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Visual Grounding of Route Descriptions inDynamic EnvironmentsWolfgang Maa�, J�org Baus, Joachim PaulUniversity of Saarbr�ucken66041 Saarbr�ucken, GermanyEmail address: maass@cs.uni-sb.deAbstract. A software agent who gives incremental, i.e. step-by-step,route descriptions while moving through an environment is an interest-ing starting-point for an integrated view on visual perception and naturallanguage generation. We present a computational model, called MOSES. Inparticular we show how visual data is transformed into visuo-spatial rep-resentations. An object selection process based on visual features startsat a high-level description of objects in a synthetic three-dimensionalenvironment. We found by experiments that incremental route descrip-tions can be classi�ed by a small set of syntactic and semantic struc-tures. By consideration of temporal constraints, visuo-spatial structures,path-related intentions, as well as rhetorical abilities of the speaker, aselection process extracts description schemata as input for the languagegeneration process. These schemata are modeled by a modi�ed subset ofJackendo�'s conceptual semantics formalism.Keywords: visual object selection, route descriptions, spatial knowledge rep-resentation1 IntroductionThe model presented here is part of a larger project, called VITRA (VIsualTRAnslator), where we investigate aspects of the interaction of vision and lan-guage ([Herzog et al. 89]). A particular interest lies on the information owfrom analysis of visual data to language generation. We focus on how visualinformation can be used for grounding descriptions in the environment. In co-operation with the visual perception group of the IIFB at the Fraunhofer In-stitute at the University of Karlsruhe, we have shown how real-world visualdata in dynamic environments can be used in natural language descriptions([Herzog et al. 89, Schirra et al. 87, Huang et al. 94]). A model-based approachis used for automatically generating 3D-representations of the environment. Thisapproach has been examined in a soccer domain ([Andr�e et al. 89]) and a dy-namic tra�c scene domain ([Schirra et al. 87]). The model presented here de-pends on experiences gained in these domains. Our current work is related toproblems which occur if an agent moves through real or synthetic environments.



The agent's task during its movement is to incrementally describe a route froma starting point to a destination by refering to visually obtained objects. Ingeneral, the whole complexity of AI research is involved, e.g., control laws formovement, early-vision processing, high-level vision, naive physics, temporal andspatial reasoning, knowledge representation, planning, and language processing.In a �rst approach, we have implemented a software agent1, called MOSES, whodescribes a path in a synthetic 3D-environment. MOSES can only refer to visu-ally obtained objects (landmarks) in the current situation. Information aboutthe path is extracted from a map by using an incremental path-�nding proce-dure (for more details see [Maa� 94]). In this paper, we will sketch the processarchitecture and associated representations.2 Related workIt has not changed so much since Waltz mentioned that the interaction be-tween researchers in visual perception and language processing is quite small([Waltz 81]). Although there are recently more activities in this area ([McKevitt 94b,McKevitt 94a]), we are still lacking a complete theory. In contrast to this prob-lem, this topic is in psychology, as well as in philosophy subject of long-standingcontroversies. Although there are evidences to believe that the integration ofvision and language is quite complex the human cognitive system has found ane�cient way to integrate these two complex modules. Unwrapping the functionalarchitecture of the interaction of vision and language will provide important in-sights about cognitive processes and representations in general. On the otherhand, related investigations may help to �nd e�cient and useful computationalarchitectures in general. If we better understand how humans refer to visualinformation in language we might be able to build more cooperative systems.The interaction between vision and language has been a main question incognitive psychology during the last decades. But the general question has beendecomposed intomany virtually smaller ones. Most popular has been the imagerydebate in which it is discussed whether representations of visual information iscoded in a propositional or dipictional format ([Pylyshyn 81, Kosslyn et al. 90].Experiments in this area are mostly situated in semantic-free small-scale en-vironments and do not consider realistic scenarios. Real-world situations areinvestigated by experiments about how large-scale a�ects human anticipation ofthe environment (cf. [Downs & Stea 73, Downs & Stea 77]). Large scale spaceenvironments include several sources of non-visual and non-spatial information.A viewer always has a set of goals towards her environment which direct herbehavior. If she walks along a route she intends to reach a destination. She usesher environment in a goal-directed habit. This inuences her perception of the1 The complete model is implemented in LISP (CLOS and CLIM) on di�erent hard-ware platforms. We would like to thank Gerd Herzog, Jochen M�uller, Eva Stopp andAnselm Blocher for contributing important software modules and valuable informa-tion. This work is partly supported by the cognitive science program 'Kognitionswis-senschaft' at the University of Saarbr�ucken.



