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Abstract

We propose a system for surface completion and inpaint-
ing of 3D shapes using denoising autoencoders with convo-
lutional layers, learnt on local patches. Our method uses
height map based local patches parameterized using 3D
mesh quadrangulation of the low resolution input shape.
This provides us sufficient amount of local 3D patch dataset
to learn deep generative Convolutional Neural Networks
(CNNs) for the task of repairing moderate sized holes. We
design generative networks specifically suited for the 3D
encoding following ideas from the recent progress in 2D in-
painting, and show our results to be better than the previ-
ous methods of surface inpainting that use linear dictionary.
We validate our method on both synthetic shapes and real
world scans.

1. Introduction

In recent years, Convolutional Neural Networks (CNNs)
have achieved the state of the art results for discrimina-
tive tasks in images, such as classification and recognition
[15, 10, 11, 27, 27]. More recently, they are also adapted for
generative tasks like image inpainting [21, 4, 23] and image
generation (DCGAN and its derivatives) [26, 17, 23]. How-
ever, applying the ideas from these powerful CNNs to 3D
shapes is not straightforward, as a common parameteriza-
tion of the 3D mesh has to be decided before the applica-
tion of the CNN. A simple way of such parameterization is
the voxel representation of the shape for the application of
3D CNN. For discriminative tasks, this generic representa-
tion of voxels performs very well [22, 39, 35, 3]. However
when this representation is used for global generative tasks,
the results are often blotchy, with spurious points floating as
noise [38, 8, 3]. The aforementioned methods reconstruct
the global outline of the shape impressively, but smaller
sharp features are lost - mostly due to the problem in the
voxel based representation and the nature of the problem
being solved, than the performance of the CNN.
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Figure 1: Summary of the inpainting framework. Convolu-
tional Denoising Autoencoder is trained on 3D the patches
generated from 3D shapes for the purpose of inpainting.
During testing (dashed line) the network is used to recon-
struct noisy patches generated in the noisy mesh.

In this paper we intend to reconstruct fine scale sur-
face details in a 3D shape using deep generative networks.
This problem is different from voxel based shape genera-
tion where the entire global shape is generated with the loss
of fine-scale accuracy. Instead, we intend to inpaint moder-
ate sized holes and damages in a shape, when it is already
possible to have a global outline of the noisy mesh being re-
constructed. Instead of the lossy voxel based global repre-
sentation, we use the parameterization by the mesh quadri-
angulation for getting the height map based local patches.
This can be seen as a fusion of the ideas of 2D generative
models and the processing of stable local patches obtained
by mesh quadriangulation [32].

The local patch computation procedure, which is de-
scribed in detail in Section 3.1, makes it possible to have
a large number overlapping patches of intermediate length
from a single mesh. These patches cover the surface vari-
ations of that mesh and are sufficient in amount to train a
deep CNN. At the same time due to the stable quad ori-
entations, they are sufficiently large to capture meaning-
ful surface details. This makes these patches suitable for
the application of repairing a damaged part in the same
mesh, while learning from its undamaged parts or some
other clean meshes. Because of the locality and the density
of the computed patches, we do not need a large database
of shapes to correct a damaged part or fill a moderate sized



hole in a mesh.
To the best of our knowledge, our paper is the first to

apply convolutional neural network models for represent-
ing fine-scale surface detail of arbitrary 3D shapes. In this
paper, we build a generative model as denoising convolu-
tion auto-encoder that is trained on 3D surface patches. Our
contributions are the following:

1. We propose a system for surface completion using de-
noising autoencoders with convolutional layers learnt
on local patches, and demonstrate that our results are
better than the state of the art on real world and syn-
thetic meshes with complex surface textures.

2. We extend the insights for designing CNN architec-
tures for 2D image inpainting to surface inpainting of
3D shapes. We provide analysis for their applicability
to shape denoising and inpainting.

3. We show that shallow network architectures are suffi-
cient to represent smaller patch sizes, thereby revealing
trade-offs for 3D shape processing.

