
Meta-Knowledge in systems design:

panacea...or undelivered promise?

Yannis Kalfoglou∗ Tim Menzies†

yannisk@dai.ed.ac.uk tim@menzies.com

Klaus-Dieter Althoff‡ Enrico Motta§

klaus-dieter.althoff@iese.fhg.de e.motta@open.ac.uk

Abstract

In this study we present a review of the emerging field of meta-knowledge
components as practised over the past decade among a variety of prac-
titioners. We use the artificially-defined term ‘meta-knowledge’ to en-
compass all those different but overlapping notions used by the Artificial
Intelligence and Software Engineering communities to represent reusable
modelling frameworks: ontologies, problem-solving methods, experience
factories and experience bases, patterns, to name a few. We then elabo-
rate on how meta-knowledge is deployed in the context of system’s design
to improve its reliability by consistency checking, enhance its reuse po-
tential, and manage its knowledge sharing. We speculate on its usefulness
and explore technologies for supporting deployment of meta-knowledge.
We argue that, despite the different approaches being followed in systems
design by divergent communities, meta-knowledge is present in all cases,
in a tacit or explicit form, and its utilisation depends on pragmatic aspects
which we try to identify and critically review on criteria of effectiveness.

keywords: Ontologies, Problem-Solving Methods, Experienceware, Pat-
terns, Design Types, Cost-Effective Analysis.

1 Introduction

As knowledge engineers we are trying to find ways of building intelligent sys-
tems better, faster, and cheaper. A way of achieving this is by deploying meta-
knowledge: we use this term to refer to knowledge that has been acquired and
stored in prior system development activities and that is being applied to the
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current software design project to improve the quality of the end product and
to reduce its cost. Meta-knowledge is seen as a productivity tool by engineers
and we found evidence for this in the cognitive psychology literature: as An-
derson reports in (Anderson 1990), human experts rarely solve problems from
first principles. Such basic reasoning can be very slow. Experts are faster than
novices since experts draw on their experiences. As much as possible, experts
adapt their prior experiences to the new situation. An evidence for this, An-
derson continues, is that the dominant influence on expertise is lengthy practice
with the domain and not initial training.

In modern knowledge acquisition(hereafter, KA) we tacitly accept this the-
ory and extend it as follows:

• Symbolic descriptions of past experience aid human experts and seeks to
build libraries of such past experience. These are intended to support
reuse and components in these libraries can be either application-specific
or generic. In the former case we reuse by analogy whereas in the latter
we reuse by instantiating generic compoments. This is supported by tools
that are built to apply this experiential knowledge to new situations;

• We identify at least two forms of knowledge: focused knowledge about
the current application or meta-knowledge that transcends the current
application and applies to the domain in question.

In this article we investigate meta-knowledge. In the literature, we identify
at least the meta-knowledge types shown in figure 1.

guidance patterns

theories

experienceware ontologies

PSMs

object oriented patterns

other types...

Meta-knowledge

non-computational mixed computational

Figure 1: Meta-knowledge types reported in the literature.

The typology shown in the figure may not be a complete picture of the
field but reveals how broad and intricate meta-knowledge is: Guidance patterns
direct novice analysts to a set of issues that experienced analysts have found
insightful. Theoretical investigations are trying to find ways of transforming
theories to computer-readable formats in order to enable mechanised-reasoning.
Experienceware is used in the software engineering community as a means to
promote reuse of all-kinds of artefacts in a software organisation. Ontologies are
explicit representations of a shared understanding of the important concepts in
some domain of interest. PSMs are application-independent descriptions of
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problem-solving behaviour. Object-oriented patterns are abstractions of com-
mon parts in many designs and are mainly structurals. Many researchers have
contributed to these fields of meta-knowledge. Although we describe these in
the sequel, for an in-depth analysis we point the interested reader to review ar-
ticles and special issues devoted to some of the fields included in the figure(for
example, (Uschold and Gruninger 1996) for ontologies, (Benjamins and Fensel
1998) for Problem-Solving Methods(hereafter, PSMs), and (Menzies 1999b) for
knowledge maintenance). In this article, we merely review samples of meta-
knowledge by asking the following questions:

• What are the benefits of meta-knowledge and how it improves systems
design?

• What are its associated costs and how can those benefits be realised?

The former question has been studied by many people in this area whereas the
latter is usually ignored. Here, we focus on the second question and summarise
what is known about the relative costs of using meta-knowledge. However, we
cannot provide a complete summary. The state-of-the-art in metrics collection
for knowledge engineering is inadequate to perform cost-benefit analyses for
meta-knowledge. Instead, we can only point to certain partial indicators we
see in current work. We will use these partial indicators to generate lists of
potential issues with meta-knowledge.

At the end, we will elaborate on metrics that we could collect to test its
usefulness and directions which should be followed to improve its exercise. This
will give the reader an insight of how meta-knowledge can be a panacea for our
systems and under which circumstances it is an undelivered promise.

1.a Outline

Initially though, we review design paradigms as reported in the literature. Meta-
knowledge plays a fundamental role in design since it is seen as the constructive
blocks upon which the system will be built. In section 2 we present a brief review
of four commonly observed design types along with pointers to meta-knowledge
involvement in those types.

We continue in section 3, by investigating types of meta-knowledge and elab-
orating on its benefits and how it has been realised in various projects drawn
from the artificial intelligence(hereafter, AI) and software engineering(hereafter,
SE) communities. We will also give pointers to emerging technologies for sup-
porting organisation and deployment of meta-knowledge.

In the sequel, we discuss in section 4 the pragmatics of using meta-knowledge
by focusing, mainly, on cost-related factors. We sample various cases to illus-
trate our points and identify future research directions and potential issues to
be tackled which are summarised in section 5.

2 Design paradigms

In ((Moran and Carroll 1996)-page 3) the authors argue that four broad de-
scriptions of design paradigms exist in the literature. In figure 2 we illustrate
these along with a simple example of how they are conceived and deployed.
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In the sequel we briefly describe the paradigms along with the types of meta-
knowledge that can be classified under each of these. It is intended to show the
involvement of meta-knowledge in design rather than acting as a directive for
software design. For the latter we refer the interested reader to collections such
as (Winograd 1996) and (Moran and Carroll 1996).
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Figure 2: Building a house using four different paradigms of design.

2.a Design as Decomposition and Synthesis

This paradigm dates back at least to 1964 with Alexander’s work on archi-
tecture(Alexander 1964). Design is taken to be the re-shuffling of components
developed previously, then abstracted into reusable meta-knowledge. Modern
expressions of this approach include object-oriented design patterns(Menzies
1997), ontologies(Uschold and Gruninger 1996), and PSMs(Benjamins and Fensel
1998). These are the dominant paradigms in the contemporary knowledge and
software engineering. For example, the software engineering community is work-
ing on the contributions of ‘experienceware’1 which will be described in detail
in section 3.