environment and in particular her focus of attention. But an important questionis what happens in-between vision and language. It is con�rmed by neurophys-iologial and psychophysical studies that one of the main task of vision is toselect appropriate information. Visual attention is the process which focuses onparticular parts of a given scene and leads visual perception. A common viewis that information selected by visual processes is stored in 3-dimensional rep-resentations (e.g., [Marr 82]). But what happens after objects are representedis more or less speculative. There are several approaches to harmonize di�er-ent kinds of structures into a general framework ([Johnson-Laird 83, Bryant 92,Landau & Jackendo� 93]). But beside models which try to �nd a link betweenvision and language, several studies have been conducted to determine an inde-pendent representation format of spatial knowledge of large-scale space, generalycalled cognitive maps (cf. [Tolman 48, Downs & Stea 77, G�arling et al. 84]). Be-side spatial information, cognitive maps depend on information about temporalconstraints, viewer properties, and other conceptual factors. How we memorizeand retrieve spatial knowledge strongly depends on situation in which we experi-enced the environment. But experiments showed that we must assume di�erentkinds of formats for identical spatial knowledge. We talk about new environmentsby refering to perspective views (route knowledge) and to familiar environmentsby refering to bird's-eye perspectives (map knowledge) (see [Siegel & White 75]).The question now is what kind of processes and representations are involved ifwe talk by refering to visual information.On one hand, a general framework mustbe able to deal with any kind of environment, whether we directly perceive it orwhether we refer to memorized representations. It must also include contextualconstraints and viewer/speaker and listener properties. As already mentioned, weare far from having such a theory. Therefore we restrict our proposed model to aminimal set of processes and representations which allows the system to producedescriptions similar to those given by humans in comparable situations. Thereare only a few computational models in which visual and linguistic structures arerelated to one another. In some approaches it is investigated how to analyse time-varying environments from a static view-point. The goal in LandScan is to guidelow-level visual processes by textual input and to provide descriptions of visualinformation ([Bajcsy et al. 85]). NAOS ([Neumann & Novak 83]) and a modelproposed by Howarth and Buxton ([Howarth & Buxton 93]) are able to describetime-varying visual data in tra�c scenes. Other models do not depend on visualinformation but on spatial con�gurations as domains for textual queries anddescriptions ([Winograd 72, Waltz 81, Wahlster et al. 83, Novak & Bulko 90]).Associated to route descriptions is navigation. Computational models of nav-igation provide important insights about how visual data is transformed intospatial representations and how it can be used for language processes (e.g.,[Kuipers 78, Gopal et al. 89, Leiser & Zilbershatz 89, McCalla & Schneider 79,Vere & Bickmore 89]). In particular, systems developed in robotics focus onthe interaction of physical navigation and on low-level vision processes (e.g.,[Brooks & Maes 94]). But those systems are usually lacking language abilities.



3 The proposed modelIn static environments a system has usually no deadlines for its behavior pat-terns. This is di�erent for systems in dynamic environments. But also syntheticenvironments provide strong constraints on agents. In MOSES we focus on how toselect visuo-spatial information units which are salient in a given situation. De-scriptions given by MOSES are compared with descriptions given by test personsin comparable real-world environments.MOSES receives information about the environment by a visual input processand by searching paths on street maps (see �gure 1). A main problem for thevisual perception process is to select interesting objects. An object is selectedif corresponding visual features are salient. Features are basic properties of ob-jects, such as color, width, height, and direction of movement. In our currentimplementation, MOSES considers three di�erent feature types: Color, height,and width (c.f. [Maa� 95]). Each feature is projected onto a type-speci�c, e.g,a color feature is integrated in the color feature map. A feature map is a two-dimensional projection of the scene and preserves its topographical structure.For each feature, MOSES computes a salience value which is modeled by a poten-tial �eld representation. The intensity of a feature de�nes the third dimensionof a feature map (vertical cuts through feature maps are shown in �gure 2 and3). MOSES determines a mean value for each feature map. For instance, the meanvalue of a color feature map is the arithmetic mean of all RGB values. The dis-tance between a mean value and a value of a particular feature represents thesalience value of this feature, i.e. the maximum of the corresponding potential.The extension of a potential �eld is the visible enlargement of that feature (see�gure 2 and 3). Feature maps are joined in a global feature map. Therefore allfeature maps are projected onto one another. A problem is how to combine fea-ture maps of di�erent types. We have asked test persons to rate feature typesin di�erent scenes. According to these ratings we determined factors for thecombination of feature maps. As we will describe next, MOSES is mainly lead byhis2 intentions. If he wants to turn left at the next decision point he focuseshis attention to an area on the left. In our experiments we found that objectson the opposite side are neglected in descriptions even if they have been quitesalient. According to this phenomenon, MOSES has a spatial attention windowwhich is used to increase salience values of features which lie in the focus areaand decrease those which lie outside of this area (see �gure 3). The location ofthe maximum value in the global feature map corresponds to the most salientlocation in a given scene. The object selection process now determines objectswhich corresponds to salient locations and passes them to the visuo-spatial bu�er(see �gure 1).Descriptions are always accompanied by intentions. MOSES' main intention isto follow a path from a starting point to a destination. This global goal is sub-divided into simpler goals as he moves along the path. His intentions are mainlypath-related. By refering to the path-�nding process, he knows where to go at2 For historical reasons, we refer to MOSES by masculine pronouns.
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Fig. 1. Process model of MOESeach decision point. As already mentioned, path-related intentions control thefocus of attention. But these intentions are also important for the language gen-eration process. For instance, test persons have had severe problems to generateappropriate descriptions of a turn-left action when they were forced to refer toan object on the right side. Beside path-related intentions, MOSES also has theintention to describe the route incrementally at appropriate time-points.Now that salient objects (L1 is the �rst building on the left side of the crossing



