
Dependency Modeling for Knowledge Maintenance in
Distributed CBR Systems

Pascal Reuss1,2 and Christian Witzke1 and Klaus-Dieter Althoff1,2

1Intelligent Information Systems Lab, University of Hildesheim
2Competence Center CBR, German Center for Artificial Intelligence, Kaiserslautern

Abstract. Knowledge-intensive software systems have to be continuously main-
tained to avoid inconsistent or false knowledge and preserve the problem solving
competence, efficiency, and effectiveness. The more knowledge a system con-
tains, the more dependencies between the different knowledge items may exist.
Especially for an overall system, where several CBR systems are used as knowl-
edge sources, several dependencies exist between the knowledge containers of
the CBR systems. The dependencies have to be considered when maintaining the
CBR systems to avoid inconsistencies between the knowledge containers. This
paper gives an overview and formal definition of these maintenance dependen-
cies. In addition, a first version of an algorithm to identify these dependencies
automatically is presented. Furthermore, we describe the current implementation
of dependency modeling in the open source tool myCBR.

1 Introduction

Knowledge-intensive systems are using a high amount of knowledge that is not stored in
a single knowledge source, but distributed over several knowledge sources. This leads to
a better scalability and maintainability. Especially for systems with several case-based
reasoning (CBR) systems, distributing the knowledge over several small CBR systems
rather than using one large CBR system, has a great benefit on maintainability. There ex-
ist several maintenance approaches for CBR systems [16, 20, 19, 9, 8] that aim to main-
tain a single knowledge container in a single CBR system. However, there could be
dependencies between the knowledge inside a CBR system and between the knowledge
of different CBR systems. These dependencies should be considered for maintenance
actions to ensure the consistency and competence of the whole knowledge-intensive
system. Based on these dependencies additional maintenance actions could be identi-
fied to avoid inconsistencies or competence loss. These dependencies [13] are used by
the Case Factory approach for maintaining distributed CBR systems [12]. The initial
definition of the dependencies were not sufficient and we analyzed the required gran-
ularity of the dependencies and the possible knowledge on different granularity levels.
In this paper we present the refined definition of the maintenance dependencies and
the current modeling and implementation in the open source tool myCBR [21, 5]. We
also investigate the possibility of generating dependencies automatically to reduce the
modeling effort.

In Section 2 we describe related research in the fields of knowledge modeling and
maintenance. Section 3.1 contains a brief description of the Case Factory(CF) approach

and Section 3.2 describes in more detail the refined dependencies required for mainte-
nance with CFs and a first version of the dependency generation algorithm. In Section
3.3 we present the current modeling possibilities in myCBR. Finally, we give a sum-
mary of our paper and an outlook to future work.

2 Related work

Knowledge modeling has been a focus of research in many communities in the last
decades. Directly related to CBR, the knowledge containers [14] are a central point for
knowledge modeling, which were extended with a maintenance container [10]. Our
maintenance dependencies clearly belong to the maintenance knowledge of a CBR
system and the Maintenance Map can be treated as an instantiation of a maintenance
container. However, for our maintenance approach with explanations the knowledge
from the other maintenance containers are required, too. The description of knowl-
edge contents in CBR systems on a so-called knowledge level was first introduced by
Aamodt [2]. The CBR community adapted the knowledge level view from the knowl-
edge acquisition community to describe knowledge in CBR systems independent from
the implementation. Our approach uses also the knowledge level view, but introduced
different sub-levels of knowledge in the different knowledge containers. This way, we
are able to build a hierarchy of knowledge for our maintenance dependencies to model
abstract and detailed dependencies.

Dependency modeling between knowledge is researched in the economic domain.
The focus is to model the dependencies between knowledge in firms and organiza-
tions or in business processes. Different approaches to model dependencies have been
developed, for example strategic dependency diagrams [3], dependency modeling with
OWL-DL, and a meta-model for dependencies [18]. In the business domain, knowledge
dependencies are modeled to determine the performance of a firm or the scalability of
business processes.