2.b Design as Search

Early work in this paradigm dates back to 1969 with Simon’s work on AI(Simon
1969). Design is taken to be the traversal of a space of possibilities, looking for
pathways to goals. Modern expressions of this approach include most of the AI
search literature(Pearl and Korf 1987), knowledge-level search(Newell 1993), the
SOAR papers(Rosenbloom et al. 1993), the SVF project(Josephson et al. 1998),
certain KA approaches(Menzies 1998), etc. In a knowledge-level search, intelli-
gence is modelled as a search for appropriate operators that convert some current

1This term was introduced in (von Wangenheim et al. 1998).
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state to a goal state. Domain-specific knowledge is used to select the operators
according to the principle of rationality: an intelligent agent will select an oper-
ator which its knowledge tells it will lead the achievement of some of its goals. In
this paradigm we see preliminary work on modelling the domain-specific knowl-
edge in computational forms of meta-knowledge, like domain-specific ontologies.

2.c Design as Negotiation and Deliberation

This paradigm dates back to at least 1973 with Ritell’s work on wicked prob-
lems(Rittel and Webber 1973). Wicked problems have many features, the most
important being that no objective measure of success exists. Designing solu-
tions for wicked problems cannot aim to produce some perfectly correct answer
since no such definition of correct exists. Hence, this approach to design tries
to support effective debates by a community over a range of possible answers.
Modern expressions of this approach include the requirements engineering com-
munity. Requirements engineering is usually complicated by the incompleteness
of the specification being developed: while a specification should be consis-
tent, requirements are often inconsistent. Requirements engineering researchers
such as Easterbrook(Easterbrook 1991), and Finkelstein et.al.(Finkelstein et al.
1994), argue that we should routinely expect specifications to reflect different
and inconsistent viewpoints. Traditionally, this paradigm has relied much on
manual methods. In recent years more automatic techniques have been used.
For example, the work of (Nissen et al. 1996) on conceptual modelling and in
particular the use of declarative meta-models in requirements engineering and
the work on negotiation in multiagent systems(Davis and Smith 1998). We can-
not really identify meta-knowledge types in this paradigm although the design
process that each stakeholder will follow to produce his/her own artefact may
involve some kind of meta-knowledge.

2.d Situated Design

Schon’s work on the reflective practitioner(Schon 1983) is among the first in
this paradigm. In that approach, design mostly happens when some concrete
artefact talks back to the designer - typically by failing in some important situa-
tion. That is, reflective design is less concerned with the creation of some initial
artefact than the on-going re-interpretation and adjustment of that artefact.
Modern expressions of this approach include the situated cognition commu-
nity(Clancey 1989), certain approaches to design rationale(Casady 1996), and
knowledge engineering techniques that focus on maintenance rather than initial
design(Menzies 1998). In this paradigm we see types of meta-knowledge other
than ontologies and PSMs. These will be described in section 3.

2.e Combinations

The design paradigms surveyed by Moran and Carroll do not explicitly mention
possible combinations. For example, when designing new components we infer
that their design is a combination of search, negotiation and deliberation, and
situated design. Experienceware is also regarded as a combination of decompo-
sition and synthesis and situated design paradigms.
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3 Managing meta-knowledge

In this section we revisit the meta-knowledge types identified in figure 1. We
briefly describe each type in section 3.a and then we proceed to analyse the
benefits of meta-knowledge in system’s design(section 3.b) and review represen-
tative applications where meta-knowledge has been deployed(section 3.c). In
section 3.d we elaborate on emerging technologies for supporting organisation
of meta-knowledge.

3.a Meta-knowledge types

As we can see from figure 1 we classify meta-knowledge in three clusters: non-
computational, computational, and mixed. These are analysed below:

3.a.1 Non-computational

Non-computational meta-knowledge refers to knowledge that is not expressed
in a machine-readable format. The level of abstraction at which we formalise
meta-knowledge could be learnt via extensive experience with that particu-
lar topic(Althoff et al. 1999c). That is, it is not necessarily true that meta-
knowledge should always be expressed in some computer-readable form. Some-
times, simply rendering it on paper will suffice. For example, object-oriented
“guidance patterns” serve to direct novice analysts to a set of issues that experi-
enced analysts have found insightful. Such patterns include CHECKS(Cunningham
1995), Caterpillar’s Fate(Kerth 1995), etc. This type of meta-knowledge is
stored as simple checklists of English text.

In this cluster we also place theoretical investigations in fields such as formal
ontologies as studied in the philosophy discipline. Examples of this are the con-
ceptual realism investigations(Cocchiarella 1996), the study of mereotopology,
etc. Note that, this is an open area of research which tries to convert non-
computational meta-knowledge to computational form, that is, to find ways of
tranforming theories to computer-readable formats in order to enable mecha-
nised reasoning(see, for example, (Kowalski and Sadri 1997)).

3.a.2 Computational

The majority of meta-knowledge research is focused on computational forms.
These include ontologies, PSMs, object-oriented patterns and other types which
are analysed in the sequel.

Ontologies: These are explicit representations of a shared understanding of the
important concepts in some domain of interest. We see different levels of gener-
icity in various ontologies. For instance, very broad ontologies, like CYC (Lenat
and Guha 1990) which model generic notions that form the foundation for knowl-
edge representation across various domains, are often regarded as a separate
top-level, in comparison with domain-specific ontologies, like the Enterprise
ontology(Uschold et al. 1998b), which capture domain-related knowledge. For
an extensive discussion on different types of ontologies we point the interested
reader to the survey articles of Uschold in (Uschold 1998) and Fridman-Noy’s
and Hafner’s in (Fridman-Noy and Hafner 1997), and to Guarino’s review in
(Guarino 1998a).
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The machine-readable format of this meta-knowledge type can be an imple-
mentation of a generic ontology, like mereology(Simons 1987) or a foundational
theory like situation calculus(Pinto and Reiter 1993) or event calculus(Kowalski
and Sadri 1997), or it can be specific such as an ontology for engineering math-
ematics(Gruber and Olsen 1994) or a representation of warplane types in the
air-campaign planning domain(Valente et al. 1999).

The authoring of ontologies can be neutral or emerge from the application
to be developed. In the former case we tend to see more generic forms(see, for
example Ontolingua2 ontologies) while in the latter more specific. The last
distinction also dictates a different way of construction: the majority of generic
ontologies are vast collections of formalised terminology and usually follow a
top-down construction fashion, while the less generic ones are more compact
and follow an opposite direction of construction: bottom-up (van der Vet and
Mars 1998) or even middle-out.

