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ABSTRACT  
In the highly active research field of Simultaneous Localization 
And Mapping (SLAM), RGB-D images have been a major interest 
to use. Real-time SLAM for RGB-D images is of great importance 
since dense methods using all the depth and intensity values 
showed superior performance in the past. Due to development of 
GPU and CPU technologies, the real-time implementation of the 
mentioned algorithms is no longer an impassable problem. In this 
paper, we present an acceleration approach for the DNA-SLAM 
algorithm. We argue some possible challenges while converting the 
CPU implemented algorithm to the GPU. Finally, runtime 
evaluation and improvements are shown on the public CoRBS 
dataset. 
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• Computing methodologies ~Motion capture  
• Computing methodologies ~Vision for robotics  
• Computing methodologies ~Parallel programming languages 
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1. INTRODUCTION 
Many Robotics and Computer Vision applications include 
navigation and mapping, which needs to be performed in real-time. 
Visual Simultaneous Localization And Mapping (SLAM) is the 
problem of finding the location of the camera and simultaneously 
creating a map of the environment, using only the information of 
the captured images.  
Proposed approaches for this purpose can be dichotomized into a 
sparse and dense category. The former methods rely on the 
extraction and matching of sparse visual feature points while the 

latter category are dense, performing pixel-wise minimization of 
photometric and/or geometric constraints for all intensity and depth 
pixels.  
While real-time sparse SLAM (as in [27]) and offline dense SLAM 
(like in [30]) are quite mature, recently real-time depth mapping 
(e.g. the works in [12], [13] and [24]) and visual odometry, the 
problem of tracking the pose of the camera/robot (e.g. proposed 
methods in [4], [9] and [28]) have become conceivable. There are 
two important enabler and impetuses. The first is the opening up of 
graphics processing units for general purpose computing and the 
second is the advent of affordable RGB-D sensors. 

One of the parallel computing platforms, which are often utilized 
for dense SLAM methods are General-Purpose computing on 
Graphics Processing Units (GPGPUs). In order to perform high 
speed and often real-time processing on full-resolution images for 
every frame, they actuate the enormous parallelism in graphic 
cards. GPU-based programming, as an affordable and attainable 
technology, has indisputable empowering role in recent dense 
SLAM research [22]. 

Another above mentioned catalyst is the release of cheap RGB-D 
sensors. They are capable of capturing RGB-D images containing 
a synchronous color image and depth image. These cameras have 
been widely applied and their release has resulted in great progress 
in odometry and dense mapping in recent years [23].  

The two common approaches for measuring depth data are Pattern 
Projection and Time-of-Flight (ToF). Cameras with Pattern 
Projection, such as Microsoft Kinect v1, Asus Xtion Pro, project a 
known pattern into the scene and estimate the depth out of the 
distortion of the pattern. Recently, ToF cameras, such as Microsoft 
Kinect v2 [14] or Google Tango [15], resolve distance by 
estimating the time emitted light takes from the camera to the 
subject and back for each pixel in the image.  

Indeed, the new Kinect v2 device is used more in many recent and 
future research since they claim a higher accuracy in general and 
there are publicly available datasets like CoRBS [2] using this 
device. In addition, a rigorous evaluation and comparison of the 
depth images of Kinect v1 and Kinect v2 is available in [3], 
providing the basis for modeling the errors of the mentioned 
devices. ToF cameras have a noise characteristic [3], which sources 
are dark and glossy scenes, colors, large scene distances, pixels 
close to the image boundaries, flying pixels close to depth 
discontinuities, etc. In some experiments with ToF cameras by [1], 
it was detected that the geometric consistency assumption for dense 
motion estimation is often violated due to the sensor noise, leading 
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to inaccurate trajectories. Thus, Wasenmüller et al. proposed a 
Dense Noise Aware SLAM (DNA-SLAM) to address this problem 
by a sophisticated weighting scheme. 