Software development also deals with dependency modeling. They are for example
used to manage complex software applications and can identify violations of the archi-
tecture, evaluate the scalability of an application and identify hidden subsystems [17].
Also from the software development perspective comes an approach for a domain-
specific dependency modeling language [1]. In our approach the knowledge levels and
the defined hierarchy is a first step to a language for maintenance dependency modeling
in CBR systems. An explicit language could help to identify all dependencies between
the knowledge items in and between CBR systems.

3 Dependency Modeling for Knowledge Maintenance

This section describes the Case Factory maintenance approach and the required knowl-
edge dependencies. We introduce different knowledge levels and a hierarchy of de-
pendencies for CBR systems. In addition, we present a first algorithm for generating
syntactic dependencies automatically and describe the current implementation of de-
pendency modeling in myCBR.

3.1 Maintenance with Case Factories

The Case Factory approach is an agent-based maintenance approach for distributed
CBR systems and integrated into the SEASALT architecture [4]. The SEASALT (Sharing
Experience using an Agent-based System Architecture Layout) architecture is a domain-
independent architecture for multi-agent systems to extract, analyze, share, and pro-
vide experience. The architecture consists of five components. The first component is
the knowledge source component. This component contains so-called collector agents
that are responsible for the extraction of knowledge from external knowledge sources.
Knowledge sources could be databases, files, forums, or blogs. The second component,
knowledge formalization, formalizes the extracted knowledge from the collector agents
into a structural representation to be used by the third component, the knowledge provi-
sion component. This component manages the knowledge sources inside a multi-agent
system (MAS) instantiated by the SEASALT architecture. Inside the knowledge pro-
vision component the so-called Knowledge Line (KL) is located. The KL contains a
number of topic agents with access to internal knowledge sources like CBR systems.
The basic idea is to modularize the knowledge among the topic agents and decide which
knowledge is required to solve a given problem. The fourth component is the knowl-
edge representation, that contains the underlying knowledge models for the different
agents and knowledge sources. The last component is the individualized knowledge
and contains the user interface for querying the system and displaying the solution [4].

The extended Case Factory approach extends the SEASALT architecture with a
maintenance mechanism for CBR systems. If a topic agent has access to a CBR system,
a CF is provided to maintain the CBR system. To coordinate several CFs a so-called
Case Factory Organization (CFO) is provided, which consists of several agents to co-
ordinate the overall system maintenance. A Case Factory consists of several agents
that are responsible for different tasks: monitoring, evaluation, coordination, and main-
tenance execution. A monitoring agent will supervise the knowledge containers of a
CBR system to notice changes to the knowledge like adding new cases, changing the
vocabulary, or deleting cases. Monitoring agents will only notice the fact that changes
have occurred and what has been changed. Evaluation agents are responsible for a qual-
itative evaluation of the consistency, performance, and competence of the CBR system.
Which evaluation strategy is performed is up to the user. Existing approaches like utility
footprint [19] or sensitivity analysis [7, 22] could be applied as well as new or modified
evaluation strategies. The coordination agent will collect all results from the monitoring
and evaluation agents and create maintenance actions based on the collected informa-
tion. In addition, the agent will use the modeled dependencies to determine additional
maintenance actions that should be performed and sent them to the CFO. The depen-
dencies and their use will be described in more detail in the next section. Maintenance
execution agents are responsible for executing the confirmed maintenance actions and
adapting the knowledge of the CBR system.

The Case Factory Organization is a superstructure for coordinating the maintenance
activities of each Case Factory and providing the knowledge engineer with the required
information to confirm or reject maintenance actions. Therefore, several agents with
different tasks are part of the CFO: coordination agent, maintenance planning agent,
explanation agent, and communication agent. The coordination agent gets all main-

tenance actions from the different CFs, derives additional maintenance actions based
on the dependencies between CBR systems and passes the list of maintenance actions
to the maintenance planning agent. The planning agent is responsible for creating a
maintenance plan from all derived maintenance actions. Therefore, the agent checks for
duplicate or conflicting maintenance actions, the order of maintenance actions and for
circular maintenance actions. Based on these checks a maintenance plan is generated
and passed to the explanation agent. This agent generates a human-readable explanation
for each action in the maintenance plan and adds it to the corresponding maintenance
action. The enhanced plan is passed to the communication agent and displayed to the
knowledge engineer. After a review by the knowledge engineer, the confirmed or re-
jected maintenance actions are passed back to the individual CFs [11, 12].