The main focus of ontologies is to deliver knowledge sharing and reuse. It has
been reported(Uschold and Gruninger 1996) that the use of ontologies is ben-
eficial for the design of our systems in areas such as: communication between
designers with different needs, interoperability among different systems, guid-
ance for exploring a new domain, browsing and searching for domain-specific
terminology and systems engineering. While most of these areas have been
studied extensively in the literature3 the systems engineering benefit is rarely
discussed in the community. In section 3.c we sample applications where on-
tologies are deployed in order to realise, directly or indirectly, this benefit.

PSMs: These are reusable, application-independent descriptions of problem-
solving behaviour. In the view of mainstream knowledge engineering(i.e.: KADS
(Breuker and de Velde eds)), system development becomes a structured search
for an appropriate PSM. Once a PSM is found or developed, then knowledge
acquisition becomes a process of filling in the details required to implement that
problem-solving method. It is argued that libraries of PSMs are a productiv-
ity tool for building a wide-variety of expert systems: integrated search/task
PSMs(Motta and Zdrahal 1998); the SPARK/BURN/FIREFIGHTER(SBF)
study(Marques et al. 1992); generic tasks(Chandrasekaran et al. 1992); con-
figurable role-limiting methods(Gil and Melz 1996); CommonKADS(Schreiber
et al. 1994); the PROTEGE approach(Eriksson et al. 1995); just to name a few.

However, researchers have found that the libraries built according to the
‘PSM-solves-task’ organisation criterion are difficult to reuse(Orsvarn 1996).
This led to an increased interest to use strong epistemological foundations for
structuring PSM libraries. Examples of these are described in (Motta 1999).

The standard architecture for a PSM is at least a two-layered system. In the
bottom layer we see the domain-dependent facts in the language of the users.
The upper layer contains the domain-independent PSMs which are written in
a more general language. Some mapping function is defined to connect the
domain-dependent language to a more general, domain-independent language.
The domain-specific theory is assumed to be changeable and the same fact can
take on different roles in different problem solving contexts via different map-

2Electronically accessible from http://www-ksl.stanford.edu/sns.html
3See (Uschold and Gruninger 1996) for a detail categorisation of these benefits along with

examples and the volume edited by (Guarino 1998b) for extensive reports on applications of
ontologies.
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ping functions(Shadbolt and O’Hara 1997).

Object-oriented patterns: These are patterns that can generalise object-
oriented implementations. Consider the left browser in figure 3: the class-
hierarchy browser.

Class Hierarchy Browser
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A class-hierarchy browser A disk browser A composite browser

Figure 3: Various browsers.

When a class name is selected in the upper-left list box, the methods of
that class are displayed in the upper-right list box. If one of these methods
is selected, then the source code for that method is displayed in the bottom
text pane. Now compare this class hierarchy browser with the disk browser
shown in the middle of figure 3. When a directory name is selected in the
upper-left list box, the files in that directory are displayed in the upper-right
list box. If one of these files is selected, then the contents of that file are
displayed in the bottom text pane. Obviously, there is some similarity in the two
browsers. Container(i.e.: classes or directories) are shown top-left. The things
in the containers that are not themselves containers(i.e.: methods and files) are
shown top-right. The contents of these non-container things are shown in the
bottom pane. If we rename containers to composites and the non-containers to
leaves then we can design one composite browser class that handles both class
hierarchies and directory trees as shown in the right browser of figure 3. That
is, our disk browser and class hierarchy browser are both presentations of nested
composites.

In figure 4 we illustrate the inner structure of the composite browser. Com-
posites contain either other composites or leaves. Leaves compile the contents of
the lower text-pane. Note the generality of figure 4: it can be used to (i) browse
a disk; (ii) browse a class hierarchy; or, (iii) more generally, browse any 1-to-
many nested aggregation (i.e.: players in teams, persons in companies, stock on
shelves). This composite pattern is one of the 23 object-oriented reuse design
patterns listed by (Gamma et al. 1995).

Patterns can be at different layers of abstraction. For example, in (Buschmann
et al. 1996) three layers of abstraction are described: (i) low-level language-
dependent idiom patterns; middle-layer language independent design patterns
describing a programmer’s key mechanisms; (iii) and top-level architectural pat-
terns that spread across the entire application. In (Menzies 1997) the non-trivial
overlap between KA research and object-oriented patterns is discussed. Menzies
concludes that object-oriented patterns, ontologies, and PSMs are abstract de-
scriptions of common parts of many designs; and that object-oriented patterns
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are typically structural whereas PSMs are typically functional. The relation of
object-oriented technologies, such as the modelling language UML(Booch et al.
1998) with ontologies is explored in (Cranefield and Purvis 1999).

Other types: In a recent review of knowledge maintenance strategies(Menzies
1999b), several knowledge types seen in the current KA literature were iden-
tified. Apart from ontologies and PSMs described above, other computational
meta-knowledge types include social,quality, and fix knowledge.

Social knowledge refers to the social context of a system. Some expert sys-
tems practitioners argue that knowledge cannot be understood without under-
standing its social context. Paper documents are often collected which infor-
mally describe the organisational context of a system(e.g.: the organisational
model of KADS(Wielinga et al. 1992)). An example of operationalising social
knowledge is the REMAP system(Ramesh and Dhar 1992).

Quality knowledge stores assessment knowledge about a system and includes
the work on non-functional requirements. Functional requirements can be mea-
sured via executing and measuring a program. Non-functional requirements
such as portability, evolvability, development affordability, security, privacy or
reusability cannot be assessed with respect to the current version of the work-
ing program. For example, consider the non-functional requirement of main-
tainability. Maintainability can only be definitively assessed in retrospect; i.e.:
only after delivery has occurred and we have some track record of the system’s
performance in the field. Nevertheless, during initial construction, we may still
want to assure ourselves as to the potential maintainability of the system. The
QARCC tool(Boehm 1996) allows for different stakeholders in a system to rep-
resent their quality concerns.
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Finally, fix knowledge specifies how to correct errors. Since fixing is normally
a slow process, fix knowledge is usually expressed algorithmically for reasons of
efficiency. An example of fix knowledge is given in the context of the SEEK
systems(Politakis 1985). One general method for fixing a knowledge base is to
handle transactions properly. In traditional databases, a transactions manager
ensures the completion of all updates and/or deletions. Further, if some up-
date and/or deletion is aborted half-way, the transaction manager reverses all
the half-finished changes. Similarly, the EXPECT transactions manager(ETM)
manages updates to methods in an object-oriented knowledge base(Gil and
Tallis 1997). Errors are detected using partial evaluation. Given a particular
example, the ETM performs a single forward propagation of types and reports
an error when a method needs to fire, but it can’t since the types of the input
parameters to that method are not available.

