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Abstract

In this paper, we address the problem of extreme head
pose estimation from intensity images, in a monocular
setup. We introduce a novel fusion pipeline to integrate
into a dedicated Kalman Filter the pose estimated from a
tracking scheme in the prediction stage and the pose esti-
mated from a detection scheme in the correction stage. To
that end, the measurement covariance of the Kalman Fil-
ter is updated in every frame. The tracking scheme is per-
formed using a set of keypoints extracted in the area of the
head along with a simple 3D geometric model. The detec-
tion scheme, on the other hand, relies on the alignment of
facial landmarks in each frame combined with 3D features
extracted on a head mesh. The head pose in each scheme is
estimated by minimizing the reprojection error from the 3D-
2D correspondences. By combining both frameworks, we
extend the applicability of head pose estimation from facial
landmarks to cases where these features are no longer visi-
ble. We compared the proposed method to other related ap-
proaches, showing that it can achieve state-of-the-art per-
formance. We also demonstrate that our approach is suit-
able for cases with extreme head rotations and (self-) oc-
clusions, besides being suitable for real time applications.

1. Introduction
Head pose estimation (HPE) refers to the problem of re-

covering the 6 degrees of freedom (D.o.F.) pose of the per-
son’s head, consisting of its location and orientation with
respect to the camera coordinate system. It serves either as
an intermediate step for other tasks as face alignment [46],
face recognition [2], facial expression recognition [22] or
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gaze estimation [41, 42], or directly for a wide range of
applications as human-computer interaction, driver moni-
toring [43, 5] and augmented reality[28]. Depending on
the requirements, the estimation can be performed from
2D data, including RGB, infrared (IR), or intensity images,
from depth images or from a combination of both.

We focus our investigation on HPE from intensity im-
ages, where the gaze could be extracted from the input data
in a follow-up project. In that way, we extend the rele-
vance of our approach to those cases where only RGB or
monochrome cameras are available. We are also interested
in a HPE approach that could be used in realistic scenarios,
where a set of constraints are satisfied: the method should
be able to perform in real time, preferably with no need of
power demanding devices like graphic hardware; it should
be able to work for different users, regardless of age, gender
or ethnicity, with no need of any additional calibration; the
method must be robust to handle extreme head poses, i.e.,
when part of the head is (self-)occluded due to large rota-
tions; it should be able to initiate the estimation task from
different head poses, not only from frontal faces.

Although the use of consumer RGB-D cameras in HPE
research has increased in the last years [12, 5, 38], we opt
for intensity images captured in a monocular setup for rea-
sons of cost and processing power restrictions in our tar-
geted applications.

In this work, we introduce a method for robust HPE in
real time. The approach is composed of two schemes, per-
formed by separate: HPE from 2D keypoints tracking, using
a geometric model and HPE from facial landmark align-
ment, using a synthetic head mesh. The final HPE results
from the fusion of both schemes using a dedicated Kalman
Filter, which combines the strengths of both pipelines: the
precision of HPE from facial landmarks and the robustness
to handle large head pose variations of HPE from keypoints
tracking. We show that our method is suitable to work in



real time and is also robust to extreme head rotations.
The major contributions of our work are:

• A novel head pose estimation technique, where the
pose computed from keypoints is fused with the pose
estimated from facial landmarks, using a dedicated
Kalman Filter. To the best of our knowledge, this is the
first method that combines a local motion estimated by
keypoints tracking, with a global head pose estimated
from facial landmark alignment. The local motion is
integrated at the prediction step of the Kalman Filter,
while the global motion is included for the correction
step.

• The proposed approach enables the combination of the
pose estimated with a simple geometric model with the
pose from a 3D mesh, resulting in a HPE method ro-
bust to extreme head rotations, without the need for
an extensive training stage with manual annotation in
large datasets.

We compared our method to other approaches of the state
of the art, using a publicly available dataset for HPE. We
also performed experiments for time-consumption analysis
and to verify the robustness of our method to extreme head
rotations.