2. Related Work
Generative learning models in images One of the earli-
est work on unsupervised feature learning are autoencoders
[13] which can be also seen as a generative network. A
slight variation, denoising autoencoders [36, 40], recon-
struct the image from local corruptions, and are used as a
tool for both unsupervised feature learning and the appli-
cation of noise removal. Our generative CNN model is, in
principle, a variant of denoising autoencoder, where we use
convolutional layers following the modern advances in the
field of CNNs. [21, 4, 23] uses similar network with con-
volutional layers for image inpainting. Generating natural
images from using a neural network has also been stud-
ied extensively - mostly after the introduction of Genera-
tive Adversarial Network (GAN) by Goodfellow [12] and
its successful implementation using convolutional layers in
DCGAN (Deep Convolutional GANs) [26]. As discussed in
Section 3.3, our networks for patch inpainting are inspired
from all the aforementioned ideas and are used to inpaint
height map based 3D patches instead of images.

Learning on 3D shapes For shapes of arbitrary topology,
existing learning architectures for deep neural networks on
2D images can be harnessed by using the projection of the
model into different perspectives [35, 33], or by using its
depth images [37]. 3D shapes are also converted into com-
mon global descriptors by voxel sampling. The availabil-
ity of large database of 3D shapes like ShapeNet [5] has
made possible to learn deep CNNs on such voxalized space
for the purpose of both discrimination [22, 39, 35, 3] and
shape generation [38, 8, 3]. Unfortunately, these methods
cannot preserve fine-scale surface detail, though they are
good for identifying global shape outline. More recently,

there has been serious effort to have alternative ways of ap-
plying CNNs in 3D data such as OctNet [29] and PointNet
[25]. OctNet system uses a compact version of voxel based
representation where only occupied grids are stored in an
octree instead of the entire voxel grid, and has similar com-
putational power as the voxel based CNNs. PointNet on the
other hand directly works on unstructured 3D points. Both
these networks have not been explored yet fully for their
generation properties (Eg. OctNetFusion [28]). They are
still in their core, systems for global representation and are
not targeted specifically for surfaces. In contrast, we learn
on the database of local patches in a shape or in a group of
shapes, for generating fine scaled surface details.

Patch based methods in computer vision 2D patch
based methods have been very popular in the topic of im-
age denoising. These non local algorithms can be cate-
gorised into dictionary based [1, 20, 19] and BM3D (Block-
matching and 3D filtering) based [6, 7, 16] methods. In the
case of 3D data, once the 3D patches are computed (which
is a difficult problem by itself), they can be processed just as
similar to that in 2D domain using dictionary based meth-
ods (Eg. [32] for inpainting) and BM3D based methods (Eg.
[30] for denoising). We use non linear deep CNNs in this
paper and compared our results with the dictionary based
inpainting method of [32].

General 3D surface inpainting Earlier methods for 3D
surface inpainting used extensive geometric properties [18,
2]. More recently, Sahay et al. [31] inpaint the holes in a
shape by pre-registering it to a self-similar proxy model in a
dataset, that broadly resembles the shape. The holes are in-
painted using a patch-dictionary. Zhong et al. [41] propose
an alternative learning approach by applying sparsity on the
Laplacian Eigenbasis of the shape. [32] used the idea of
surface inpainting using local patches based on quadriangu-
lation of its low resolution mesh, followed by a sparse linear
combination of learned dictionary atoms. In this work we
learn a non linear deep generative network for the task of
inpainting and show our results to be better than them.

3. Approach

Given a set of 3D meshes, we first decompose them
into local rectangular patches. Using this large database of
3D patches, we learn a generative model to reconstruct de-
noised version of input 3D patches. We use different vari-
ations of Denoising Autoencoders as our generative model
whose details are explained Section 3.2. Local patch com-
putation from a shape is explained in the following section
of 3.1, where we use the orientation from mesh quadrian-
gulation for the reference frames. The overall approach for
training is presented in Figure 1.