3.2 Dependencies

A central part of the Case Factory approach are the dependencies between the knowl-
edge containers of CBR systems. These dependencies allow an overall maintenance
planning with respect to connections between the individual knowledge of different
CBR systems. A dependency can be defined with a source, a target, and a direction.
This triple has been used by our first dependency definition and the source and target
were defined as knowledge containers and can be found in equation (1).

d = (kcsysS , kcsysT , t)

where kc ∈ {voc, sim, cb, ada} and sysS, sysT ∈ {1 . . . n} and t ∈ {u, b}
(1)

The triple consists of two knowledge containers and a direction. The first knowledge
container kcsysS defines the left side of a dependencies, the source knowledge con-
tainer. The second knowledge container kcsysT defines the target knowledge container.
Knowledge containers could be the vocabulary, the case base, the similarity measures or
the adaptation knowledge according to Richter [15]. The indices sysS and sysT iden-
tifies the CBR system, the knowledge container belongs to, assuming all given CBR
systems have a number between 1 and n. The last part of the triple t represents the
direction of a dependency, either (u)ni-directional or (b)i-directional and determines
whether the source and the target knowledge containers can be swapped or not.

But the information about the affected knowledge containers is not sufficient. For
example, the information that a dependency exists between the vocabulary of CBR sys-
tem A and the vocabulary of CBR system B does only allow to derive a maintenance
action for changing the vocabulary. This is not enough information for specific and
executable maintenance actions. Therefore, we defined six knowledge levels for CBR
systems to find the required granularity of knowledge for the dependencies. The knowl-
edge levels are shown in table 3.2.

These knowledge levels are used to define a hierarchy of granularity for dependen-
cies. The top level of the hierarchy is root level. It contains only one node, the root node.
This root level could also be named as knowledge level 0. The second level represents
the knowledge level 1 and contains nodes for the CBR systems. The third level, knowl-
edge level 2, contains nodes for the knowledge containers of a CBR system: vocabulary,

Table 1. Knowledge levels, the contained knowledge, and examples

Knowledge level Contained Knowledge Example
Knowledge level 1 CBR system CBR system 1
Knowledge level 2 knowledge container vocabulary, case base
Knowledge level 3 specific case base CB01, CB02
Knowledge level 4 specific case, similarity measure, and

adaptation rules
case 123, simtax, rule23

Knowledge level 5 attributes aircraft type, systems, status
Knowledge level 6 specific values A380, display, inoperable

case base, similarity measures, and adaptation knowledge. The Knowledge level 3 con-
tains nodes for the case bases, the other three branches have no nodes on this level. On
knowledge level 4 nodes for the cases, similarity measures, and the adaptation rules
can be found. Knowledge level 5 contains nodes for the attributes on all branches of
the knowledge containers. The last level contains nodes for the specific values of each
attribute. Figure 1 shows an example hierarchy with the knowledge levels.

Fig. 1. Example hierarchy for granularity of dependencies

Based on this hierarchy, dependencies with different knowledge levels could be de-
fined. The most abstract dependencies are based on knowledge level 1 and the most
detailed dependencies are based on knowledge level 6. For example, on knowledge
level 1 a dependency between a CBR system A and a CBR system B could be defined.
The dependency does not contain enough knowledge to derive a specific maintenance

action, but the knowledge on this level is required for the knowledge levels below to
differ between the more detailed dependencies. In addition, it could be used for visu-
alization purposes of dependencies. On knowledge level 6, a dependency between two
specific values could be defined. For example, there could be a dependency between the
value A380 of the attribute aircraft type in the knowledge container vocabulary of CBR
system A and the value A380 of the attribute aircraft type of the case123 in the case base
CB01 in the knowledge container case bases of CBR system A. With this specific infor-
mation, among others, a detailed maintenance action could be derived. The reworked
dependency definition can be found in equation (2).