3.a.3 Mixed

Recently, we have seen the emergence of another kind of meta-knowledge which
combines computational and non-computational characteristics. These are the

Figure 5: The Experience Factory Organisation.

experience factories(hereafter, EF) and their constituents, experience bases (here-
after, EB). In figure 5 we illustrate the organisation of an EF. EFs which were
first investigated in the context of the TAME project(Basili and Rombach 1988),
further generalised in the early nineties(Basili et al. 1994) as a means to promote
reuse of all-kinds of artefacts in an organisation. The core of an EF is the EB
which acts as the organisational memory. The key idea is to install an organisa-
tional memory to support exchange of all kinds of experiences in the life cycle of
a software project. While the structure of an EB might differ from that of an on-
tology, the purpose is the same: to support reuse. The main focus of an EF is to
support ‘learning from experience’ on a technology-independent organisational
level. An example of an EB on improvement ideas and problem-solution state-
ments for supporting continuous improvement processes in hospitals is given in
(Althoff et al. 1999b).
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3.b Meta-knowledge Benefits

With meta-knowledge we can achieve certain system engineering benefits. In
(Uschold and Gruninger 1996) those benefits have been identified and classified
in the context of ontologies. Here we elaborate on that classification and explore
two major areas in the context of the meta-knowledge types discussed above:

1. reuse and knowledge sharing: the shared understanding of a domain of
interest in the form of formal encoding of the important concepts makes it
possible to reuse them in a software system. Furthermore, an implication
of adhering to a shared understanding is to facilitate knowledge sharing
among applications and across different development groups;

2. reliability: tacit knowledge and assumptions concerning a domain of in-
terest are made explicit in a formal encoding which enforces automated
consistency checking resulting in more reliable software. In the case where
the explicit representation is not encoded formally, meta-knowledge serves
as a basis for manually checking the design against the specification.

3.c Meta-knowledge applications

There is a large volume of applications of meta-knowledge reported in the lit-
erature. Although a complete listing is not feasible4 we selected and briefly
describe here representative applications that realise, directly or indirectly, the
two benefits listed above.

The Boeing experiment, AIRCRAFT, PIF, SBF, Coad et.al’s patterns,
PEBs, IBR0W and HPKB focus on the reuse and knowledge sharing benefit
whereas the Comet, Cosmos, DISCOVER, TOVE, Repertory Grids and
a generic Multi-layer mechanism focus on the reliability benefit.

3.c.1 Reuse and knowledge sharing benefit

In an experiment of ontology reuse(Uschold et al. 1998a), researchers working
at Boeing were investigating the potential of using an existing ontology for
the purpose of specifying and formally developing software for aircraft design.
The ontology used was the EngMath ontology(Gruber and Olsen 1994) and the
application problem addressed was to enhance the functionality of a software
component used to design the layout of an aircraft stiffened panel. Their con-
clusions were that despite the effort involved, knowledge reuse was cost-effective
and that it would have taken significantly longer to design the knowledge con-
tent of the ontology used from scratch. However, the lack of automated support
was an issue and the authors elaborate on the effort required from the knowl-
edge engineer: “the process of applying an ontology requires converting the
knowledge-level specification which the ontology provides into an implementa-
tion. This is time-consuming, and requires careful consideration of the context,
intended usage, and idioms of both the source ontology representation language,
and the target implementation language as well as the specific task of the current
application.”

4For ontologies resources we point the interested reader to the URL:
http://www.dai.ed.ac.uk/daidb/people/homes/yannisk/seke99panelhtml.html for a classified
list and to http://www.cs.utexas.edu/users/mfkb/related.html for a list updated by Peter
Clark.
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In (Valente et al. 1999) the authors discuss how they achieved reuse among
ontologies themselves. The resulting ontology, AIRCRAFT5, contains knowl-
edge about types of US military aircraft, including data about the engines, pods,
and fuel tanks that these aircraft can carry. Despite the fact that the authors
had to face problems similar to those encountered in the Boeing experiment,
their conclusions are indicative of the impact that this approach had to the sys-
tem’s design: “Having a well-structured ontology of a domain provides the basis
on which to build, and thus helps enormously to develop new systems in that
domain.” A proof of this conclusion was the case study performed by Kalfoglou
and Robertson, described in (Kalfoglou and Robertson 1999a), where the AIR-
CRAFT ontology was the basis for conceptual error checking in a prototype
software system designed to defend an allied vessel from aircraft attack.

In the SPARK/BURN/FIREFIGHTER(SBF) study(Marques et al. 1992),
9 applications of intelligent computer hardware configuration were built with
and without the SBF toolkit. The SBF auto-configured an expert system case
tool via an automatic exploration of a library of PSMs. The ontologies of each
method were then translated into data collection screens. Development times
dropped from 63 to 250 days(without SBF) to 1 to 17 days(with SBF).

In (Bergmann and Althoff 1998) the authors describe an EF based method
for developing software systems that use the Case-Based Reasoning(CBR) ap-
proach. A publicly available result is the CBR Product Experience Base(PEB)
accessible from the URL: http://demolab.iese.fhg.de:8080. The PEB shows
how the EF paradigm and in particular the EBs can be deployed to characterise
and organise a range of products, like for example CBR tools.

In the IBROW project, the means of supporting comprehensive reuse are
further investigated. The approach taken is an holistic one and proposes the
development of various technologies required to achieve reuse: software architec-
tures, a modelling language, brokering services and methodologies6. The idea
behind this project is to provide a brokering service that plays the role of a
mediator between customers and PSM providers to support the configuration of
customised knowledge systems that solve customers’ problems. Meta-knowledge
models the different worlds of customers, brokers and PSMs providers. In
(Motta et al. 1999) the authors investigated a particular issue in IBROW:
how to construct a library of reusable components. The starting point was
a pre-existing library of reusable components for parametric design(Motta and
Zdrahal 1998) which was reformulated in terms of the IBROW constructs. The
resulted library emphasizes the role of adaptive reusable components and makes
explicit the adaptation process. In addition, the pre-existing library was applied
to 5 application domains and the authors reported an average improvement in
the design process by a factor of 10(Motta and Zdrahal 1998).

The HPKB project7 aims at fostering the development of technologies that
can increase the rate at which we can write knowledge bases(Cohen et al. 1998).
An important issue in the context of this project is to find out to what extent
reuse of prior knowledge is a productivity gain for the development of a new
system. The metrics and findings of the study presented in (Cohen et al. 1999)
will be discussed in section 4 along with their implication in systems engineering.

5An electronic version is accessible from http://www.isi.edu/isd/ontosaurus.html
6More on these technologies can be found in the project’s home page:

http://www.swi.psy.uva.nl/projects/IBROW3/home-ibrow.html
7Electronically accessible from http://projects.teknowledge.com/HPKB/
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viewer
procedure

translator

translator

ontology

library
method

1: give me the procedure for ...

2: procedure = ?

3: procedure =
process

4: give me the process for ...

5: ? = process

6: METHOD = 
process

8: here is the
METHOD for ...

9: here is the
process for ...

procedure for ...
10: here is the

7: give me the METHOD for ...