3.1. 3D local patches

Given a mesh M = {F, V } depicting a 3D shape and
the input parameters - patch radius r and grid resolution N ,
our aim is to decompose it into a set of fixed length local
patches {Ps}, along with the settings S = {(s, Ts)}, Conn
having information on the location (by s), orientation (by
the transformation Ts) of each patch and vertex connectivity
(by Conn) for reconstructing back the original shape.

To compute uniform length patches, a point cloud C
is computed by dense uniform sampling of points in M.
Given a seed point s on the model surface C, a reference
frame Fs corresponding to a transformation matrix Ts at s,
and an input patch-radius r, we consider all the points in
the r-neighbourhood, Ps. Each point p in Ps is represented
with respect to the local coordinate system of Fs with the
transformation Ts given by ps = Tsp.

An N × N square grid of length
√
2r and is placed on

the X-Y plane of Fs, and points in PFs are sampled over
the grid wrt their X-Y coordinates. Each sampled point is
then represented by its ‘height’ from the square grid, which
is its Z coordinate to finally get a height-map representation
of size N2 (Figure 2). Thus, each patch around a point s is
defined by a fixed size vector Ps of size N2 and a transfor-
mation Ts.

Mesh reconstruction To reconstruct a connected mesh
from patch set we need to store connectivity information
Conn. This can be achieved by keeping track of the exact
patch-bin (Ps, i) a vertex vj ∈ V in the input mesh corre-
sponds (would get sampled during the patch computation)
by the mapping {(j, {(Ps, i)})}.

Therefore, given patch set {Ps} along with the settings
S = {(s, Ts)}, Conn with Conn = {(j, {(Ps, i)})}, F it
is possible to reconstruct back the original shape with the
accuracy upto the sampling length. For each patch Ps, for
each bin i, the height map representation Ps[i], is first con-
verted to the XYZ coordinates in its reference frame, ps,
and then to the global coordinates p′, by p′ = T−1s ps. Then
the estimate of each vertex index j, vj ∈ V is given by the
set of vertices {ve}. The final value of vertex v′m is taken as
the mean of {ve}. The reconstructed mesh is then given by
{{v′j}, F}.

Reference frames from quad mesh Following [32] we
choose the orientation of reference frames for our patch
computation from quads of the quad-mesh generated from
the low resolution input mesh. This gives us stable refer-
ence frames enabling us to compute patches of moderate
length away from corners and ‘bad regions’.

Given a meshM, we obtain low-resolution representa-
tion by Laplacian smoothing [34]. Given the smooth coarse
mesh, the quad mesh MQ is extracted following Jakob et
al.[14]. At this step, the quad length is specified in propor-
tion to the final patch length and hence the scale of the patch

Figure 2: (Left) Patch representation - Points are sampled
as a height map over the planer grid of a reference frame at
the seed point. (Right) Patches computed at multiple offset
from the quad centres to simulate dense sampling of patches
while keeping the stable quad orientation. The black con-
nected square represents the quad in a quad mesh and the
dotted squares represents the patches that are computed at
different offset.

computation. For each quad q in the quad mesh, its center
and 4 ∗ k offsets are considered as seed points, where k is
the overlap level (Figure 2 (Right)). These offsets simulate
dense or overlapping patch decomposition to capture more
variations for the learning algorithms. For all these seed
points, the reference frames are taken from the orientation
of the quad q. Steps 1 provides a summary of the patch
computation method.

Steps 1 3D Patch computation based on quad mesh

Input: Mesh - M , Patch radius - r, resolution - N
1: Compute quad mesh of the smoothened M using [14].
2: Densely sample points in M to get the cloud C.
3: At each quad center, compute r-neighborhood in C and

orient using the quad orientation to get local patches.
4: Sample the local patches in a (N ×N ) square grid in a

height map based representation.
5: Store the vertex connections (details in the text).

Output: Patch set {Ps} of (N × N ) dimension, orienta-
tions, vertex connections.