d = (klesource, kletarget, t)

where klesource and kletarget ∈ {hierarchynodes} and t ∈ {u, b}
(2)

In the previous definition, the source and target of a dependency are knowledge
containers. In the current definition, the source and target are knowledge level elements
(kle), that can be found in the defined hierarchy. The hierarchy is a set of nodes and
edges, but a dependency references only on nodes. Therefore, hierarchynodes is a
subset of the hierarchy, that only contains the nodes. To identify an element in the
hierarchy, every element gets an id code based on the knowledge level, characters, and
continuous numbers. The id code consists of alphanumeric characters and starts with the
number of the knowledge level. The characters for each knowledge level are combined
with an underscore. The knowledge level 0 will not be considered, because it contains
no knowledge. The nodes on each knowledge level will be continuously numbered. The
only exception is knowledge level 2. The nodes on this level are identified with the
starting character of the knowledge container. For example the id code for the case123
node would be 1 C 1 1 0 0, the id code for the specific value A380 in the same branch
would be 1 C 1 1 1 1. A dependency between the specific value A380 of the attribute
aircraft type in the vocabulary and the same value in case123 in CB01 in the attribute
aircraft type could be found in equation (3):

d = (1 V 0 0 1 1, 1 C 1 1 1 1, u) (3)

The dependencies will still be differentiated between intra- and inter-system depen-
dencies. An intra-system dependencies is defined within a CBR system, while inter-
system dependencies are defined between different CBR systems. An intra-sytem de-
pendency is defined in equation (4), while an inter-system dependency is defined in
equation (5):

dintra = (klesource, kletarget, t)

where klesource and kletarget ∈ {hierarchynodes}
and #KL6 of klesource 6= #KL6 of kletarget
and #KL1ofklesource = #KL1 of kletarget

and t ∈ {u, b}

(4)

dinter = (klesource, kletarget, t)

where klesource and kletarget ∈ {hierarchynodes}
and #KL1 of klesource 6= #KL1 of kletarget

and t ∈ {u, b}

(5)

Intra-system dependencies are defined within a single CBR system. Therefore, the
source and the target knowledge level elements have the same CBR system identi-
fication value (#KL1), while they have different attribute value identification values
(#KL2). This is required to avoid dependencies from specific values to themselves. This
way we avoid circular processing of the same dependencies endless times. In contrast
to the previous definition of intra-system dependencies, dependencies within the same
knowledge container are permitted to model dependencies between different attributes
of the vocabulary for example. For inter-system dependencies the CBR system identifi-
cation value (#KL1) has to be different, while all other knowledge level elements could
have the same identification number, for example when we have a backup copy of CBR
system that contain the same knowledge.

In our first definition of dependencies[13] we introduced three trivial dependen-
cies as intra-system dependencies. These trivial dependencies were defined between
the vocabulary and the three other knowledge containers. On an abstract level this de-
pendencies still exist, but on the knowledge levels 5 and 6, the number of dependencies
cannot be defined in general, because the number of attributes and specific values de-
pends on the knowledge modeling. Therefore, the new definition of our maintenance
dependencies contain no trivial dependencies any more.

Based on the defined granularity of the dependencies, there could exist hundreds of
dependencies in a CBR system. Modeling all these dependencies manually would cause
a very high effort for the knowledge engineer. Therefore, the automated generation of
dependencies based on a given knowledge model could reduce the effort and would al-
low the application of the Case Factory approach to existing CBR systems with a man-
ageable effort. For an automated generation we have to differentiate between syntactic
and semantic dependencies. A syntactic dependency is based on a syntactic compliance
of values, for example the specific value A380 of the attribute aircraft type in the vo-
cabulary and the value A380 in the same attribute in a given case. This dependency
could be generated automatically by searching for the value A380 in existing cases. If
the value is set for the attribute in a case, a dependency is modeled. A first version of
an algorithm to generate syntactic dependencies is shown in algorithm 1.1.

