
�

Knowledge Management for Building

Learning Software Organizations

Klaus-Dieter Althoff, Frank Bomarius, Carsten Tautz

Fraunhofer Institute for Experimental Software Engineering (IESE)

Department of Systematic Learning and Improvement

Sauerwiesen 6, D-67661 Kaiserslautern, Germany

Phone: +49 6301 707 230/150/254

Fax: +49 6301 707 203

Email: {althoff, bomarius, tautz}@iese.fhg.de

Corresponding Author: Klaus-Dieter Althoff

�

Knowledge Management for Building

Learning Software Organizations

Klaus-Dieter Althoff, Frank Bomarius, Carsten Tautz

Fraunhofer Institute for Experimental Software Engineering (IESE)

Abstract

Due to the steadily increasing demands of the market, strategic management of

knowledge assets, or Learning Organizations, are becoming a must in industrial

software development. This paper presents work done at Fraunhofer IESE, where

learning organizations for software development organizations are being developed

and transferred into industrial practice. It describes how learning organizations for

the software domain can be built upon both mature approaches from Software Engi-

neering like the Experience Factory Model and industrial strength technology from

knowledge management. A system to support the Learning Software Organization is

sketched and experiences regarding the implementation of this system and learning

software organizations in general are presented.

Keywords

Knowledge management, software domain, learning software organization, knowl-

edge representation, intelligent retrieval and storage system, software engineering

experience environment

�

1� Introduction

The demands in today’s software industry, such as short lead-time, frequent intro-

duction of new technologies, increasing application complexity, and increasing qual-

ity requirements, are among the toughest to be found in industry. Traditional produc-

tion-oriented approaches to meet these demands, like quality assurance or statistical

process control, fall short or are just not applicable in the development-oriented soft-

ware domain. In such an environment, continuous fast learning is one of the top pri-

ority requisites to acquire and maintain leading-edge competencies. Traditional indi-

vidual or group learning, as a means of adapting to new demands or of adopting new

methods and techniques, is often far too slow and ineffective. This is especially true

if it is not pursued in a goal-oriented way, managed as a project crucial to a com-

pany’s success, and supported by organizational, methodical, and technical means.

So, learning on an organizational level and capitalizing on an organization’s knowl-

edge assets becomes imperative for modern software-dependent industries.

Such learning needs can be addressed by systematic application of Organizational

Learning (OL) principles, supported by Organizational Memories (OM). We believe

that Learning Organization (LO) principles will soon establish themselves as best

practices. Therefore, we see a strong need to spell out OL procedures and methods

that work in practice and also a need for comprehensive tool support. This paper is

about the approach taken by the authors to do so for the software domain.

We see the subject matter as being composed of several dimensions:

- the processes, methods, techniques of how to implement OL in the application

domain,

- the tools that support OL for that domain, and

�

- the organizational and cultural aspects of introduction and performance of OL.

From our experience we know that the latter one is of paramount importance for the

success of a technology transfer project like, for instance, the introduction of OL

(Kotter (1996), Senge (1990)). However, we will not elaborate on this issue in the

course of this paper.

One of the fundamental premises of Experimental Software Engineering is the wish

to understand and improve software quality and productivity. Like in any engineering

discipline, understanding and improvement must be based upon empirical evidence

and all kinds of explicit (i.e., documented) project experiences. Even for small soft-

ware organizations, large amounts of information could easily be accumulated over

the years (e.g., project data, lessons learned, quality models, software artifacts, code

databases). But, for such information to be usable, it needs to be modeled, struc-

tured, generalized, and stored in a reusable form to allow for effective retrieval of

relevant (applicable) artifacts.

However, it is well known in the Software Engineering (SE) community that reuse

does not happen easily across software development projects (Biggerstaff and

Richter (1987)). This is not a surprise, since, by definition, the mission of a (tradi-

tional "pre-LO" style) development project is to deliver a product matching a given

specification within given time and budget constraints. In other words, such a project

is a strictly "local optimization" endeavor with a matching reward structure. Conse-

quently, reuse, which by nature draws on results from global optimizations across

projects, conflicts with the projects’ local goals. An individual’s extra efforts to enable

future reuse of work results are not rewarded or are even penalized. Management

slogans to "design for reuse" do not work for that same reason.

To introduce LO mechanisms into such a culture, continuous build-up and effective

�

reuse of knowledge must be made into goals of OL projects, which are separate from

the development projects. Such learning- and reuse-related goals must be clearly

defined, sufficient resources must be allocated, and the OL projects must be man-

aged like any development project. In the short to mid-term, conducting such projects

requires an organizational support structure that is separate from the software devel-

opment organization. Once learning and reuse have become standard practices of

software development projects, most of the tasks and responsibilities of that support

organization shall be assimilated by the regular development organization.