Figure 6: Interchange format example: the procedure, used by one tool is trans-
lated into the term, method used by the other via the ontology, whose term for
the same underlying concept is process.

The use of a formal ontology, Process Interchange Format(PIF), in a knowl-
edge sharing effort to facilitate the business process reengineering of supply
chain activities is illustrated in (Polyak et al. 1998). PIF(Lee et al. 1998) acts
as an interlingua between two separate tools used in the modelling and simu-
lation of the proposed processes. The benefit of using the underlying process
ontology was to capture domain knowledge in a generic way so that it can be
reused across applications and shared among groups. In figure 6 we illustrate an
interchange format example taken directly from (Uschold and Gruninger 1996).

In (Coad et al. 1997) several object-oriented patterns were surveyed. Their
role was to guide novice analysts to a set of issues given by experienced analysts.
For example, in figure 7 we show one of Coad et.al’s patterns, a financial
transaction pattern. As we can see from figure 7, this pattern includes the term
‘subsequent transaction’. When browsing this pattern, a requirements engineer
might then be prompted to ask the question: “are the sold items ever returned
to the store?”. This can assist in auditing and implementing the current version
of a system description.

3.c.2 Reliability benefit

The Comet(Mark et al. 1992) system, developed in the Lockheed AI Center,
supports the design of software systems specialised in the area of radar trackers
by providing feedback for its users: when a user makes a change to a software
module, Comet alerts the user about which other modules are affected and will

13



Actor

Participant Transaction Subsequent 
Transaction

Place

Specific
Item

Transaction
Line Item Subsequent

Transaction
Line Item

Item

X                 Y Many Xs are used by one Y

X                 Y Many Xs are part of one Y

KEY

Figure 7: Part of (Coad et.al. 1997) definition of a financial transaction

require modification. The Cosmos(Mark et al. 1994) system, developed in the
same site, supports engineering negotiation specialised in the area of actively
controlled gimbal(i.e.: spacecraft components) and provides hardware design-
ers with analyses that indicate the impact of a proposed design change. Both
systems were aiming at developing knowledge bases by capturing the set of onto-
logical commitments that define the interdependencies among key terms in the
underlying ontology. Their role is to assess the impact of changes in their world
and provide context-specific guidance to their users on what modules may be
relevant to include in the design, and what design modifications will be required
in order to include them(Mark et al. 1995). The key idea behind this work was to
make use of the ontological commitment expressed by the underlying ontology in
the system’s development process. Ontologies must clearly express ontological
commitments if the terms they specify are to be used without misinterpretation.

Repertory Grids were used in (Gaines and Shaw 1989) for detecting con-
flicts in terminology by comparing grids from different experts. The detection
mechanism can reveal four classes of inconsistencies in terminology: consensus,
correspondence, true conflict, and contrast. Experts are asked to identify di-
mensions along which items from their domain can be distinguished. The two
extreme ends of these dimensions are recorded left and right of a grid. New
items from the domain are categorized along these dimensions. This may lead
to the discovery of new dimensions of comparisons from the expert which, in
turn, will cause the grid to grow. For example, based on how an expert scaled
some example houses, we can see from the repertory grid of figure 8 that the
ideal home is closest to 1, Abraham Point, NW. Once the dimensions stabilize,
and a representative sample of items from the domain have been categorized,
then the major distinctions and terminology of a domain have been defined.
Inconsistencies are reported if the categorisations are significantly difference.

Ontological commitments were also the main topic in the TOVE project(EIL
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Figure 8: Repertory Grids generated from the WebGrid WWW server at:
http://gigi.cpsc.ucalgary.ca

1995) but studied from a different angle: use them to define an ontology’s com-
petence. That is, a set of queries that the ontology can answer. These ques-
tions, called competency questions, were used to evaluate the expressiveness
of the ontology that is required to represent them and characterise their solu-
tions(Gruninger and Fox 1995). They do not generate ontological commitments
but are used to evaluate them. The TOVE ontologies are built on top of foun-
dational theories such as situation calculus. Foundational theories provide the
semantics for the ontology and their axioms serve as a basis for the implemen-
tation of competency questions.

In the DISCOVER project(Waterson and Preece 1999), the role of ontolog-
ical commitment was further analysed and operationalised. The authors state
that ontological commitment is a key issue for knowledge sharing and reuse and
they applied existing verification techniques from the KBSs literature to check
the commitment of a knowledge base to an ontology. In that project the role
of the ontology was to act as a background body of knowledge against which a
knowledge base can be validated.

The role that ontological commitment plays in the engineering of a sys-
tem that adopts an ontology has motivated the work described in (Kalfoglou
et al. 2000). The authors point out that the role anticipated by ontological
axioms is rarely delivered: to restrict the possible interpretations ontological
constructs could have. To operationalise this role and enforce it in an inte-
grated development environment they invented a multi-layered architecture
in which ontological axioms are separated from other ontological constructs in-
cluded in a system that uses the underlying ontology. These are enforced to
comply to the axiomatisation in order to verify the consistency of the system
with respect to domain knowledge as explicitly represented in the underlying
ontology(Kalfoglou and Robertson 1999b). Ultimately, this layered metaphor
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Figure 9: The multi-layer approach: it enforces the conformance check of an
application to ontology/ies. Applications are using meta-knowledge constructs
from various ontologies(mereotopology, system dynamics theory, etc.) in an
integrated environment which enables checks on the use of those constructs
against their axiomatised definitions.

can be extended to check the ontological axioms themselves against another set
of axioms, meta-axioms, which could come from another ontology. This facili-
tates the conformance check of an application to ontology and can be extended
to check dependencies among ontologies themselves. Moreover, it supports the
integration of ontologies in applications while preserving their identity as being
a separate layer in the multi-layer architecture. The approach is illustrated in
figure 9.

3.d Organising meta-knowledge

In this section we sample supporting technologies and elaborate on issues that
deal with organisational aspects of meta-knowledge. For example, in (Althoff
et al. 1999a) an architecture which supports reuse of all kinds of experience
from the software engineering domain is presented. The underlying represen-
tation formalism, called Representation Formalism for Software Engineering
Ontologies(REFSENO(Tautz and von Wangenheim 1999)), supports the con-
struction and manages the reuse of EBs in the life-cycle of a software project. In
figure 10 an EB architecture based on RESFENO is presented. It is designed
as a three-tiered architecture to accommodate the user access level(general pur-
pose browser, data management(EB server)), and data storage. While structure
is the main organisational task to develop a conceptualisation(e.g.: developing
concepts like project), record is the main task to fill-in the EB with character-
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isations(instances, cases) like the project shown in figure 10 named Vesuv. In
addition, reuse is the main task to apply knowledge stored in an EB within
projects of the project organisation. This includes, for example, the provision
of knowledge maps for identifying sources of tacit knowledge in terms of author-
ship, which at a later stage may be consulted for further guidance on the reuse
process.