3.2. Denoising Autoencoders for 3D patches

We use Convolutional Denoising Autoencoders for in-
painting patches with missing data. Autoencoders are gen-
erative networks which try to reconstruct the input. A De-
noising Autoencoder reconstructs the de-noised version of
the noisy input, and is one of the most well known method
for image restoration and unsupervised feature learning
[40]. We use denoising autoencoder architecture with con-
volutional layers following the success of general deep con-
volutional neural networks (CNN) in images classification
and generation. Instead of images, we use the 3D patches
generated from different shapes as input, and show that this
height map based representation can be successfully used in
CNN for geometry restoration and surface inpainting.

Following typical denoising autoencoders, our network
has two parts - an encoder and a decoder. An encoder takes
a 3D patch with missing data as input and and produces
a latent feature representation of that image. The decoder
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Figure 3: (Left) - Summary of our network architecture showing the building blocks. Dashed lines and blocks are optional
parts depending on the network as described in the table on the right. Conv, FCs and TConv denote Convolution, Fully
Connected and Transposed Convolution layers respectively. (Right) - The detailed description of the different networks
used. Each column represents a network where the input is processed from top to bottom. The block represents the kernel
size, number of filters or output channels and optional strides when it differs from (1, 1). The network complexity in terms of
computation and parameters increases from left to right except for 6x 128 FC, which has the maximum number of parameters
because of the presence of the FC layer. Other details are provided in Section 3.3.

takes this feature representation and reconstructs the origi-
nal patch with missing content. The encoder contains a se-
quence of convolutional layers which reduces the spatial di-
mension of the output as we go forward the network. There-
fore, this part can be also called downsampling part. This
follows by an optional fully connected layer completing the
encoding part of the network. The decoding part consists
fractionally strided convolution (or transposed convolution)
layers which increase the spatial dimension back to the orig-
inal patch size and hence can also be called as upsampling.
The general design is shown in Figure 3 (Left).

3.3. Network design choices

Our denoising autoencoder should be designed to meet
the need of the patch encoding. The common design
choices are presented in Figure 3 and are discussed in the
following paragraphs in details.

Pooling vs strides Following the approach of powerful
generative models like Deep Convolutional Generative Ad-
versarial Network (DCGAN) [26], we use strided convolu-
tions for downsampling and strided transposed convolutions
for upsampling and do not use any pooling layers. For small
networks its effect is insignificant, but for large network the
strided version performs better.

Patch dimension We computed patches at the resolution
of 16 × 16, 24 × 24 and 100 × 100 with the same patch ra-
dius (providing patches at the same scale) in our 3D models.

Patches with high resolution capture more details than the
low resolution counterpart. But, reconstructing higher di-
mension images is also difficult by a neural network. This
causes a trade-off which needs to be considered. Also
higher resolution requires a bigger network to capture intri-
cate details which is discussed in the following paragraphs.
For lower dimensions (24 × 24 input), we used two down-
sampling blocks followed by two up-sampling blocks. We
call this network small 4x as described in Figure 3, which
already performed better than the linear dictionary based
method in [32]. Other than this, all the considered net-
work take an input of 100 × 100 dimensions. The sim-
plest ones corresponding to 3 encoder and decoder blocks
are multi 6x and 6x 128.

Kernal size Convolutional kernel of large size tends to
perform better than lower ones for image inpainting. [21]
found a filter size of (5× 5) to (7× 7) to be the optimal and
going higher degrades the quality. Following this intuition
and the general network of DCGAN [26], we use filter size
of (5 × 5) in all the experiments.

FC latent layer A fully connected (FC) layer can be
present in the end of encoder part. If not, the propagation
of information from one corner of the feature map to other
is not possible. However, adding FC layer where the latent
feature dimension from the convolutional layer is already
high, will cause explosion in the number of parameters. It is
to be noted that for inpainting, we want to retain as much of



information as possible, unlike simple Autoencoders where
the latent layer is often small for compact feature represen-
tation and dimension reduction. We use a network with FC
layer, 6x 128 FC with 4096 units for 100 × 100 feature in-
put. Note that all though the number of output neurons in
this FC layer can be considered to be large (in comparison
to classical CNNs for classification), the output dimension
is less than the input dimensions which causes some loss in
information for generative tasks such as inpainting.

