototype with designers, consulting experts and sales-
persons from a major furniture manufacturer that is concerned with office 
fit-out projects.  

Prototype Application 

To define par-variables and par-factors that can be used for instantiating a 
design space the prototype application provides a web-based interface for 
knowledge engineering shown in Fig. 3. 

 

 
 
Fig. 3 Screenshot of knowledge engineering interface 

 
Variables are defined by providing (1) a name and description of the 

underlying concept, (2) a rating of the concepts general importance with 
respect to the lead qualification process, (3) a set of questions that will 
guide a salesperson in assessing information about the variable, and (4) the 
variable’s range that also frames the possible answers to the questions. 
Each variable is assigned to the world or a distinct type of design compo-
nent. In this case the world is termed “Client” and we have three types of 
components: “Project”, “Office” and “User Group”. Further, the 
knowledge engineering interface discriminates between variables that are 
closely related to the vendor’s offer (“Our Good or Service”) and variables 
that are affected by abstract constraints (“Customer Goal or Constraint”). 
All other variables reside under the category “Solution”. 

Having described a set of variables in this way a knowledge engineer 
may define dependency relations among those variables. By specifying 
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which variables are affected by the dependency relation the knowledge en-
gineering interface generates a tabular representation of all possible value 
combinations as shown in Fig. 4. Each combination is phrased as a condi-
tional statement and assigned with a rating that represents its probability. 
Initially set to “I don’t know” (0.5) these ratings can be adjusted by the 
knowledge engineer. This is done by choosing a statement as being “al-
ways true” (1), “often true” (0.75), “seldom true” (0.25) or “never true” 
(0). Leaving the rating at 0.5 represents a neutral state, i.e. either the 
statement may be as often true as it is false or the knowledge engineer is 
unable to determine. However, these ratings cannot be directly used as 
probabilities of a par-factor’s probability distribution. First they need to be 
normalized so that all probabilities sum to 1, where in the case of all rat-
ings being 0 the probabilities are reset to be uniformly distributed. 

 

 
 
Fig. 4 Screenshot of dependency relation definition 

 
In total the furniture manufacturer’s experts defined a set of 33 par-

variables and 44 par-factors. These provide the basis for the second part of 
the prototype application, which resembles a dynamic sales questionnaire. 
This sales questionnaire (cf. Fig. 5) is also web-based and can be used by a 
salesperson in preparation and follow-up to a sales call or even during 
sales calls via a tablet computer. 

The central part of the questionnaire is a list of questions, which is gen-
erated from those questions defined by the knowledge engineers. Its sorta-
tion is dynamically determined by using the scoring function for assisting 
the formulation process. To setup the necessary design space a salesperson 
simply defines the projects associated to a client, the offices that are sub-
ject to these projects, and the user groups, which are planned to work in 
the offices. When giving answers to the questionnaire the prior probabili-
ties of associated variables are adjusted and the list is automatically resort-
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ed. Questions of variables with a widespread influence that haven’t been 
answered explicitly or implicitly, and which have been defined as being 
important by the knowledge engineers are placed on the top. This sortation 
is intended to guide the salesperson’s priority in assessing information 
from the lead. 

Further, the techniques described for synthesis, analysis and evaluation 
are used to generate ratios that are of special interest to a salesperson dur-
ing lead qualification. First, to give the salesperson an orientation about the 
progress of lead qualification the mean of all computed uncertainty scores 
is used to indicate the current knowledge about the lead. Second, probabil-
ity estimates of certain variables are presented that help to determine op-
portunities for business, i.e. the potential for providing consultation ser-
vices or selling furniture to the lead. Third, the mean of all “match”-
probabilities is used to show a simplified overall score for the fit of the 
most probable offer (MAP-estimate) with respect to the problem situation. 