This approach(see figure 10) also provides knowledge maps for identifying
sources of tacit knowledge in terms of authorship which later on may be con-
sulted for further guidance on the reuse process.

Figure 10: Main EF tasks and EB architecture.

Such knowledge can also be described on different levels of abstraction. With
ongoing experience collection(see, for example, (Althoff et al. 1999c), (Basili
et al. 1999)), these different abstraction levels can be compared with one an-
other. In this sense the EF approach contributes to the question: “how meta-
knowledge should be?” for domains where there are no rich background sources
of prior knowledge.

Another important aspect in organising meta-knowledge is to handle changes
over time. The majority of research in this area is focused on construction is-
sues, like methodologies to support design(see, for example, (Fridman-Noy and
Hafner 1997) and (Fernandez 1999) for ontology-design guidelines). However,
coping with change and providing maintenance facilities requires a different ap-
proach and we cannot say that there exist commonly-agreed methodologies and
guidelines for meta-knowledge maintenance. But we identify various research
efforts that produced prototypes capable of serving, crudely speaking, mainte-
nance purposes. For example, in (Domingue 1998) two systems were described:
Tadzebao and WebOnto. The former aims to support a dialectical approach in
ontology design and maintenance while the latter provides editing and browsing
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facilities. The goal of Tadzebao was to provide guidance for knowledge engi-
neers around ongoing dialogues for designing ontologies. This can be used as
a negotiation tool for proposed changes in a knowledge component with the
additional flexibility that Tadzebao offers: the integration of discussion about
an artefact and its representation in the same visual metaphor. An elaboration
of this work is the ‘discussion spaces’ used in (Summer and Buckingham-Shum
1998) to support the negotiation of collaborative model construction.

The role that multiple agents play in ontology construction was investigated
in (Swartout et al. 1996). The authors discuss the benefits of collaborative
ontology construction, an important feature of this approach is the ability to
support changes as the ontology evolves. To quote the authors:

“[. . . ]rather than regarding the ontology as a separate resource that
is updated periodically, the development and extension of the ontol-
ogy should occur as part of system development. In this way, the
ontology becomes a ‘living document’ that is developed collabora-
tively and, at any given time, reflects the terminology that is shared
by developers within an effort”

The environment which supports this evolution is the Ontosaurus browser8 and
an application of its use is presented in (Valente et al. 1999).

4 Pragmatic aspects in using meta-knowledge

In section 3 we pointed out benefits of using meta-knowledge and we listed
applications that those benefits were realised. Here, we shift our focus to the
costs of achieving these benefits. However, as we mentioned in the introduction,
we currently lack extensive cost-benefit studies from the knowledge engineer-
ing literature. Therefore, we will use two different resources in our study: we
will scrutinise the applications reported in the literature and critically review
their benefits with respect to costs using empirical evidence. Also, we will con-
sult the SE literature and borrow their metrics which we will apply to assess
meta-knowledge benefits. Since experiences with procedural systems(mostly
cited in the SE literature) may not apply to the construction of declarative
systems(mostly cited in the AI literature) we will be very careful to make our
case precise. We do not intend to conclusively discount the benefits of using
meta-knowledge but we aim to provide certain points upon which we can forge
research directions to solve problems with meta-knowledge. These will be dis-
cussed in section 5. This section also includes a brief discussion on reasons
other-than-costs that could justify our investment in meta-knowledge.

4.a Construction cost

A meta-knowledge component is knowledge, and knowledge comes at a cost.
Whether we build the meta-knowledge component from scratch or adopt it from
others there is a ‘cost of construction’ following that investment. In the former
case, that cost refers to pure construction issues such as, for example, choice
and adoption or creation of a design methodology. In the latter case, there is

8Electronically accessible from the URL: http://www.isi.edu/isd/ontosaurus.html
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an adoption of a pre-existent meta-knowledge component(for example, residing
in a public library), and the cost is related to familiarisation and installation
issues. Here we review the former case: building it from scratch.

Empirical evidence: We observe that this cost is often a drawback and those
who had to afford it were skeptical for the effectiveness of the approach. For
example, the developers of the ATOS system(Jones et al. 1995) wrote: “it was
overambitious and unnecessary to develop a complete ontology of spacecraft
operations[. . . ]”. Although their abandonment of developing a complete ontol-
ogy was driven by architectural decisions the word ‘overambitious’ hints at the
problem: complete ontologies are costly to build and require a substantial, time
consuming and well coordinated effort.

This is apparent in broad meta-knowledge types like generic ontologies. For
example, the CYC project where the developers had to devote more than 10
years of effort to build the CYC ontology(i.e.: initial CYC references date back
to 1983:(Lenat et al. 1983)). However, as we look at other meta-knowledge
types the situation changes: we have seen that domain-specific components are
easier to build and are often developed incrementally as new knowledge regard-
ing the domain of interest is acquired and pushed into the system. Examples of
this are the Ontosaurus environment described in section 3.d and the reusable
components described in (Motta 1999). In the same line are the EBs whose
construction is incremental and they evolve along with the organisation that
they belong to.

SE metrics: The COCOMO-II consortium(Abts et al. 1998) studies on 161
projects(Chulani et al. 1999) reveal that developing widely reusable components
adds little to the overall project’s efforts. For example, as we see from figure 11,
the RUSE rating for Extra High(XH) reuse9 across multiple product lines(i.e.:
meta knowledge spans across multiple products), will cause an increase in effort
by a factor of 1.56.

Develop for Reuse(RUSE) Low(L) Nominal(N) High(H) Very High(H) Extra High(H)

1997 A-priori Values

Definition None
Across

project

Across

program

Across product

line

Across multiple

product lines

0.89 1.00 1.16 1.34 1.56

Figure 11: COCOMO-II RUSE(“Develop for Reuse”) effort multiplier: Experts
determined the RUSE a priori rating scale. Adopted from (Chulani et al. 1999)

In (Chulani et al. 1999) the authors presented a Bayesian analysis of these
results and elaborated on a prediction model that merges sample data along with
the experts’ predictions. In that model, the value of RUSE rate was even lower,
dropped to 24%. These results are encouraging in the sense that, at least for the
procedural systems studied by the COCOMO-II consortium, building reusable
components does not add vast amounts to the project’s effort. However, we
should be cautious in our interpretations because similar studies suggest that
the cost of building these highly reusable components is considerably higher:

9In the COCOMO-II study several ratings are defined. While here we use the RUSE(Reuse)
rating we point the interested reader to (Boehm 1995) for a comprehensive analysis.
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one quarter to one half of the project’s overall cost. This is recognised in the
SE community as, literally speaking, the issue of present-cost,future-reward. In
other words, we should expect to invest large amounts of cost to build meta-
knowledge components that we anticipate to be beneficial in the foreseeable
future.