In this paper, we present a GPU-based extension for DNA-SLAM 
to accelerate this algorithm. First, we review number of 
publications that have been released over the last few years for real-
time RGB-D SLAM. Then, after explaining DNA-SLAM 
approach, we argue some possible challenges while converting the 
CPU implemented program to the GPU. Finally, runtime evaluation 
on the public CoRBS dataset using Kinect v2 (ToF) is provided 
showing improved results. 
 

2. RELATED WORK 
In this section, we review numerous works on real-time RGB-D 
SLAM, according to the categories mentioned in the introduction. 
First, we will discuss CPU-based and then GPU-based 
implementations. 

There are publications on SLAM that only take the advantages of 
RGB-D images to be executed in real-time and use CPU 
implementation. Among sparse methods, the approach of 
Engelhard et al. [17] can be mentioned, in which they use SURF 
features for point-wise correspondence and in next step, estimate 
the position by RANSAC and finally use ICP and pose graph solver 
respectively for refinement and optimization of the pose.  

Regarding dense methods, two main primitive works are 
Steinbrücker et al. [4] and Audras et al. [18] which minimize the 
photometric error between consecutive RGB-D frames and perform 
in real-time. Following, Kerl et al. [6] extend their approach by 
weighting photometric errors according to the t-distribution and 
published as the well-known DVO algorithm. Wasenmüller et al. 
[1] extended this concept to the noise characteristic of ToF cameras. 
Klose et al. [19] present a motion estimation approach based on 
second-order minimization that performs in real-time. Furthermore, 
evaluation and comparison over the algorithms, which minimize 
photometric errors, is available in [19] and provides a 
categorization of them. Ma et al. [25] as a dense method, used 
frame-to-plane alignment beside frame-to-keyframe approach for 
tracking, in order to reduce drifts and still performs in real-time. 

On the other hand, some proposed works use both catalysts, i.e.  
they are GPU-based RGB-D SLAM.  Lee et al. [16] present a 
sparse solution that achieves odometry by feature extraction and 
RANSAC and subsequently optimize the estimation with ICP. In 
order to accelerate the execution time, they compute feature 
extraction and ICP step in parallel.  

As one of the basic work on dense methods can refer to 
KinectFusion by Newcombe et al. [13], which is extended in 
numerous publications. Kintinuous by Whelan et al. [11], 
developed KinectFusion using camera odometry estimation method 
and also creating a high-quality map. Then, in [10] they proposed a 
GPU-based implementation of visual odometry algorithm that 
provides real-time operation of their earlier work Kintinuous. Roth 
et al. [29] also expand KinectFusion, in order to enabling camera to 
roam freely in mobile robotics and similar applications. As more 
example of GPU-based dense RGB-D SLAM, we can mention 
ElasticFusion by Whelan et al. [31]. They used dense frame-to-
model for odometry and windowed surfel-based fusion with model 
refinement. 
To sum up, in the ideal case, the solutions should perform in real-
time with high accuracy but there is almost always a tradeoff 
between accuracy and execution time. In contrast to all related 

works, there is still lack of a real-time method to deal with noise 
characteristic of Time-of-Flight cameras with high accuracy. To 
fulfill this purpose, in this paper, we accelerate DNA-SLAM [1], 
the noise aware approach which especially designed for ToF RGB-
D cameras. Details and the results are discussed in the following. 
3. BACKGROUND 
In this section, we explain two specified components of this paper 
including the original DNA-SLAM algorithm [1] and CUDA 
programming. 