2. Related work
Although methods based on 2D input data have been ex-

tensively studied [30], with the introduction of consumer
RGB-D cameras in the last years, the number of depth-
based approaches has increased recently [13, 12, 27, 31,
5, 8]. These approaches include combined pipelines using
both RGB and depth data [4, 34], or IR and depth data [36].

Following the classification proposed in [5], we di-
vide HPE approaches in three main categories: model-
based, appearance-based and 3D head model registration
approaches. It should be noted that some methods might
fall in more than one category.
Model-based approaches. These HPE methods use rigid
or non-rigid face models, facial landmark detection and/or
any other prior information regarding the geometry of the
head. HPE based on registration of texture map images
with a cylindrical head model (CHM) was proposed by
La Cascia et al. in [24]. Choi and Kim [7] used tem-
plates for HPE, combining a particle filter with an ellip-
soidal head model (EHM). Sung et al. [37] combined active
appearance model (AAM) with a CHM. An and Chung [2]
used an EHM to formulate the HPE as a linear system,
assuming a rigid body motion under perspective projec-
tion. Kumano et al. [22] used a face model given by
a variable-intensity template with a particle filter, for si-
multaneous HPE and facial expression recognition. Jang
and Kanade [18, 19] designed a user-specific CHM-based

framework, by combining into a Kalman Filter the esti-
mated motion and a pose retrieved from a dataset of SIFT
feature points. In [42, 41], Valenti et al. used a CHM for si-
multaneous HPE and eye tracking, based upon a crossed
feedback mechanism, which compensated the estimated
values and allowed to re-initialize the head pose tracker. As-
teriadis et al. [3] used a facial-feature tracker with Distance
Vector Fields (DVFs) for HPE. In [32], Prasad and Aravind
computed the pose using POSIT from the 3D-2D correspon-
dences from a parametrized 3D face mask and SIFT feature
points. Diaz et al. [9], used random feature points and a
CHM to estimate the pose by minimizing the reprojection
error of the 3D features and the 2D correspondences. On the
other hand, Vicente et al. [43] used facial landmarks and a
deformable head model, namely parameterized appearance
models, to minimize the reprojection error for HPE. Yin and
Yang [47] used a pixel intensity binary test for face detec-
tion, with pose regression along with local binary feature
for face alignment. From a rigid head model, the pose was
retrieved by solving the 2D-3D correspondences. Wu et al.
in [45] presented a pipeline for simultaneous facial land-
mark detection, HPE and deformation estimation using a
cascade iterative procedure augmented with model-based
HPE. Similarly, Gou et al. [17] proposed a Coupled Cas-
cade Regression (CCR) framework for simultaneous facial
landmark detection and HPE.

Appearance-based approaches. They use machine learn-
ing techniques for HPE, based on visual features of the face
appearance. Even though these methods are robust to ex-
treme head poses, usually the output corresponds to dis-
crete head poses, thus assigning the pose to specific ranges
instead of continuous estimation. These approaches usu-
ally have a higher performance for low-resolution face im-
ages [1, 11]. In [13], Fanelli et al. used random regres-
sion forests for HPE and facial feature detection, from depth
data. Patches from different parts of the face were used to
recover the pose through a voting scheme. For the train-
ing, it was necessary a large dataset with annotated data.
Wang et al. presented in [44] a head tracking approach from
invariant keypoints. Simulation techniques and normaliza-
tion were combined to create a learning scheme. Ahn et
al. [1] introduced a deep-learning-based approach for RGB
images, with a particle filter to refine and increase the sta-
bility of the estimated pose. In [26], Liu et al. used convo-
lutional neural networks, where HPE was formulated as a
regression problem. The network was trained using a large
synthetic dataset obtained from rendered 3D head models.
[1] and [26] used a GPU to reach real-time capabilities.
Tulyakov et al. introduced in [40] a person-specific template
scheme using a depth camera, which combined template-
matching-based tracking with a frame-by-frame decision-
tree-based estimator. Borghi et al. [5] presented a real time
deep-learning-based approach for HPE from depth images,