4.b Reuse cost

We now turn to cost related with the reuse of meta-knowledge components. An
alternative to building meta-knowledge from scratch is to reuse pre-existenting
components. This is actually the mainstream in knowledge engineering and
most of the applications reported in the literature follow this approach.

Empirical evidence: Recent experiments in ontology reuse show that par-
ticular types of ontologies are more useful than others. In the context of the
HPKB(Cohen et al. 1999) project, it was found that very generic ontologies
provide less support and are less useful than domain-specific ones. The lat-
ter scored a constant 60% rate of reuse in the HPKB study in contrast with
the poor 22% rate of reuse scored by generic ontologies. However these results
should not undermine their role in structuring meta-knowledge: “Although the
rate of reuse of terms from very general ontologies may be significantly lower,
the real advantage of these ontologies probably comes from helping knowledge
engineers organise their knowledge bases along sound ontological lines”(Cohen
et al. 1999).

Prior to reusing a meta-knowledge component an engineer has to locate the
right component first and then familiarise herself with it. We have seen some
efforts to facilitate the selection task, as for example the reusable libraries of
ontologies(like Ontolingua) and in the same context ongoing work to produce
frameworks which characterise and classify ontologies(Uschold and Jasper 1999).
However, the familiarisation task remains a problem. Systems like OntoSaurus
and WebOnto(described in section 3.d) aim to help the engineer find herself
around.

One practical approach here is the EF where its EBs contain characterized
and classified experienceware described in different levels of abstraction. The
approach supports a goal-oriented, similarity-based retrieval that helps to find
the right piece of knowledge in the right time and within a justifiable effort.
Based on a continuous evaluation of the EB(Nick et al. 1999) the user herself
decides whether or not more abstract knowledge is provided.
SE metrics: But, evidence from the SE literature shows that familiarisation in-
volves a learning curve which must be traversed before a module can be adapted.
The COCOMO-II study gives us some clues on the cost of customising a compo-
nent: by the time you know enough to change a little of a component, you may
as well have re-written 60% of it scratch(see figure 12). As mentioned above, the
COCOMO-II results relate to the adaption cost of procedural systems. Hence,
they may not apply to the declarative descriptions of system terminology. How-
ever, at the very least, these results caution us that just because we can access
meta-knowledge, this does not necessarily mean that we can use it as a produc-
tivity tool. Meta-knowledge must be learnt prior to use and this learning curve
may have a non-trivial impact on the overall cost.
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Figure 12: COCOMO-II: The cost of reuse with X% changes. The Y axis shows
the costs of reuse divided by the cost of rebuilding from scratch.

4.c Maintenance cost

Empirical evidence: In the long run this cost might hinder further deploy-
ment of meta-knowledge. However, it is not easily predictable and quantifiable
since there are various angles of viewing this problem. For instance, if we ac-
cept that meta-knowledge rarely stabilises then we should expect to include
in our budget along with the cost of constructing, costs for maintaining the
meta-knowledge component we use as well as the system which uses it. How
common is meta-knowledge instability? We don’t know since we have very
little experience with the long-term use of large libraries of meta-knowledge.
However, this is a debatable point(Menzies et al. 2000) and we find projects
where meta-knowledge was deployed on the rationale that is was stable(i.e.: in
parametric design ontology (Motta 1999)), and projects where this is not taken
for granted as meta-knowledge is expected to change over time(i.e.: Aitken’s
HPKB experiment(Aitken 1998)). Another angle is the type of meta-knowledge
we are dealing with. For example, if it is ontologies, despite the arguments made
for instability, maintenance cost should be accounted for: to quote (Robertson
1998):

“[. . . ] the cost of producing an ontology is not just in inventing
the domain-specific formal language but in maintaining it once the
system is deployed, since perfect ontologies cannot be guaranteed.
Over-commitment to perfecting an ontology causes failure either
during development(through irreconcilable arguments over what the
ontology should be) or after deployment(through inappropriate hu-
man interpretation of inference system inputs or outputs)”

On the other hand, other types of meta-knowledge tend to be easier to maintain:
EFs and EBs are relatively easy to maintain since every time you add a new
experience the EF is updated and reflects the current status in the field of work.
Moreover, the supporting technology behind EF, the CBR technique, facilitates
changes and retrieval/storage tasks. At the end, we can say that we have little
evidence of the maintenance cost since there are no studies of long-term usage of
meta-knowledge available. Further, we encountered constantly diverge opinions
regarding the costs and ease of maintenance from various developers and users of
meta-knowledge. This arises, mainly, from the high variety of meta-knowledge
types(i.e.: maintenance cost of an ontology versus that of an EB). Hence, we
rely on results drawn from SE and knowledge engineering studies:
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SE/KE metrics: In (Hatton 1998) a study on the ease of fixing errors in
hierarchies was presented. The author argues that inheritance confuses rather
than clarifies maintenance. He continues by relating the increased maintenance
times to the distributed nature of properties in an inheritance hierarchy. If
Hatton’s hypothesis is correct, then this SE result applies equally to any object-
oriented hierarchy. If we accept that inheritance hierarchies are present in most
of the meta-knowledge types identified in this paper, then we can equally ac-
cept the validity of this result in the context of meta-knowledge hierarchies.
However, we should be very careful in making this assumption because, as the
author acknowledges, the particular results do not distinguish between the ef-
fects of object-oriented hierarchies and the particulars of the implementation
environments(Hatton 1998). For example, all the experiments were made by
comparing C++ and C programs, whereas in the declarative systems used in
meta-knowledge we found built-in features for maintaining hierarchies(i.e.: the
Description Logics(see, for example, (Borgida 1995)) formalisms10).

In this area we also have results from studies on the behaviour of experts.
We are interested in these results from the collaborative construction of meta-
knowledge point of view rather than interested in emulating the experts them-
selves. Many researchers argue that experts disagree about even well-established
features of their domain(see, for example, (Finkelstein et al. 1994), (Menzies
and Clancey 1998)). Others studied the behaviour of experts(Shaw 1988) and
found that they often held different views about a supposedly standard termi-
nology in their field. Furthermore, in (Agnew et al. 1993) the authors state:
“expert knowledge is comprised of context-dependent, personally-constructed,
highly-functional but fallible abstractions”. This suggests that we should rou-
tinely expect evolution of experts’ views, especially in domains where there is
disagreement on used terms.