Symmetrical skip connections For deep network, sym-
metrical skip connections have shown to perform better for
the task of inpainting of images [21]. The idea is to pro-
vide short-cut (addition followed by Relu activation) from
the convolutional feature maps to their mirrored transposed-
convolution layers in a symmetrical encoding-decoding net-
work. This is particularly helpful with a network with a
large depth. In our experiments, we consider a deep net-
work of 12 layers with skip connections long 12x SC and
compare with its non connected counter part long 12x. All
the networks are summarized in Figure 3.

3.4. Inpainting pipeline and training details

3D patches can be straightforwardly extended to images
with 1 channel. Instead of pixel value we have height at a
perticular 2D bin which can be negative. Depending on the
scale the patches are computed, this height can be depen-
dent on the 3D shape it is computed. Therefore, we need to
perform dataset normalization before training and testing.

Patch normalization We normalize patch set between 0
and 0.83 (= 1/1.2) before training and assign the missing
region or hole-masks as 1. This makes the network easily
identify the holes during the training - as the training proce-
dure is technically a blind inpainting method. We manually
found that, the network has difficulty in reconstructing fine
scaled details when this threshold is lowered further (Eg.
1/1.5). The main idea here is to let the network easily iden-
tify the missing regions without sacrificing a big part of the
input spectrum.

Training We train on the densely overlapped clean
patches computed on a set of clean meshes. Square and cir-
cular hole-masks of length 0 to 0.8 times the patch length
are created randomly on the fly at random locations on the
patches with a uniform probability and is passed through
the denoising network during the training. The output of
the network is matched against the original patches without
holes with a soft binary cross entropy loss between 0 and 1.
Note that this training scheme is aimed to reconstruct holes
less than 0.8 times the patch length. The use of patches
of moderate length computed on quad orientations, enables
this method to inpaint holes of small to moderate size.

Testing or inpainting Testing consists of inpainting holes
in a given 3D mesh. This involves patch computation in the

[32] Ours
Meshes [18] (Local Dictionary) small 4x

Supernova 0.001646 0.000499 0.000415
Terrex 0.001258 0.000595 0.000509
Wander 0.002214 0.000948 0.000766
LeatherShoe 0.000854 0.000569 0.000512
Brain 0.002273 0.000646 0.000457

Table 1: Mean inpainting error of hole size 0.015, 0.025 and
0.035 for high texture dataset which uses Local patches gen-
erated on the same clean mesh of the corresponding shape.
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Figure 4: (Left) Qualitative result of inpainting on a sin-
gle mesh with an overlap factor of k = 7. (Right) Mean
inpainting error for high texture meshes wrt the number of
parameters in the CNN. Inpainting error decreases with the
increase in the network depth, saturates at one time, and
performs worse if increased further. Presence of symmet-
rical skip connections decreases the error further providing
its importance to train longer networks.

noisy mesh, patch inpainting through CNN, and the recon-
struction of the final mesh. For a 3D mesh with holes, the
regions to be inpainted are completely empty and have no
edge connectivity and vertices information. Thus, to estab-
lish the final interior mesh connectivity after CNN based
patch reconstruction, there has to be a way of inserting ver-
tices and performing triangulation. We use an existing pop-
ular [18], for this purpose of hole triangulation to get a con-
nected hole filled mesh based on local geometry. This hole-
triangulated mesh is also used for quad mesh computation
on the mesh with holes. This is important as quad mesh
computation is affected by the presence of holes.

4. Experimental results
4.1. General hole filling settings

We use both Type 1 and Type 2 dataset of [32] for eval-
uating our CNN based hole filling method. We mainly fo-
cus on the latter which consists of real world scans of shoe
soles (Supernova, Terrex, Wander, LeatherShoe) and human
brain (Brain), as it provides complicated surface details to
accurately evaluate the inpainting method. We call it high-
texture dataset in this work.