using a regression neural network, POSEidon, which inte-
grated depth with motion features and appearance. In [36],
Schwarz presented a deep learning method for HPE which
fused IR and depth data with cross-stitch units. Derkach et
al. [8] proposed a system intended for depth input data,
which integrated three different approaches for HPE, two
based on landmark detection and one on a dictionary-based
method for extreme head poses.
3D head model registration approaches. These meth-
ods register the measured data to reference 3D head mod-
els. Meyer et al. [27] combined particle swarm optimiza-
tion and the iterative closest point (ICP) algorithm to reg-
ister a 3D morphable model (3DMM) to a measured depth
face. Yu et al. [48] extended this with an online 3D re-
construction of the full head, to handle extreme head rota-
tions. Ghiass et al. [15] estimated the pose through a fit-
ting process with a 3D morphable model and RGB-D data.
Papazov et al. [31] introduced triangular surface patch de-
scriptors for HPE from depth data. The pose was computed
from a voting scheme resulting from matching the descrip-
tors to patches from synthetic head models. Jeni et al. [20]
presented an approach for 3D registration of a dense face
mesh from 2D images, through a cascade regression frame-
work trained using a large database of high-resolution 3D
face scans. Tan et al. [38] used RGB-D data to regress the
3D head pose using random forest in a temporal tracking
scheme.

Other methods define HPE as an optimization problem.
That is the case of [29], where Morency et al. presented a
probabilistic scheme, namely Generalized Adaptive View-
based Appearance Model (GAVAM), using an EHM. The
pose was estimated by solving a linear system with normal
flow constraint (NFC). Baltrusaitis et al. presented in [4] an
extension, which combined head pose tracking with a 3D
constrained local model, using both depth data and inten-
sity information. Saragih et al. introduced in [35] a HPE
approach which fits a deformable model using an optimiza-
tion strategy through a non-parametric representation of the
likelihood maps of landmarks locations. Drouard et al. [11]
used a Gaussian mixture of locally-linear mapping model
to map HOG features extracted on a face region to 3D head
poses.

One of the issues of most tracking-based methods is that
their robustness to initial HPE when the head is not frontal
is not clear [8]. For facial-landmarks-based HPE methods,
the accuracy of the head pose relies on the precision of the
estimated facial landmarks. Since they strongly depend on
the detection of facial landmarks, the misalignment of the
landmarks in a frame might lead to erroneous estimations.
Hence, these methods might be sensitive to extreme head
poses, partial occlusions, facial expressions and low resolu-
tion images.

In this work, we introduce a model-based framework for

HPE using only intensity images. We combine two inde-
pendent pipelines for pose estimation, extending the HPE
to extreme head poses. The proposed method does not have
any constraint for initialization, as facing the camera for the
first frame, and is suitable for real time applications, making
it useful for HPE in realistic scenarios.

3. Proposed HPE pipeline
Several methods of the state of the art rely on facial

landmarks for HPE. Even though they might be a reliable
source for HPE for frontal and near-frontal faces, facial
landmarks are sensitive to extreme head rotations and (self-
) occlusions, where important reference regions of the face
such as the eyes or nose are partially or totally occluded.
In order to tackle this problem, we propose to integrate
the head pose computed from a set of keypoints that can
be tracked continuously, even when the facial landmarks
are not visible. Although a keypoint-based HPE approach
could be used alone, it might suffer from drifting in long se-
quences [18, 19, 9]. Accordingly, a mechanism to reinforce
and correct the head pose from keypoint tracking, using the
facial-landmark HPE scheme must be included.

Therefore, we develop two different strategies for HPE
that run independently and which are later fused using a
Kalman Filter. The proposed framework is illustrated in
Figure 1. The first strategy (blue area in Figure 1) includes a
temporal tracking scheme, which uses optical flow to com-
pute the correspondences of a set of keypoints in every pair
of frames (step 1). The keypoints are projected onto a ge-
ometric head model, to estimate the 3D keypoints (step 2).
Both the 2D and 3D keypoints are used to compute the head
pose from frame k−1 to frame k (step 3). The second strat-
egy (red area in Figure 1) includes a tracking-by-detection
algorithm, which estimates the pose independently in each
frame by aligning 2D facial landmarks to every input image
(step 4). Along with a set of the corresponding 3D facial
landmarks extracted from a head mesh (step 5), the head
pose from facial landmarks is estimated in step 6. We use
the HPE from the keypoints for the prediction step of the
Kalman Filter (step 7) and the HPE from the facial land-
marks in the correction step (step 8). The final head pose
corresponds to the output of the Kalman Filter (step 9). As
the two different strategies for HPE run in parallel indepen-
dently of each other, time consumption of the algorithm can
be reduced considerably.