 

 
 
Fig. 5 Screenshot of sales questionnaire 

Preliminary Results 

Main parts of the knowledge engineering have been conducted in a three-
day workshop with an interior-design architect, a representative from the 
sales training department, and a representative from the project-consulting 
department. After an introduction to the usage of the knowledge engineer-
ing interface, participants were asked to use the system to model the con-
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cepts being most relevant to lead qualification situations. Thereby partici-
pants took the role of knowledge expert and knowledge engineer at the 
same time. The parts that should be described were predefined as “Client”, 
“Project”, “Office” and “User Group”. Since there was no predetermined 
process that would have guided this task, the participants had to find a 
strategy on how to develop the knowledge base from scratch and how to 
do this cooperatively. The participants decided to proceed inductively by 
using an example project of the interior-design architect. Following several 
discussions about the details, the participants generalized important issues 
of this case under the architect’s lead to defined variables of the 
knowledge model. After a period of using the system jointly to enter one 
variable at a time and discussing its semantics, participants decided to 
work in parallel. Therefore every predefined component “Client”, “Pro-
ject”, “Office” and “User Group” was assigned to a certain participant 
whose responsibility was to model the variables and dependency relations 
within that component. Afterwards the participants gathered again to de-
fine dependency relations between the components jointly. 

During this process several obstacles occurred, which are now subject 
for our ongoing refinement of the prototype: 

First, in some cases the participants found it hard to assign a variable to 
the given categories. Some variables could be assigned to one or another 
category depending on the point of view. E.g. storage capabilities may be 
defined for each user group individually or for an office as a whole. In this 
case the knowledge engineers decided to model storage capabilities on the 
lowest detail level (user group) to allow a greater flexibility at the cost of a 
salesperson having to answer more questions. 

Second, dependency relations used in the current state of the prototype 
are limited to multinomial probability tables. However, when using multi-
nomial distributions in a Bayesian network for encoding dependency rela-
tions, parents of an influenced variable affect each other (explaining away 
phenomenon [28]). In some cases this is not desirable. E.g. probability es-
timates for furniture potential and consultation potential are derived from 
different variables of the whole design space. Now when some variable 
(e.g. providing storage) has a positive influence on furniture potential this 
should not automatically affect another semantically unrelated parent (e.g. 
relationship to architect). In this case each parent should contribute inde-
pendently to furniture potential. Thus knowledge engineers should be able 
to choose from different types of dependency relations, like causally inde-
pendent noisy-OR, noisy-MAX or noisy-addition distributions [29]. 

Third, in close relation to issue two, knowledge engineers experienced 
unwanted side effects in the reaction of the dynamic questionnaire while 
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modeling the knowledge base. To make these effects comprehendible it 
was suggested to implement a mechanism that explains the inference re-
sults produced by the questionnaire. It should offer the possibility to easily 
retrace the causes for a specific suggestion of the questionnaire. 

Conclusion and Future Work 

Lead qualification in solution selling industries marks the very beginning 
of a design process that is initiated by discussions of a salesperson with 
representatives of a lead. Depending on the results of lead qualification 
this design process may or may not be carried on by design experts in a 
successive project. Thus, supporting the process in its initial phase is an 
important issue that underlines the need for representing design spaces in 
lead qualification situations. 

Though functional representations were originally developed to model 
devices, products, objects, and processes based on their functionalities [5], 
this approach can also be applied to model problem-solution discovery in 
lead qualification situations. As demonstrated these models can help to 
bridge the gap between abstract business needs of a lead and the potential 
product and service bundles offered by a vendor and its partner network. 

Throughout lead qualification salespersons try to iteratively structure a 
design space that is only vaguely defined in the beginning. To support this 
process a design space model should explicitly account for the representa-
tion of uncertainties. We showed that first-order probabilistic models are 
suitable for its implementation. The preliminary results from a case study 
suggest that the proposed representation can be practically used to formal-
ize design knowledge in form of a knowledge base. This in turn can be 
used by inference mechanisms during lead qualification to simulate and 
assist formulation, synthesis and evaluation tasks. 

However, the generation the proposed first-order probabilistic represen-
tation requires a substantial knowledge engineering effort. In our future 
work we’ll refine the prototype application to simplify the knowledge ac-
quisition process. Therefore we seek to realize an explanation component 
that helps knowledge engineers and salespersons to understand the infer-
ence results. Further, we’ll implement machine-learning capabilities that 
make use of the answers given to the questionnaire in order to inductively 
learn new dependency relations. And we seek to generalize the definition 
of dependency relations to allow the specification of individual types of 
conditional probability distributions. 
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