Listing 1.1. Algorithm for generating syntactic dependencies

Definitions:
Va S e t o f v a l u e s f o r a t t r i b u t e a
Ccb S e t o f c a s e s i n a c a s e base cb

va s p e c i f i c v a l u e o f a t t r i b u t e a
ccb s p e c i f i c c a s e o f c a s e base cb
vfct s p e c i f i c v a l u e i n s i m i l a r i t y measure
vr s p e c i f i c v a l u e i n r u l e

Input:
A S e t o f a t t r i b u t e s i n t h e c a s e s t r u c t u r e
CB S e t o f c a s e b a s e s i n a CBR sys tem
R S e t o f a d a p t a t i o n r u l e s
S S e t o f s i m i l a r i t y f u n c t i o n s

Output:
D S e t o f s y n t a c t i c d e p e n d e n c i e s

Algorithm:
D = \ e m p t y s e t

f o r e a c h (a t t r i b u t e a i n A) {
i f (check (va e x i s t i n ccb) {

du = new d (va , vc , u)
i f (e x i s t (D, r e v e r s e (du s))) {

db = new d (va , vc , b)
D = D − r e v e r s e (du) }

e l s e {
D = D + db }

}
i f (check (va e x i s t i n vfct) {

du = new d (va , vfct , u)
i f (e x i s t (r e v e r s e (du))) {

db = new d (va , vfct , b)
D = D − r e v e r s e (du) }

e l s e {
D = D + db }

}
i f (check (va e x i s t i n vr) {

du = new d (va , vr , u)
i f (e x i s t (r e v e r s e (du))) {

db = new d (va , vr , b)
D = D − r e v e r s e (du) }

e l s e {
D = D + db }

}}
r e t u r n D

The algorithm iterates over all values of all attributes and compares them with the
used values in the cases, the similarity measures and the adaptation rules. If a compli-
ance is found a new dependency on the sixth knowledge level is created. The created
dependency is defined a uni-directional. For every created dependency, the algorithm
checks whether a reverse dependency exists, or not. If a reverse dependency is found,
the newly created dependency is set to bi-directional and the reverse dependency is
removed from the list. The new dependency is added to the list. This way explicit de-
pendencies between the knowledge containers can be generated. Implicit dependencies
between the knowledge containers can be found in several CBR tools and in myCBR,
too. But these implicit dependencies cannot be used to generate maintenance actions
and explanations. Therefore, some dependencies may exist implicitly and explicitly.

With the algorithm syntactic dependencies can be generated, but not semantic de-
pendencies. A semantic dependency is based on user modeled connections between the
knowledge items, for example a case referencing another case. A reference cannot al-
ways be identified automatically, therefore a dependency can only be generated under
specific circumstances. For example, it could be checked if an attribute exists, that con-
tains unique identifiers of cases. This attribute could be treated as reference attribute
and the identifiers of the cases could be compared syntactically.

3.3 Dependency modeling using myCBR

We have extended the API and workbench of our tool myCBR to model and visualize
dependencies. The algorithm for generation dependencies is not implemented yet. The
API was extended with functions and classes to model, save, and load dependencies.
Dependencies are stored in a so-called Maintenance Map. This Maintenance Map is
based on the Knowledge Map[6] and stores all information about the dependencies.
A Maintenance Map can be exported in RDF format. The following excerpt from an
Maintenance Map shows an example modeling:

Listing 1.2. Excerpt from an example Maintenance Map

<r d f : D e s c r i p t i o n r d f : a b o u t =” ’ dependency1 ”’>
<dep : sou rce >1\ V\ 0 \ 0 \ 1 \ 1 </ dep : sou rce>
<dep : t a r g e t >1\ C\ 1 \ 1 \ 1 \ 2 </ dep : t a r g e t >
<dep : type >1</dep : type>
<dep : weight >1</dep : weight>

</ r d f : D e s c r i p t i o n >
<r d f : D e s c r i p t i o n r d f : a b o u t =” ’ dependency2 ”’>

<dep : sou rce >1\ V\ 0 \ 0 \ 1 \ 1 </ dep : sou rce>
<dep : t a r g e t >2\ V\ 0 \ 0 \ 1 \ 2 </ dep : t a r g e t >
<dep : type >2</dep : type>
<dep : weight >4</dep : weight>