The head pose is represented with a transformation, com-
posed of a rotation R and a translation t. The pose of every
3D point P in the head is updated following a rigid trans-
formation. R can also be denoted by the rotation angles
ω = [ωx, ωy, ωz] with respect to the X , Y and Z axes of
a known coordinate system. ωx, ωy , and ωz are usually
termed as pitch, yaw and roll angles. For our framework,
the calibration of the camera is required in advance.



Figure 1. Proposed HPE pipeline, from Keypoints (blue) and Facial Landmarks (red).

Figure 2. Facial Landmarks in 2D (left) and 3D (right).

3.1. Facial landmarks

In the following section, we describe the procedure to
compute the set of facial landmarks, prior to the HPE. We
denote the set of n 2D facial landmarks as {pF }ni=1 and the
3D facial features as {PF }ni=1.

2D facial landmarks. A set of facial landmarks are de-
tected in each input image using the approach proposed
in [21]. This method uses an ensemble of regression trees to
align the facial landmarks, from a sparse subset of intensity
values indexed to an initial estimate of the shape. As we are
modeling the head as a rigid body, we select a set of fiducial
features which are robust to facial expressions, blinking and
other non-rigid motions from the face. The set includes the
corners of the eyes and the points around the nose, as shown
in Figure 2 (right), for a total of 13 features.

3D facial landmarks. Given the robust 2D facial land-
marks described earlier and illustrated on Figure 2 (left),
the corresponding 3D facial landmarks are extracted offline

on a reference head mesh (see Figure 2 (right)). These
pre-defined 3D features were manually annotated from an
open-source 3D face model. With the proposed method, we
avoid the time-consuming process of manual [20] or semi-
automatic facial landmarks annotation [4] on large datasets
of 3D face scans, yet providing a robust estimated head pose
as long as the facial features are visible in the image.

3.2. Keypoints extraction

The sets of 2D and 3D keypoints are denoted as
{pK}mi=1 and {PK}mi=1, respectively. These sets are up-
dated every frame, therefore the number of keypoints m
varies through the entire sequence.

2D keypoints. Keypoints are extracted on the area of the
head using the Features from Accelerated Segment Test al-
gorithm, better known as FAST [33]. This corner detection
method is suitable for real-time applications and extracts ro-
bust feature points for tracking.

From a set of keypoints extracted at time k − 1, the
correspondences at frame k are estimated with optical
flow, specifically using the pyramidal Lucas-Kanade feature
tracker proposed in [6].

3D keypoints. Contrary to the 3D facial landmarks, where
points are extracted offline from a 3D head mesh, we com-
pute {PK}mi=1 using a simple geometrical model, namely
an ellipsoidal shape, which gives an approximate location
of the keypoints on the 3D space. These 3D points result



Figure 3. Computation of 3D keypoints.

from the intersections on the ellipsoidal head model (EHM)
of the projection lines l which pass through the optical cen-
ter of the camera C and the corresponding 2D keypoints
{pK}mi=1 in the image plane I0, as shown in Figure 3. The
dimension and pose of the ellipsoid on the 3D space with
respect to the camera coordinate system are computed in
advance, as detailed in Section 3.3.

The projection line can be written as l = C+λd, where
d is a parallel line and λ is a scalar computed from the
quadratic equation of the ellipsoid given by:

|a|2 λ2 + 2 (a · b)λ+ |b|2 − 1 = 0 (1)

a = GRTd and b = GRT (C − E0), with G being a
3 × 3 diagonal matrix of the inverses of the ellipsoid radii
{ 1
rx
, 1
ry
, 1
rz
}, R the rotation matrix of the ellipsoid and E0

its center.