Fig. 2. Object selection by reference to the global feature map in a complexscenescenario indicated in �gure 3) are selected and sent to the visuo-spatial bu�er,they are interrelated to MOSES' current position (CP) and street items (S1, S2,and C) (crossings and street segments) by topographical spatial relations (see�gure 4). This representation is called con�guration description. A con�gurationdescription provides explicit information about the spatial structure of a situa-tion. Route descriptions mainly depend on the spatial structure represented bycon�guration descriptions. MOSES considers the given con�guration description,intentions, the temporal structure of the situation, and his linguistic abilities toselect an appropriate description schema. The temporal structure of a situationis constrained by the speed of MOSES and the distance to the next decision point.MOSES makes assumptions about how long it will probably take to reach the nextdecision point. According to this time interval, those schemata are selected whichcan be used to generate a description right in time. The next �lter selects from
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Fig. 3. Modifying potential �eld representations by a focus of spatial attentionin a crossing scenariothese schemata those which correspond to the intended action at the next deci-sion point. During the next selection step, those schemata are extracted whichassume a similar spatial structure as given by the con�guration description. Ifthere are objects selected by the object selection process those schemata are usedwhich include a reference to salient objects at appropriate places. Incrementalroute descriptions are generally ill-formed sentences. There are di�erences be-tween speakers. Some are able to smoothly include objects in their descriptions.Others describe the action �rst followed by an indication of the location. MOSEScan be used in two di�erent rhetoric modes: poor and normal.Most of all, MOSES descriptions depend on his type of movement. When hemoves with average car speed, intervals between decision points are sometimesquite short. In those situations, he mainly refers to route knowledge. If he moveswith walking speed, he has more time and can refer to objects. For instance, if



a salient object is on the left side and his intention is to turn left he gives thedescription in two parts: "Please, turn left behind the red building on the leftside." .... "Now, please." First he gives a complete description of the intendedaction by refering to objects. Then, just before the action must be performed, hegives a short hint. This selection process extracts and instantiates one or moredescription schemata. If there are more than one schemata, MOSES uses the �rstone. It is clear that a more sophisticated conict resolution procedure would behelpful. But in our domain we found that our simple strategy serves quite well.

Fig. 4. Example con�guration description of a turn-left action by refering to alandmarkA description schema provides the semantic of a route description. The struc-ture of a schema is based on Jackendo�'s conceptual semantics (see [Jackendo� 83]).



Because Jackendo� only presented his framework of conceptual semantics byrefering to simple utterances we carefully extended his formalism (see �gure 4).MOSES has a repertoire of almost 60 description schemata. Basic constituents ofa description schema are things (persons), locations (places), and paths. Theyare used in higher-order structures, such as events and states. The general struc-ture of an event consists of the instance of the speaker MOSES followed by apath and a place. Hence we can represent utterances such as: "Please, turn leftbehind the building on the left side." Figure 4 shows the conceptual structureof this description. In the last step, a description schema is transformed intoinput structures for the language generator. We have two generators, one basedon the tree-adjoining-grammar approach ([Finkler & Schauder 92]) and anotherone which is simpler but faster.4 Summary and future workMOSES is a model for generating incremental route descriptions. This strategy isbased on experiences we gained in other domains in cooperation with a visionprocessing group. Nevertheless it is obvious that the range MOSES is dealing withis far beyond the capabilities of nowadays low-level vision processing systems.We have sketched the process model of MOSES. It consists of a object selectionprocess based on visual features, an incremental path-�nding process on streetmaps, a visuo-spatial bu�er which determines con�guration descriptions, and aselection process for description schemata. Finally these description schemataare transformed into input structures for a language generation process.MOSES provides an approach for integrating several complex processes of vi-sion processing and natural language processing. Therefore it is clear that almostevery process can be re�ned by future work. But nonetheless, MOSES provides arobust experimental environment for gaining more experience about the relationof vision and language in dynamic environments. In the near future, we will inte-grate capabilities for tracking and describing external events, such as a car whichturns left at a crossing or a persons crossing the street ([Herzog & Rohr 95]).Another important goal for the future is to combine this software agent with aphysical agent equipped with motoric abilities, a vision unit and speech output.References[Andr�e et al. 89] E. Andr�e, G. Herzog, and T. Rist. Natural Language Access toVisual Data: Dealing with Space and Movement. In: F. Nef and M. Borillo (eds.),Logical Semantics of Time, Space and Movement in Natural Language. Proc. of1st Workshop. Herm�es, 1989.[Bajcsy et al. 85] R. Bajcsy, A. Joshi, E. Krotkov, and A. Zwarico. LandScan: ANatural Language and Computer Vision System for Analyzing Aerial Images.In: Proc. of the 9 th IJCAI, pp. 919{921, Los Angeles, CA, 1985.[Brooks & Maes 94] Rodney A. Brooks and PattieMaes (eds.). ARTIFICIAL LIFEIV, Proceedings of the fourth International Workshop on the Synthesis and Sim-
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