Patch computation For performing any computation on
the local patches, the scale or the patch length at which
training and testing tasks are carried, needs to be defined.
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Figure 5: Qualitative result of our inpainting method with different patches of dimension 100 × 100 (24 × 24 for small 4x)
with global networks. Patches are taken at random from the test set of meshes of shoe soles and brain, and random masks of
variable size, shown in cyan (light blue), are chosen for the task of inpainting. Results of the inpainted patches with different
network architectures are shown in the bottom rows.

Meshes [18] [32] small 4x multi 6x 6x 128 6x 128 FC long 12x long 12x SC

Supernova 0.001646 0.000524 0.000427 0.000175 0.000173 0.000291 0.000185 0.000162
Terrex 0.001258 0.000575 0.000591 0.000373 0.000371 0.000488 0.000395 0.000369
Wander 0.002214 0.000901 0.000894 0.000631 0.000628 0.001033 0.000694 0.000616
LeatherShoe 0.000854 0.000532 0.000570 0.000421 0.000412 0.000525 0.000451 0.000407
Brain 0.002273 0.000587 0.000436 0.000166 0.000171 0.000756 0.000299 0.000165

Table 2: Mean inpainting error for our dataset of shoe soles of hole size 0.015, 0.025 and 0.035 with a single CNN of
different architecture and its comparison to the global dictionary based method of [32]. As expected, the error decreases with
the increase in the complexity (network length, skip connections, etc).

We put each mesh into a unit cube for normalization to work
with a common patch length among all meshes. After nor-
malization, we obtain the low resolution mesh by applying
Laplacian smoothing with 30 iterations, which we manually
found to provide smooth mesh having good shape outline
and not much shrinking. We then perform the automatic
quadiangulation procedure of [9] on the smooth mesh, with
the targeted number of faces such that, it results an aver-
age quad length of 0.06 for the high texture dataset; which
in turn is used as the patch length. We then generated 3D
patches from each of the clean meshes using the procedure
provided in Section 3.1. Except stated otherwise, we used
the offset factor of k = 4 (or 16 overlapping patches per
quad orientation), giving us a dense set of patches from a
single mesh. We chose N , to be 24 and 100 (for 24 × 24
and 100× 100 patch dimensions respectively) following the
discussion in Section 3.3.

Training and Testing We train different CNNs from the
clean meshes as described in the following sections. For
testing or hole filling, we systematically punched holes of
different size (limiting to the patch length) uniform distance
apart in the models of our dataset to create noisy test dataset.
The holes are triangulated to get connectivity as described
in the Section 3.4. Finally, noisy patches are generated on
a different set of quad-mesh (Reference frames) computed

on the hole triangulated mesh, so that we are use a different
set of patches during the testing. More on the generalising
capability of the CNNs are discussed in the Section 4.4.

Comparison algorithms and techniques We compared
our method to other general inpainting method capable of
filling moderately sized holes without prior constraints like
pre registrations, self similarity models etc. We used [18] -
the popular hole filling algorithm which uses local geome-
try, and [32] - which uses a dictionary based approach for
performing inpainting on local patches.

4.2. Hole filling on a single mesh

As explained before, our 3D patches from a single mesh
are sufficient in amount to train a deep CNN for that mesh.
Table 1 shows the result of hole filling using our smallest
network - small 4x in terms of mean of the Cloud-to-Mesh
error of the inpainted vertices and its comparison with [18]
and [32]. We learn one CNN per mesh on the patches in
the clean input mesh, and tested in hole data as explained in
the above section. As seen, our smallest network beats the
result of linear approach of surface inpainting.

We also train a long network long 12x SC (our best per-
forming global network) with an offset factor of k = 7,
giving us a total of 28 overlapping patches per quad loca-
tion for the model Supernova and we show the qualitative



Holes GT [18] [32] small 4x long 12x SC

Figure 6: (Left) Qualitative results of hole filling on the mesh Supernova with a hole radius of 0.025. (Right) Example of
the quad mesh used in training (Left) and testing (Right) for the mesh Totem. Best viewed when zoomed digitally. Enlarged
version and more results are provided in the supplementary material.

result in Figure 4 (Left). The figure verifies qualitatively,
that with enough number of dense overlapping patches and
a more complete CNN architecture, our method is able to
inpaint surfaces with a very high accuracy.