</ r d f : D e s c r i p t i o n >

The example shows two dependencies, one intra-system and one inter-system de-
pendency. For each dependency the source and the target are stored with their id code
in the defined hierarchy. In addition, the direction of the dependency and the weight are
stored. The direction can either be one or two, one if the dependency is uni-directional

and 2 if it is bi-directional. The weight defines the importance of the dependency, the
higher the weight, the more important the dependency is. A higher weight can be used
to rank maintenance actions based on the according dependency. The dependencies are
stored with their id code in the Maintenance Map. After reading the dependencies the
id code is transformed into the more detailed knowledge level information.

The workbench was extended with a maintenance view. This view allows a user the
modeling and visualization of dependencies. Figure 2 shows the maintenance view and
a modeled dependency. The current implementation allows the creation of Maintenance
Maps for intra- and inter-system dependencies. Intra-system dependencies are stored
into a so-called local Maintenance Map, while inter-system dependencies are stored in
a so-called global Maintenance Map. The differentiation is only for organizational pur-
pose. After the creation of a Maintenance Map the associated dependencies could be
modeled. A dependency can currently be modeled up to knowledge level 5. The sixth
knowledge level is under development. For a local Maintenance Map the target CBR
system is automatically set to be identical with the source CBR system. Dependencies
with missing information cannot be saved to avoid incomplete and inconsistent depen-
dencies.

Fig. 2. Maintenance view with dependency

In addition, the workbench has a visualization component to generate an overview
of the modeled dependencies. A simple list of dependencies would be adequate for few
dependencies, but having dozens or hundreds of dependencies between several CBR
systems, simple list would cause high effort to find and edit a specific dependency.
Therefore, a graphic representation of the modeled dependencies would provide a better
overview. Two different visualizations are currently implemented. Figure 3 shows a
simple graph representation of the Maintenance Map. The vertices are arranged in a
circle to get clear overview of the edges which represent the dependencies. Figure 4
shows a formatted graph of the Maintenance Map. The different knowledge levels are
colored and associated groups of dependencies are displayed together. Vertices with
no dependencies have a brighter color. Because the Maintenance Map can be edited

by a user, empty dependencies can be created. An empty dependency is not treated as
inconsistent and is represented with a gray vertex in the graph.

Fig. 3. Simple visualization of dependen-
cies

Fig. 4. Formatted visualization of mainte-
nance map

An evaluation of the dependency modeling and the algorithm has not been done yet,
because the implementation of the sixth knowledge level has to be completed before we
can generate specific dependencies on the value level of the hierarchy.

4 Summary and Outlook

This paper gives an overview of the improvements for the maintenance dependency
modeling. We describe the newly defined knowledge levels for CBR systems and how
the associated hierarchy is used to model dependencies with different granularity. A
formal definition of the improved dependencies is also given. In addition, we describe
a first algorithm to generate syntactic dependencies automatically. Finally, we give an
overview of the current implementation state of the dependency modeling in myCBR.
Currently, we are integrating the knowledge level 6 into myCBR to be able to model
all proposed granularities of maintenance dependencies. After the implementation is
finished, we will use the improved dependencies in a multi-agent system with differ-
ent CBR systems and associated Case Factories to evaluate the utility of the improved
maintenance dependencies. In addition, we will improve the visualization of the de-
pendencies to be able to show a scrollable visualization with different details for each
knowledge level.

References

1. A Domain-Specific Language for Dependency Management in Model-Based Systems Engi-
neering (09/2013 2013)

2. Aamodt, A.: Modeling the knowledge contents of cbr systems. In: Proceedings of the Work-
shop Program at the Fourth International Conference on Case-Based Reasoning. pp. 32–37
(2001)

3. Al-Natour, S., Cavusoglu, H.: The strategic knowledge-based dependency diagrams: A tool
for analyzing strategic knowledge dependencies for the purposes of understanding and com-
municating. Inf. Technol. and Management 10(2-3), 103–121 (Sep 2009)

4. Bach, K.: Knowledge Acquisition for Case-Based Reasoning Systems. Ph.D. thesis, Univer-
sity of Hildesheim (2012), dr. Hut Verlag Muenchen 2013