3.1 DNA-SLAM 
Dense Noise Aware SLAM (DNA-SLAM) [1], performs a 
weighting approach to specifically address noise characteristics of 
ToF RGB-D cameras. The basic idea behind this work is computing 
an individual weight for each single pixel based on its reliability in 
dense motion estimation. The camera motion is estimated 
according to the photometric and geometric consistency 
assumptions, following the state-of-the-art works [5], [10] and [21]. 
By experiments on ToF RGB-D images, Wasenmüller et al. [1] 
found a violation on geometry consistency assumption for many 
pixels in ToF cameras leading to inaccuracies in motion estimation. 
In their experiments they detected that the local depth derivative is 
a good indicator for the location and magnitude of the violation. 
Thus, they transform the derivative together with the photometric 
and geometric residual into a sophisticated weighting function. In 
the same concept with [4], [6] and [21] papers, the equation for 
estimating camera motion 𝜉, using minimization of the residuals ri 
for entire n pixels is 
 

              2  min ( )( ( ))
n

i i
i

arg w r r
ξ

ξ ξ= ∑ , (1) 

 

where w is the mentioned weight that is assumed as t-distribution 
of the derivative residuals in computation. 

A detailed discussion about preliminaries and how to solve this 
minimization equation is provided in original paper [1]. An 
overview of the algorithm is depicted in Figure 1: after pre-
processing step on RGB-D input images, camera motion estimation 

 
Figure 1.  Overview of DNA-SLAM algorithm [1]. After 

preprocessing step, iterative motion estimation is performed 
on RGB-D pairs. Detail is described in the DNA-SLAM 

algorithm section. 



is computed with four serial tasks, consisting of compute residuals, 
compute weight, compute scale and solve equation system 
respectively, in two loops. 
The external loop contains building pyramid representation of the 
image in order to utilize coarse-to-fine strategy for ensuring small 
camera motions. As demonstrated in Figure 2., in this process they 
used four levels of pyramid, which RGB and depth image pairs (Ii, 
Di) are subsampled by halving the RGB-D pairs resolution. The 
camera motion estimation starts in the coarsest level first and is then 
used as an initialization to finer levels. 

The inter-loop is composed of the above mentioned tasks to 
perform iterative re-weighted least square in order to solve the basic 
motion estimation formula in Equation 1. They worked in the same 
concept of the state-of-the-art algorithms [6], [25] and [26] and 
minimize the photometric and geometric error, which is defined in 
the residuals. Residuals are used for both weighting and motion 
estimation purpose. Detailed information on residual definition can 
be referred to the original paper. 
Compared to state-of-the-art algorithms, while DNA-SLAM is 
applicable with Kinect v1 datasets, shows superior accuracy on ToF 
cameras like Kinect v2, drifts are reduced and results are closer to 
ground truth. But, in order to gain around 100ms execution time for 
performing motion estimation in real-time, requires an 
acceleration. 

3.2 CUDA Programming 
Compute Unified Device Architecture (CUDA) is a parallel 
computing technology and API model, released in 2006 by 
NVIDIA. This platform provides ease of programming on 
Graphical Processing Units (GPUs), and numerous CUDA 
accelerated libraries are available for wide range of Computer 
Vision applications. 

Every CUDA program is performed in a general procedure. After 
allocating space in device memory, first, required data should be 
transformed from Host memory to GPU global memory. Next, 
CPU instructs the process to GPU. Then, GPU execute parallel in 
each core. And finally, results should be transformed back from 
GPU memory to Host memory and free the allocated memory 
space. So all GPU-based applications, also use the CPU for 
performing subsidiary tasks include initializations, launching the 
kernels and post-processing. 
Fundamental building block of a parallel program is consisting of 
threads. We usually need thousands of concurrent threads to gain 

the best possible performance on a device, so, for better data 
association, threads are grouped into blocks. Aggregation of blocks 
form grids, which same blocks in a grid contain the same number 
of threads. To prevent poor memory management, the suitable 
number of threads per block that determine the number of blocks 
and grids, is of great importance based on length of data [9]. 

Other important preliminary aspect in CUDA programming is to be 
familiar with different memory systems within the GPU, because 
memory throughput can generally dominate the program 
performance. In fact, perception above three class of storage consist 
of registers, global memory and shared memory, result in 
maximum utilization of each type [9]. 