4.3. Global Denoising Autoencoder

Even though the input to the CNN are local patches, we
can still create a single CNN designed for repairing a set
of meshes, if the set of meshes are pooled from a similar
domain. But to incorporate more variations in between the
meshes in the set, the network needs to be well designed.
We therefore incorporate all the careful design choices in
the Section 3.3 for creating global CNNs for the purpose
of inpainting different meshes in similar domain. The ob-
jective of these experiments are 1) to show how ideas taken
from CNN based generation of 2D images can be incor-
porated to inpaint 3D local patches, and hence 3D meshes
2) to evaluate different denoising autoencoders ideas for in-
painting in the context of height map based 3D patches 3) to
show how to design a single denoising autoencoder for in-
painting meshes from similar domain or inpainting meshes
across a varied domain, when the number of meshes is not
too high. We, however, do not claim that this procedure
makes it possible to have a single CNN capable of learn-
ing and inpainting across a large number of meshes (say all
meshes in ShapeNet), nor is this our intention.

Figure 5 provides the qualitative results for different net-
works showing the reconstructed patches from the masked
incomplete patches. The results shows that the quality of
the reconstruction increases with the increase in the network
complexity. In terms of capturing overall details the net-
work with FC layer seems to reconstruct the patches close
to the original, but with the lack of contrast. This gets shown
in the quantitative results where it is seen that the network
with FC performs worse than most of networks. The quan-
titative results are shown in Table 1. The best result qual-
itatively and quantitatively is shown by long 12x SC - the
longest network with symmetrical skip connections. Figure
4 (Right) provides more insights on the importance of the
skip connections. Visualizations of the reconstructed hole
filled mesh are provided in Figure 6 (Left).

[18] [32] * Ours global
(Global Dictionary) small 4x

Milk-bottle 0.000327 0.000123 0.000187
Baseball 0.000158 0.000168 0.000138
Totem 0.001065 0.001052 0.001406
Bunny 0.000551 0.000569 0.000644
Fandisk 0.001667 0.000634 0.000855

Table 3: Mean inpainting error of hole size 0.01, 0.02 and
0.03 for common mesh dataset. For each mesh we use a
global CNN (small 4x) trained on the local patches of all
the meshes except itself.
* [32] in this experiment uses patches from the entire dataset in-
cluding the testing mesh but at different location.

4.4. Generalisation capability

We perform experiments to see how the inpainting
method can be generalized among different shapes and use
Type 1 dataset of [32] consisting of general shapes like
Bunny, Fandisk, Totem, etc. These meshes do not have
high amount of specific surface patterns. Table 3 shows the
quantitative result for the network small 4x to inpaint the
meshes trained on patches of other meshes. It is seen that
if the shape being inpainted does not have too much char-
acteristic surface texture, the inpainting method generalizes
well. Thus, it can be concluded that our system is a valid
system for inpainting simple and standard surface meshes
(Eg. Bunny, Milk-bottle, Fandisk etc).

However for complicated and characteristic surfaces
(Eg. Totem or shoe dataset), we need to learn on the sur-
face itself, because of the inherent nature of the input to our
CNN - local patches (instead of global features which takes
an entire mesh as an input) that are supposed to capture sur-
face details of its own mesh. Evaluating the generalizing
capability of such a system requires patch computation on
different locations between the training and testing set, in-
stead of different mesh altogether. As explained before, in
all our inpainting experiments, we explicitly made sure that
the patches during the testing do not belong to training by
manually computing a different set of quad mesh (Refer-
ence frames) for the hole triangulated mesh. To absolutely
make sure the testing is done in a different set of patches,
we manually tuned different parameters in [9] for quadrian-
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Figure 7: (a) Scanned mesh of Stone Wall [42] which has
two sides of similar nature shown in the top. The CNN
6x 128 was trained on the patches generated on one side
(Top Left) to recover the missing details on the other side
(Top Right) whose result is shown in the bottom. (b) Fail-
ure cases -(Left) - bad or invalid patches (point cloud with
RF at the top, and its corresponding broken and invalid sur-
face representation at the bottom) at complicated areas of a
mesh. (Right) Three failure case scenarios of the CNN.

gulation. One example of such pair of quad meshes of the
mesh Totem are shown in Figure 6 (Right).