5. Bach, K., Sauer, C., Althoff, K.D., Roth-Berghofer, T.: Knowledge modeling with the open
source tool mycbr. In: Nalepa, G.J., Baumeister, J., Kaczor, K. (eds.) Proceedings of the 10th
Workshop on Knowledge Engineering and Software Engineering (KESE10). Workshop on
Knowledge Engineering and Software Engineering (KESE-2014), located at 21st European
Conference on Artificial Intelligence, August 19, Prague, Czech Republic. CEUR Workshop
Proceedings (http://ceur-ws.org/) (2014)

6. Davenport, T.H., Prusak, L.: Working Knowledge: How Organizations Manage What they
Know. Havard Business School Press (2000)

7. Du, J., Bormann, J.: Improved similarity measure in case-based reasoning with global sen-
sitivity analysis: an example of construction quantity estimating. Journal of Computing in
Civil Engineering 28(6), 04014020 (2012)

8. Ferrario, M.A., Smyth, B.: Distributing case-based maintenance: The collaborative mainte-
nance approach. Computational Intelligence 17(2), 315–330 (2001)

9. Nick, M.: Experience Maintenance Loop through Closed-Loop Feedback. Ph.D. thesis, TU
Kaiserslautern (2005)

10. Patterson, D., Anand, S., Hughes, J.: A knowledge light approach to similarity maintenance
for improving case-base competence. In: ECAI Workshop Notes. p. 6578 (2000)

11. Reuss, P., Althoff, K.D.: Explanation-aware maintenance of distributed case-based reasoning
systems. In: LWA 2013. Learning, Knowledge, Adaptation. Workshop Proceedings. pp. 231–
325 (2013)

12. Reuss, P., Althoff, K.: Maintenance of distributed case-based reasoning systems in a multi-
agent system. In: Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, Aachen,
Germany, September 8-10, 2014. pp. 20–30 (2014)

13. Reuss, P., Althoff, K.: Dependencies between knowledge for the case factory maintenance
approach. In: Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB,
Trier, Germany, October 7-9, 2015. pp. 256–263 (2015)

14. Richter, M.M.: The knowledge contained in similarity measure. Invited Talk at the First
International Conference on Case-Based Reasoning, ICCBR95 (1995)

15. Richter, M.M.: Handbuch der knstlichen Intelligenz, chap. Fallbasiertes Schlieen, pp. 407–
430. Oldenbourg Wissenschaftsverlag (2003)

16. Roth-Berghofer, T.: Knowledge maintenance of case-based reasoning systems. The SIAM
methodology. Akademische Verlagsgesellschaft Aka GmbH (2003)

17. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage complex
software architecture. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications. pp. 167–176. OOP-
SLA ’05, ACM, New York, NY, USA (2005)

18. Sell, C., Winkler, M., Springer, T., Schill, A.: Two dependency modeling approaches for busi-
ness process adaptation. In: Proceedings of the 3rd International Conference on Knowledge
Science, Engineering and Management. pp. 418–429. KSEM ’09, Springer-Verlag, Berlin,
Heidelberg (2009)

19. Smyth, B., Keane, M.: Remembering to forget: A competence-preserving case deletion pol-
icy for case-based reasoning systems. In: Proceedings of the 13th International Joint Confer-
ence on Artificial Intelligence. pp. 377–382 (1995)

20. Stahl, A.: Learning feature weights from case order feedback. In: Case-Based Reasoning
Research and Development: Proceedings of the Fourth International Conference on Case-
Based Reasoning (2001)

21. Stahl, A., Roth-Berghofer, T.: Rapid prototyping of cbr applications with the open source tool
mycbr. In: Advance in Case-Based Reasoning, Proceeding of the 9th European Conference
on Case-Based Reasoning (2008)

22. Stram, R., Reuss, P., Althoff, K.D., Henkel, W., Fischer, D.: Relevance matrix generation us-
ing sensitivity analysis in a case-based reasoning environment. In: International Conference
on Case-Based Reasoning. pp. 402–412. Springer (2016)