Since the GPU has its own challenges, the optimum GPU-based 
algorithm, is not necessarily the best in the CPU and vice versa. So, 
there are different standard patterns for parallel algorithms, which 
imply on the access pattern of reading and writing from/on memory 
locations. The patterns include Map, Reduce, Gather, Scatter, Scan, 
Search and Sort. 
We introduce three related patterns here. Map convey the scheme 
of pattern, in which a function should be applied on a data array. 
This pattern is straightforward in implementation; each thread 
operates on an indexed data of array with no collision in parallel. 
Reading multiple data items to a single location of the memory, is 
the procedure of Gather pattern. In comparison, writing a single 
data item to multiple locations, is Scatter pattern. Reduce, point to 
the pattern, in which a binary associative operator should be applied 
on a list of linear values and result would be written on a single 
location of the memory. Common operators are summation, 
multiply, max and min. We will briefly discuss about the effect of 
these three patterns on gaining better performance, in the program 
pattern subsection. 

4. ACCELERATION APPROACH 
The DNA-SLM [1], as a sophisticated dense noise aware approach, 
requires an acceleration to execute around 100ms. Since having 
dense data and working on list of linear values in each step of this 
algorithm, in order to accelerate the original DNA-SLAM, we 
implement motion estimation function by CUDA programming. 
According to Figure 1., we have two nested loops with inter-loop 
dependencies of the tasks: Compute Residuals, Compute Weights, 
Compute Scale and likelihood part of Solve Equation System 
blocks, which perform on intensity and depth images and also list 
of linear values. We implement these tasks with CUDA 

 
Table 1. Average execution time of different reduction 

methods 

Methods Average 1 Total mean 
time(s) 

Pure CPU 0.150 2.161 

atomicAdd 0.230 3.445 

Pure CUDA 0.120 1.845 

Thrust reduction [7] 0.310 4.447 

Thrust reduction by key 
[7] 

0.270 3.969 

1 Average execution time of each 50 frames in seconds on 
exemplary selected E1 image sequence of CoRBS dataset [2]. 

 
Figure 2. Coarse-to-fine strategy in DNA-SLAM [1] in order 
to ensure small motion estimation between two consecutive 

images. Each image tuple (intensity and depth) is represented 
as a pyramid with four levels. 

  



programming. We confront several challenges that are likely to 
occur in other similar applications. First, we express them as the 
general issues and then explain them in the concept of DNA-
SLAM.  

4.1 Challenges 
In this part, we briefly mention several challenges that might occur 
in some applications and some of them may prevent gaining best 
results. Also some guidelines which should be followed in order to 
achieve optimum performance are described. 

4.1.1 Program Pattern 
Acceleration of GPU-based implementation in contrast with CPU 
code is highly related to the pattern of the program. Both Gather 
and Scatter patterns, in case of locality and repeated access, will 
perform faster. Reduction pattern can almost be referred as the most 
time consuming one, because of the atomic characteristic of its 
operations. Atomic operations are those where hardware performs 
a barrier point at the entry of it and only can be guaranteed the 
completion of the single operation without any other thread 
interruption. In fact, it occurs as the race condition, in which 
sequence of execution for the threads makes a difference in the 
results without no barrier. The updated generation GPUs support 
faster atomic operations [9], different approaches have been 
proposed to address faster solution. Also a nicely discussed 
approaches issued this matter for reduction pattern is presented in 
[20], which explores the algorithms trade off and compare their 
execution time. 

4.1.2 Serial vs. Parallel 
One of the possible paralleling approaches beyond the performing 
concurrent threads in GPU computing, is executing functions in 
parallel like in [16], which they compute feature extraction and ICP 
step in parallel. In fact, we can use task-based parallelism, beside 
data-based parallelism. The concept that can relatively be used, is 
dynamic parallelism, a CUDA extension, which enables a kernels 
to perform and synchronize nested tasks that provides easier 
paralleling approach for task-based parallelism purpose. Regarding 
to carrying out the execution of processes simultaneously, is taking 
into consideration the dependency between input and output of 
each function, is especially significant. Dependent tasks must be 
performed in serial and there is no chance for serialization. 