Head ROI computation. As mentioned earlier, keypoints
are detected only in the area of the head in the 2D image.
This area could be defined by a face detection algorithm as
in [23] or by the aligned facial landmarks. However, both
methods would fail in every frame where the face is not de-
tected, particularly for extreme head poses where the face
might not be visible in several consecutive frames. In order
to address this situation, we define this area from the pro-
jection of the 3D geometric model onto the image plane. It
is important to note that the projected area correspond to the
visible part of the head of the EHM and not only the face.

The head ROI is computed by estimating the plane par-
allel to the horizontal axis of the image plane and to the
axis of the geometric model, which cuts the ellipsoid in two
parts. The elliptical surface that results from the intersec-
tion of the plane and the geometric model is then projected
in the image, assuming a perspective camera model.

3.3. Initialization

Contrary to other methods of the state of the art which
use 3D morphable models for HPE [4, 27, 48], we propose
to use a simple EHM for head tracking. Complex head mod-
els can be computationally expensive, requiring the use of
graphics hardware. The EHM, although not precise, pro-

Figure 4. Estimation of the EHM depth.

vides a reliable approximation of the head’s shape for HPE.
In Section 4, we demonstrate that the use of this simple ge-
ometric model yields good results for the tracking task.

Similarly to [9], the EHM is adapted to the dimension of
the head, based on the 2D facial landmarks detected in the
first frame. As the calibration of the camera is available, the
initial depth of the EHM with respect to the camera’s op-
tical center C can be computed from the relation between
the interpupillary distance in pixels of the eyes extracted in
the image δpx and an approximate distance between a per-
son’s eyes in cm. According to the measurements reported
in [10, 16], the averaged distances for men is 6.47 cm and
for women 6.23 cm. For our method, we assume this dis-
tance δcm to be of 6 cm.

As can be observed in Figure 4, the distance Zcam be-
tween C and the center of the head is given by the sum of
Zeyes and Zhead. Zeyes, the distance from C to the eyes’
baseline can be calculated from Eq. (2), while Zhead, the
distance from the eyes’ baseline to the center of the head is
given by Eq. (3). f is the focal length of the camera and rz
is the radius of the ellipsoid in the Z axis.

Zeyes = f · δcm
δpx

(2)

Zhead =
√
rz2 − (δcm/2)2 (3)

The dimension of the ellipsoid is defined by the 2D
bounding box of the detected head ROI, given by points
{p

TL
, p

TR
, p

BL
, p

BR
}, (top-left, top-right, bottom-left,

bottom-right). The radii rx and rz of the EHM correspond
to half of the width of the detected head ROI and is com-
puted from Eq. (4), while the radius ry correspond to half
of the height of the ROI, calculated from Eq. (5). Conse-
quently, the EHM is a prolate ellipsoid, or spheroid.

rx = rz =
1

2
|p

TR
− p

TL
| · δcm
δpx

(4)

ry =
1

2
|p

TR
− p

BR
| · δcm
δpx

(5)



3.4. Head Pose Estimation

In this section, we refer to global transformation as the
function that maps the head pose from the first given frame
at time k0, R0 and t0, to pose at time k. This transformation
is denoted by Rk

0 and tk0 . Additionally, a frame by frame
transformation from frame at time k − 1 to k is referred
to as a local transformation, denoted by Rk

k−1 and tkk−1.
These definitions are of great importance in our pipeline,
as we introduce a method to combine a local with a global
transformation using a dedicated Kalman Filter.