The generalization capability can also be tested across
the surfaces that are similar in nature, but from a different
sample. The mesh Stone Wall from [42] provides a good
example of such data, which has two different sides of the
wall of similar nature. We fill holes on one side by train-
ing CNN on the other side and show the qualitative result
in Figure 7a. This verifies the fact that the CNN seems to
generalize well for reconstructing unseen patches.

Discussion on texture synthesis We add a small discus-
sion on the topic of texture synthesis as a good part of our
evaluation is focused on a dataset of meshes high in tex-
tures. As stated in the related work, both dictionary [1]
based and BM3D [6] based algorithms are well known to
work with textures in terms of denoising 2D images. Both
approaches have been extended to work with denoising 3D
surfaces. Because of the presence of patch matching step
in BM3D (patches are matched and kept in a block if they
are similar), it is not simple to extend it for the task of 3D
inpainting with moderate sized holes, as a good matching
technique has to be proposed for incomplete patches. It-
erative Closest Point (ICP) is a promising means of such
grouping as used by [30] for extending BM3D for 3D point
cloud denoising. Since the contribution in [30] is limited
for denoising surfaces, we could not compare our results
with it - as further extending [30] for inpainting is not triv-
ial and requires further investigation. Instead we compared
our results with the dictionary based inpainting algorithm
proposed in [32].

Inpainting repeating structure is well studied in [24]. Be-
cause of the lack of their code and unavailability of results
on a standard meshes, we could not compare our results to
them. We also do not claim our method to be superior to

them in high texture scenario, though we show high quality
result with indistinguishable inpainted region for one of the
meshes in Figure 4 (Left) using a deep network. However,
we do claim our method to be more general, and to work
in cases with shapes with no explicit repeating patterns (Eg.
Type 1 dataset) which is not possible with [24].

4.5. Limitation and failure cases
General limitations - The quad mesh on the low resolu-
tion mesh provides a good way of achieving stable orienta-
tions for computing moderate length patch in 3D surfaces.
However, on highly complicated areas such as joints, and
a large patch length, the height map based patch descrip-
tion becomes invalid due to multiple overlapping surfaces
on the reference quad as shown in Figure 7b (left). Also,
the method in general does not work with full shape com-
pletion where the entire global outline has to be predicted.
Generative network failure cases - It is observed that small
sized missing regions are reconstructed accurately by our
long generative networks. Failure cases arise when the
missing region is large. In the first case the network re-
constructs the region according to the patch context slightly
different than the ground truth (Figure 7b-A). The second
case is similar to the first case where the network misses
fine details in the missing region, but still reconstructs well
according to the other dominant features. The third case,
which is often seen in the network with FC, is the lack of
contrast in the final reconstruction (Figure 7b-C). Failure
cases for smaller networks can be seen in Figure 5.

5. Conclusion
We proposed in this paper our a first attempt at using

CNNs on 3D shapes with a representation and parameter-
ization other than voxel grid or 2D projections. With this,
we identified an important direction of future work - explo-
ration of the application of CNNs in 3D shapes in a param-
eterization different from the generic voxel representation.
The newly introduced systems such as OctNet and PointNet
provide other directions of such application. One promising
direction is to explore the generative properties of these sys-
tems, as they are not yet well studied. A possible reason is
the difference in the upsampling or decoding part on such a
design as compared to the normal grid based CNNs.

In continuation of this particular work, we would like to
extend the local quad based representation to global shape
representation which uses mesh quadriangulation, as it in-
herently provides a grid like structure required for the appli-
cation of convolutional layers. This, we hope, will provide
an alternative way of 3D shape processing in the future, to
other methods such as OctNet and PointNet.
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