However, we have to point here that in situations where there is a lack of
consensus among the experts regarding the domain of interest then the prin-
ciple of meta-knowledge does not apply by definition: meta-knowledge repre-
sents consensual and common-agreed terminology about a domain of interest.
O’Leary uses this argument to point out that: “ontologies are chosen after a
political decision has been made, therefore it is impossible to choose an ontology
that maximises the utility of all agents in the process and the group.”(O’Leary
1997). We agree with O’Leary’s thesis and as a rule of thumb we can say that
in domains where there is literally no consensus among the domain experts then
building a meta-knowledge component is pointless. This, however, should not
be interpreted as a guideline to build meta-knowledge components only when
experts agree: this will rarely happen, as the studies described above suggest,
therefore we have seen the most successful meta-knowledge stories coming from
domains where the ‘majority’ of experts agree on used terms. The issue here is
to find the right balance between commonly agreed terminology and usability
of meta-knowledge. Guidelines from the ontology-building literature suggest
this as one of the design principles: minimal ontological commitment(Gruber
1995). We should also mention that experience with task models in the KBS
community indicates a broad degree of consensus with respect to the structure
of KBS tasks, like diagnosis, parametric design, scheduling, etc. The key fac-

10Though, we do not have a comprehensive analysis of their maintenance cost benefits to
cite.
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tor here is the effective support for KBS development rather than achieving
community-wide consensus, a goal of generic meta-knowledge components like
broad ontologies.

4.d Purpose

Apart from the cost-related factors we discussed above, other issues emerge
when we decide to use meta-knowledge. These are the level of formality, often
related to the purpose of use, level of support, technical obstacles to overcome,
etc.

In particular the level of formality is a traditional point of contention in
many fields(see, for example, (Cleland and MacKenzie 1995) and (Shipman and
Marshall 1999)). Despite the strong claims made by opponents of formality the
sample systems we reviewed in section 3.c.2 shows that formal meta-knowledge
can be operationalised which makes it suitable for enforcing automated consis-
tency checking. On the other hand, this sort of use is not the mainstream and as
the comparative review of (Uschold et al. 1999) points out, not a cost-effective
approach: “[. . . ]if it is application data without operational semantics, then it
is a cost effective approach as the results with STEP schemata suggest; but is
currently not yet mature enough for exchanging data with operational seman-
tics and building fully automating translators is in general beyond the state of
the art.”

This may justify the wide usage of semi-formal or even informal meta-
knowledge we see in the literature, which is mostly directed to deliver reuse
and knowledge sharing rather than improving reliability11. The level of support
for using meta-knowledge and technical obstacles which should be overcomed
raised in experiments where the meta-knowledge components used were out-
sourced. For example, as the authors of the Boeing(section 4.b) experiment
pointed out the translation activity involved was an intensive one and lack of au-
tomatic support is an important disadvantage. However, the situation changes
when we look at other similar efforts. For instance, in the AIRCRAFT project,
where most of the meta-knowledge used was provided by the developers them-
selves, no such claims for lack of support or translation problems were made.

5 Directions

We conclude the article by summarising issues that emerge from current re-
search in meta-knowledge and speculate on prospective solutions to potential
problems. A notable change in meta-knowledge research is that meta-knowledge
is no longer a core theme of a single community(i.e.: AI). There is an increasing
interest in meta-knowledge research and products from a wide variety of com-
munities and industrial partners. If someone looks at the proceedings of recent
KA workshops12, major international AI conferences(IJCAI,AAAI,ECAI), CBR
events(ICCBR,EWCBR), interdisciplinary-oriented conferences(see, for exam-
ple, the SEKE series), and a plethora of journals, he will see a wide and versa-

11As an evidence of this claim we found that only 4 out of the 19 papers included in the
volume edited by Guarino(Guarino 1998b) use formal meta-knowledge.

12Note that these AI-dominated events(Banff, European, and Pacific series) tend to be the
barometer in ontology and PSM research.
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tile range of meta-knowledge research issues to be tackled. While the expansion
of meta-knowledge has been praised by many it also causes problems with the
classification of meta-knowledge types and comprehension of its usage. For ex-
ample, one of the problems we faced in this study was the diverse angles of
viewing and tackling the same problems by different communities. However,
we should highlight the emergence of ‘classification’ efforts such as the frame-
work proposed in (Uschold and Jasper 1999) and of supporting technologies for
organising meta-knowledge, such as the EFs, which can alleviate the situation.

A consequence of the versatile and intricate nature of meta-knowledge, along
with its relatively young age, is the lack of metrics. For example, in our cost-
effectiveness analysis in section 4 we had to rely on empirical evidence and ‘bor-
row’ SE metrics to draw our conclusions. We would like to have more knowledge
engineering-specific metrics at our disposal and we anticipate to see more work
on this in the near future. For example, recently we saw the first publicly avail-
able metric for reuse of terminologies in the context of ontologies(Cohen et al.
1999). Another example is the deployment of a goal-oriented measurement and
evaluation approach, the GQM in knowledge bases(Nick et al. 1999).

Further to these, we also need tools that support the whole infrastructure
for meta-knowledge deployment. Apart from guidelines and methodologies to
aid initial construction, more attention should be paid to maintenance, ease of
reuse and cost-effectiveness benefits in the long term. This is an open issue in
meta-knowledge research and possible solutions are explored in (Uschold et al.
1999). In addition, the results of the two major projects, HPKB and IBROW
are expected to contribute in this area. We also expect to see more EF-based
approaches. One example here is the European project INRECA that bases its
methodology for developing and maintaining CBR-based software systems on
EFs(Bergmann et al. 1999).

In this study we were also able to identify types of meta-knowledge that have
become popular during the years. These are domain-specific components that,
empirically, have been proved cheaper to construct, easier to apply, and pro-
vide means for maintenance. This justifies, somehow, the shift of interest from
very generic, broad meta-knowledge components, to domain-related components
tailored to serve particular applications.

So far, in this closing stage we didn’t mention the question posed in the
title: whether meta-knowledge is a panacea or undelivered promise for systems
design. In our view, meta-knowledge is neither a panacea nor an undelivered
promise. These two characterisations represent, probably, the two extremes in
defining meta-knowledge. We place meta-knowledge, literally speaking, in the
middle of these two extremes and towards the panacea end. This is because, we
saw evidence in the systems reported in sections 3.b to 3.d, that meta-knowledge
can improve systems design in such areas as knowledge sharing and reuse and
contribute to enhance their reliability by consistency checking. In particular,
we saw that meta-knowledge had an impact in system design by reducing pro-
duction costs, shortening development times and communicating context among
applications and across organisations. It also improved the quality of the re-
sulted systems with respect to verification of their correctness against domain
knowledge.

On the other hand, in the ‘pragmatics’ section we identified potential draw-
backs that might undermine the benefits that meta-knowledge claims to deliver,
thus becoming an undelivered promise. The most important being, the consid-
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erably high cost of constructing a meta-knowledge component from scratch, the
lengthy learning curve which has to be traversed in order to become familiar with
meta-knowledge before integrating it in the system, the lack of rigid maintenance
strategies, and the dearth of metrics for assessing meta-knowledge. However,
as we highlighted in this section, potential solutions to these problems have be-
gun to emerge which will place meta-knowledge more towards the panacea end
rather than the undelivered promise one.
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