The pose estimated from keypoints (Section 3.2) results
from a frame by frame tracking scheme. In our case, that
transformation is local (Rk

k−1 and tkk−1), as it is computed
from two consecutive frames. Moreover, the pose estimated
from facial landmarks (Section 3.1) is computed from an
initial reference set of 3D landmarks aligned to the initial
pose R0 and t0, which means that the pose is given by a
global transformation, Rk

0 and tk0 .
To estimate the head pose from each set of features,

we minimize the error between the reprojected 3D features
points {P}ηi=1 on the image plane and their 2D correspon-
dences on the image {p}ηi=1 at time k. These features cor-
respond to the keypoints {PK ,pK}, with η = m, or to
the facial landmarks {PF ,pF }, with η = n. For the key-
points, the reprojected 3D features {PK}mi=1 are given at
time k − 1, while for the facial landmarks, the 3D features
{PF }ni=1 are given at the initial frame. The minimization is
then expressed as

argmin

η∑
i=1

‖π(RPi + t)− pi‖22 (6)

π(P) denotes the perspective projection operator, where
π : IR3 7→ IR2, and i is the index of the i-th feature point.
As the calibration of the camera is known, Eq. (6) is min-
imized in the least squared sense with respect to the pose
parameters R and t, using Levenberg-Marquardt iteration.

For the Kalman Filter, the head rotation is denoted using
a quaternion q = [qx , qy , qz , qw ]

T , where qw is the scalar
part and {qx, qy, qz} the vector part. The translation is de-
noted in homogeneous coordinates as t̃ = [tx , ty , tz , 1 ]

T .
As we are interested in HPE providing 6 D.o.F., we con-
catenate the rotation and translation vectors to have a 8× 1
state vector x in the Kalman Filter, x =

[
qT , t̃T

]T
. This

vector comprises the overall estimated head pose from the
first given frame, i.e., the global head pose.

Initial HPE. The head pose in the first frame, R0 and t0, is
obtained exclusively from facial landmarks. We do so using
Eq. (6) with {PF }ni=1 from the reference head model and
the aligned facial landmarks {pF }ni=1 obtained at the first
frame. The Kalman Filter is then initialized with the pose
estimated from the facial landmarks.

HPE for the other frames. Since the rotation is repre-
sented with quaternions and the translation with homoge-
neous coordinates, we can define a linear process model and
thus, a linear Kalman Filter. The predicted state estimate is
computed from Eq. (7), where x̂−

k represents the a priori
estimate at time k and A is the state transition matrix.

x̂−
k = Akx̂k−1 (7)

In the proposed approach, A is a 8 × 8 matrix given by
Eq. (8) with a normal distributed process noise with covari-
ance Q. This matrix needs to be updated at each iteration.

A =

[
Aρ 0
0 At

]
(8)

Aρ is the state transition sub-matrix to project the ro-
tation ahead and is defined by the local rotation Rk

k−1.
This rotation is computed from the keypoint-based track-
ing scheme and is denoted by ρρρ = [ρx , ρy , ρz , ρw ]

T . Aρ is
given by

Aρ =


ρw −ρz ρy ρx
ρz ρw −ρx ρy
−ρy ρx ρw ρz
−ρx −ρy −ρz ρw

 (9)

Meanwhile, the state transition sub-matrix At to update
the translation is given by

At =

[
Rk
k−1 tkk−1

0 1

]
, (10)

where the new translation estimate tk−0 is computed from

tk−0 = Rk
k−1t

k
0 + tkk−1. (11)

The measurement model is given by Eq. (12). zk is the
new measurement at time k, H is a 7× 8 matrix that relates
the current state xk to the measurement and vk denotes the
measurement noise in the observation. H is given by H =
[I7 0], where I7 is a 7× 7 identity matrix.

zk = Hxk + vk (12)

Subsequently, the state estimate is updated at the correc-
tion step using Eq. (13). Kk denotes the Kalman gain and
x̂k the a posteriori estimate.

x̂k = x̂−
k +Kk(zk −Hx̂−

k ) (13)

In this method, zk represents the global head pose ex-
tracted only from the facial landmarks. In general, the
Kalman gain Kk depends on the ratio between the covari-
ances of the predicted and the measured state. Herein, we
adapt the measurement covariance in every frame according
to the expected accuracy of the extracted global head pose.