4.1.3 Shared Memory 
Data reuse requires the use of shared memory into consideration. 
To ensure coalesced access to the global memory, i.e. avoid 
redundant access to global memory, leading to decrease of the 
wasted global memory bandwidth. Shared memory is held in 
common for the threads of a block. Besides limitation of this 

resource, that can not be sophisticated for applications with high 
demand level of data reuse, some sort of programs, do not have any 
reusable data to take advantages of this facility and for every single 
task, data would be updated entirely. 

4.1.4 Floating Point Precision 
Floating point precision performance is of great importance for 
particular utilizations in order to achieve the eligible accuracy for 
the numerical results. In experiments regardless of hardware and 
compiler differences on preserving semantics of floating points, 
there are different floating point standards in CPUs and GPUs. On 
the GPU devices with compute capability 2.0 and above, the single 
precision is 32-bit and double precision is 64-bit. On the other hand, 
some CPUs support 80-bit extended precision. Consequently, 
during calculations on floating points you would likely to get small 
differences even if using double precision. Fully-descripted 
information on issued related to floating point is available in [8]. 

4.1.5 Data Transfer 
The last but not the least important factor is data transfer. Data 
transfer between CPU and GPU is a really time critical action, 
specially by increasing amount of data in scale of million above, 
spent time on transferring data is processing time	 lost. So, one of 
the most important factor to gain optimum performance is 
minimizing the transfers of data between CPU and GPU. 

4.2 Accelerated DNA-SLAM 
Given the mentioned contents in above sections, we implement 
GPU-based motion estimation function of DNA-SLAM [1] by 
CUDA programming. As presented in Figure 1. Compute 
Residuals, Compute Weights, Compute Scale and likelihood part 
of Solve Equation System blocks, are the main components of this 
conversion. We will concern each of the challenges respectively: 
All functions have Reduction pattern and we had examined four 
different reduction methods contain of atomic defined function of 
CUDA for summation (atomicAdd), faster parallel reduction of 
Kepler GPUs and two reduction methods of well-known Thrust 
library [7], leading to different execution times. In comparison, 
faster parallel reduction of Kepler GPUs, using Kepler’s shuffle 
instructions, gained the best performance. The average execution 
time of each approach is available in Table 1. Pure CUDA implies 
for Kepler shuffle method. 

We had two nested loops with inter-loop dependencies of the tasks, 
that input of each step is related to output of the prior task, so we 
were not able to take advantage of task-based parallelism and all 
the methods are using data-based parallelism. Consequently, we 
had limitation in using dynamic parallelism since having serial 
dependent functions. 

Table 2. Rotational drifts in deg/s on exemplary selected E1 
sequence of CoRBS dataset [2]. 

Errors CPU GPU 

RMSE 1.426480 1.430815 

Mean 1.287833 1.289820 

Median 0.021025  0.020910 

STD 0.613457  0.619353 

Min 0.043994  0.043237 

Max 3.331796  3.399846 

 

Table 3. Translational drifts in m/s on exemplary selected E1 
sequence of CoRBS dataset [2]. 

Errors CPU GPU 

RMSE 0.034953  0.034825  

Mean 0.031289  0.031152  

Median 0.030043  0.029902  

STD 0.015580  0.015525  

Min 0.000938  0.000975  

Max 0.064148  0.064503  

 



In addition, except constant variables, we had bounded data reuse 
to gain better performance above shared memory. Also time critical 
action of data transferring for solving small equation system in the 
CPU is the other restriction for our acceleration approach. Since 
operations on small size data would yield poor performance in GPU 
rather than CPU, and using equation solver libraries in CUDA for 
the short equation system is more time consuming, we had data 
transformation in this part of the iteration. As the final matter, 
having only once memory allocation for iterative loop, had the great 
impact on performance. 