Method Year
RMSE ± STD MAE

Average
Time

Roll Pitch Yaw Roll Pitch Yaw (FPS)
La Cascia et al. [24] 2000 - - - 9.8 6.1 3.3 6.4 -
Sung et al. [37] 2008 - - - 3.1 5.6 5.4 4.7 -
Morency et al. [29] 2008 - - - 2.91 3.67 4.97 3.85 6
Jang and Kanade [18] 2008 - - - 2.1 3.7 4.6 3.46 -
An and Chung [2] 2008 - - - 2.83 3.95 3.94 3.57 -
Choi and Kim [7] 2008 - - - 2.82 3.92 4.04 3.59 14
Kumano et al. [22] 2009 - - - 2.9 4.2 7.1 4.73 -
Lefevre and Odobez [25] 2009 - - - 2.0 3.3 4.4 3.23 3
Asteriadis et al. [3] 2010 3.56 4.89 5.72 - - - - -
Prasad and Aravind [32] 2010 - - - 3.6 2.5 3.8 3.3 -
Jang and Kanade [19] 2010 - - - 2.07 3.44 4.22 3.24 -
Saragih et al. [35] 2011 - - - 2.55 4.46 5.23 4.08 8
Valenti et al. [41] 2012 3.00± 2.82 5.26± 4.67 6.10± 5.79 - - - - -
Wang et al. [44] 2012 - - - 1.86 2.69 3.75 2.76 15
Baltrusaitis et al. [4] 2012 - - - 2.08 3.81 3.00 2.96 -
Tran et al. [39] 2013 - - - 2.4 3.9 5.4 3.90 5
Vicente et al. [43] 2015 - - - 3.2 6.2 4.3 4.56 25
Jeni et al. [20] 2017 - - - 2.41 2.66 3.93 3.0 50
Wu et al. [45] 2017 - - - 3.1 5.3 4.9 4.43 -
Diaz Barros et al. [9] 2017 3.36±2.98 4.46±3.84 5.09±4.56 2.56 3.39 3.99 3.31 56
Gou et al. [17] 2017 - - - 3.3 4.8 5.1 4.4 -
HPE from keypoints 2018 3.42±3.05 4.61±3.83 5.49±4.84 2.61 3.51 4.29 3.47 -
HPE from facial landmarks 2018 2.58±2.42 5.68±4.31 7.18±6.71 2.01 4.45 5.87 4.11 -
HPE in fused framework 2018 3.06±2.78 4.38±3.76 4.93±4.56 2.32 3.41 3.90 3.21 40

Table 1. Comparison with other methods of the state of the art on BU dataset with different metrics for head rotation.

Handling occlusion and pose recovery. We are interested
in a method which is robust to extreme head rotations, i.e.,
that is able to estimate the pose, even when the face is not
detected or is occluded. In this situation, the updated head
pose relies only on the keypoint tracking by updating only
the prediction step at the Kalman filter with no correction
step. This means that the approach is able to estimate the
pose even when the face is not detected, though with a state
covariance increasing in every frame.

As soon as the face is detected again, the new measure-
ment is incorporated to correct the estimated pose. This step
is crucial for pose recovery, especially if the head had not
been detected for several frames. Moreover, as in this case
the predicted state covariance increases with every frame,
it’s weight will be relatively small in the correction step,
once a reliable global head pose is detected. Thus, the re-
covery will take place rapidly. We update the covariances
of the process noise and the measurement noise each frame,
depending on the current pose, to give more weight to the
detection scheme for (near) frontal head poses and to the
tracking scheme for extreme head poses.

4. Experiments and results

The performance of the proposed scheme has been as-
sessed using a publicly available database, to compare to

related works and with our own dataset, for testing extreme
head poses. We also investigated the contribution of each
pipeline in our HPE framework, by evaluating the perfor-
mance of each one by separate. The pipelines were imple-
mented in C++ and were tested using an Intel Core(TM)
i5-4210U processor.

4.1. Comparison with related methods

We evaluated our method using the Boston University
(BU) head tracking database [24]. This database is com-
posed of 45 video sequences under uniform illumination,
with 5 different subjects performing several head move-
ments. Ground truth was acquired using a magnetic tracker
attached to the users’ heads, with a nominal accuracy of 1.8
mm in translation and 0.5 degrees in rotation.

A comparison with relevant works in 2D input data is
reported in Table 1. We evaluated the accuracy of the es-
timated pose using three metrics: root mean square error
(RMSE), mean absolute error (MAE) and the standard de-
viation (STD). We reported also the average of the MAE for
each method. From the results, it can be noted that the ac-
curacy of the proposed approach is similar to other methods
of the state of the art. Only [20] presents a smaller average
error with a higher estimation rate.

In the last three rows of Table 1, we have compared the
angular accuracy of our approach with the individual HPE



Figure 5. HPE for extreme yaw rotation with keypoints (top), facial landmarks (center) and the fusion scheme (bottom).

PROCESS Time (ms)
Initial face detection 29.6
Initial HPE 1.9
Total 31.5
2D feature detection and matching 23.81
Estimation of 3D keypoints 0.13
HPE 0.93
Total 24.87

Table 2. Averaged runtime for 100 launches.

methods using keypoints or facial landmarks. The fused
method performs better in yaw and pitch angle estimation
than both individual methods. In the case of the roll angle,
the method is better than the keypoint-based approach, but
does not achieve the performance of the facial-landmark-
based approach. This result can be addressed to the fact
that in the case of pure ”roll” rotation facial landmarks are
visible constantly, leading to a high accuracy. But in other
motions with out-of-plane rotation, facial landmarks are not
stable and our fused approach outperforms it.

Most works do no report translation errors, since no cal-
ibration data is provided for the dataset. In our case, the
MAE in the translation for the X , Y and Z axes correspond
to 3.16, 1.64 and 1.17 respectively. For the HPE scheme
from facial landmarks, these errors are 4.42, 2.39 and 1.24,
while for the HPE scheme from keypoints, the errors are
3.25, 1.65 and 1.23, respectively, i.e., the results of the pro-
posed fused method are better than both individual methods.

Time consumption analysis. To account for real-time ca-
pabilities of our method, we evaluated the time consump-
tion for each step on the BU dataset (Table 2). The con-
sumption of others methods are shown on Table 1. Dur-
ing the experiments, the initialization step took around 31
FPS, while for the rest of the sequences the average was of
40 FPS. Comparing with related works, only [20] and [9]
could reach >40FPS, with estimation errors similar to the
proposed approach. In contrast to [20], no training with a
large dataset of high-resolution 3D face scans was needed.

4.2. Experiments with our own dataset

We evaluated the proposed approach using our own
dataset [14], which includes sequences with extreme head
rotations. This means that the rotation around the X or Y
axes (pitch and yaw) are higher than a threshold value (e.g.,
> 45 degrees).

Figure 5 shows some frames for a sequence with extreme
yaw rotations. Results from the keypoint-based, facial-
landmark-based and fusion approaches are shown on the
top, second and last row, respectively. The blue area cor-
responds to the projection of the head model onto the 2D
image, while the coordinate system depicting the estimated
pose is shown with the RGB arrows. For the keypoint-based
and fusion approaches, the projection of the EHM corre-
sponds to an elliptical surface, as detailed in Section 3.2.

It can be observed that the estimated pose from facial
landmarks is not consistent for extreme head rotations, al-
though it is precise for frontal faces. Furthermore, the pose
estimated from keypoints was continuous, but started drift-
ing after several frames. On the other hand, the pose esti-
mated from the fusion scheme enables the tracking of the
head correctly through the entire sequence, even when the
facial landmarks were self-occluded (2nd and 5th columns).

5. Conclusions

In this work, we presented a real-time approach for head
pose estimation, based on intensity images. The method re-
lies on facial landmarks detected in each frame and tracked
keypoints, to compute two independent pose estimations
that are later fused using a dedicated Kalman Filter. This
scheme contributes to improve the estimation step, by mak-
ing the method robust to extreme head rotation.

The experiments showed that our method has similar re-
sults to the state of the art, with an estimation rate of 40 FPS.
Future work includes the refinement of the 3D keypoints on
the geometric head model, to increase the accuracy of the
HPE for the tracking scheme. We are also interested in gaze
estimation from the detected head pose.
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