5. EXPERIMENTS 
In this section, comparison of results between the CPU and GPU 
implementation is discussed. First, we introduce the used dataset 
and then, results are presented. All the experiments were 
implemented on an Intel Xeon CPU W3520 with 2.67GHz and the 
NVIDIA GeForce GTX 780 Ti graphic card supporting GPU 
programming with CUDA platform and computational capability 
of 3.5. 
5.1 Dataset 
We have evaluated the implemented algorithm on the public 
Comprehensive RGB-D Benchmark for SLAM (CoRBS) dataset 
[2], the only available dataset using Microsoft Kinect v2 [14]. 
Twenty image sequences of CoRBS benchmark is consist of four 
different scenes, which are Human, Desk, Electrical Cabinet and 
Racing Car. Different characteristic is concerned for each scenes 
trajectory, so it can be applied for diverse scenarios and 
applications. The Electrical Cabinet scene cover the most 
challenging geometric characteristic. The ground truth trajectories 
are acquired by an external precise motion capture system. 

5.2 Results 
Evaluations are based on accuracy and speed of performed 
implementation. Accuracy measurement is determined by the 
rotational and translational drifts which are presented in Table 2.  
and Table 3. respectively in deg/s and m/s with six different 
measures (RMSE, Mean, Median, STD, Min and Max). There is a 
small difference between CPU and GPU errors amount, because of 
different floating point precision, that discussed heretofore. 
Table 4. contains evaluation of execution time in second that we 
prepare a visual chart in Figure 3. for better demonstration. There 

is different improvement for each image sequences. In result of 
analyzing, we discovered, there is a relation between length of data 
and acceleration improvement.  In E1 and E5 sequences, valid 
pixels of the images are more than D1 and H2 sequences. As CUDA 
programming is guided for massive parallelism, better performance 
is acquired for more massive data. We gain almost 20% 
acceleration for these datasets. 
As depicted in DNA-SLAM algorithm overview in Figure 1. 
motion estimation building block consist of two loops within four 
serial dependent modules. As mentioned in challenges section, we 
confront the situation that could not parallel these modules to gain 
better results. Also, the patterns of our program, limited us in using 
shared memory in achieving foremost performance. 
Applying the more powerful GPU and everyday fast progress of 
GPGPUs technology and proponing new facilitated methods for 
CUDA programming, definitely will lead to better result for this 
work and similar researches. 

6. CONCLUSION 
This paper presented an accelerated implementation of DNA-
SLAM algorithm, a Dense Noise Aware SLAM approach, which 
specifically addresses noise characteristics of ToF RGB-D 
cameras. For acceleration purpose, we use CUDA programming 
approach and review some possible challenges that occur during 
converting CPU code into GPU implemented one. That includes 
different kinds of program patterns, the capability of parallelization 
of the tasks, limitation of shared memory usage, different floating 
point precision and data transfer bottleneck. 

We evaluate the results by using public CoRBS dataset using 
Kinect v2 device. The results of execution time show almost 20% 
improvement for datasets with more valid pixels, compared to the 
original DNA-SLAM algorithm [1]. Also, there is a small 
difference between rotational and translational errors due to 
different floating point standard precision of CPU and GPU. 

Summarized, applying the more powerful GPU and also the 
necessities along with the fast progress of GPGPUs technology, 
which is supporting new facilitated methods for CUDA 
programming definitely will consequence in better result for this 
work and other researches in the same context. 
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Figure 3.  Comparison of CPU and GPU implementation 
execution time in second, on selected sequence of the CoRBS 

dataset [2]. 

Table 4. Comparison of execution time in second, on selected 
sequence of the CoRBS dataset [2]. 

Dataset CPU GPU Improvement 

D1 0.11216 0.10704 1.04x 

H2 0.11534 0.09872 1.16x 

E1 0.15355 0.12087 1.27x 

E5 0.15736 0.12606 1.24x 
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