&YQFSJFODF�'BDUPSZ�0SHBOJ[BUJPO

1SPKFDU

0SHBOJ[BUJPO

QSPKFDU���

4VQQPSU

0SHBOJ[BUJPO

	&YQFSJFODF�'BDUPSZ

&YQFSJFODF�#BTF

Figure 1: Experience Factory Organization

An organizational structure comprised of separate support and project organizations

has been proposed by Rombach and Basili and is called Experience Factory Organi-

zation (Basili, Caldiera and Rombach (1994); see Figure 1). The Experience Factory

(EF) is an organization that supports software projects conducted in what we call the

Project Organization (e.g., a development department for a certain type of software).

In particular, the EF analyzes and synthesizes all kinds of experiences drawn from

these projects, acts as a repository for such experiences by documenting, storing,

qualifying, and updating them using a so-called experience base (EB; see Figure 1),

and supplies those experiences back to projects on demand.

�

Mature

Analyze
technical
infrastructure

Package)RUJHW Record

Learn Reuse

Utilize5HWULHYH

Collect Store Qualify 3XEOLVK Inform 6SHFLI\ ,GHQWLI\ (YDOXDWH Select

Copy Split ,QLWLDOO\
FKDUDFWHUL]H
QHZ�DUWLIDFW

Analyze Review Evolve &RPSOHWH
FKDUDFWHUL]DWLRQ

Figure 2: Tasks for incremental, continuous learning

The elicitation of experiences from projects and the feedback of experience to the

project organization requires functionality to support packaging, recording, and effec-

tive reuse of experiences. An overview on the tasks that have to be carried out by an

EF is given in Figure 2. They are called maturing tasks and are concerned with all

aspects of using (task reuse) and building-up (task learn) an EB. They can be seen

as requirements for an EB system because such a system must support these tasks

as much as possible. For the EB system architecture described in Section 4 we will

explain how these tasks are supported.

In the next section we will exemplify the requirements for an EB system using a

sample scenario. In Section 3 we will introduce the knowledge representation

mechanisms necessary to support the activities in the scenario. Section 4 presents

the underlying system architecture.

The paper ends with projects validating our approach (Section 5) and an outlook

(Section 6).

�

2� Sample Scenario

To exemplify the tasks of an EB system we use a scenario that describes some typi-

cal project management activities and how these activities can be supported by an

EB. In particular, the scenario shows how:

- a software development project is planned and performed using experiences from

past projects provided by the EB;

- a software development organization learns, i.e., how the contents of the EB is

enhanced and restructured according to new project experience.

2.1� Simplified Structure Model for the Experience Base

Before the mechanisms for reusing and learning SE knowledge can be explained,

the structure model of the EB must be presented. The structure model of the EB can

be seen in analogy to the data models of database management systems. It guides

the user while he retrieves or stores knowledge.

The EB shall contain several types of knowledge each represented by a separate

concept. Every instance in the EB is described by exactly one of these concepts.

During retrieval, one of the concepts is used as a template to be filled in, in order to

specify the knowledge to be searched for. This implies that the user has to know the

type of knowledge he needs when he specifies a query. The type of knowledge can

be regarded as a filter: only instances described by the selected concept will be

searched (task "identify").

For the scenario described here, the structure model shown in Figure 3 is used. The

meaning of the different concepts is described in Table 1 below. Each concept has

two kinds of attributes: terminal and nonterminal attributes. Terminal attributes model

how SE entities are specified for storage and retrieval, whereas nonterminal attrib-

�

utes model semantic relationships. Nonterminal attributes are implemented using

references. All semantic relationships are bi-directional. This is indicated in Figure 3

by the arcs between the concepts. For example, the object of a "Quantitative Experi-

ence" can be a "Technique", "Process Model", or "Product Model". The context of a

"Quantitative Experience" is described by a "Project Characterization". Vice versa, all

"Quantitative Experience" gained in a project can be found by following the refer-

ences stored in the nonterminal attribute "Quantitative exp." of a "Project Characteri-

zation".

1SPK��$IBS�
/BNF
,-0$
%VSBUJPO
5FBN�TJ[F
1SPEVDU�NPEFM
5FDIOJRVFT
2VBOUJUBUJWF�FYQ�
"QQM��EPNBJO
4PM��%PNBJO
(FOFSBMJ[BUJPO
4QFDJBMJ[BUJPO

2VBOUJUBUJWF�FYQ�
0CKFDU
1VSQPTF
2VBMJUZ�GPDVT
7JFXQPJOU
$POUFYU
3FTVMUT�
�

1SPDFTT�TUFQ
/BNF
*OQVUT
0VUQVUT
5BTL
1SPDFTT�EFTDS�
1SPEVDU�NPEFM
3PMFT
1SPDFTT�NPEFM

3PMF
/BNF
3FTQPOTJCJMJUJFT
5FDIOJRVFT
1SPDFTT�TUFQT
2VBOUJUBUJWF�FYQ�

1SPDFTT�NPEFM
/BNF
1SPDFTT�TUFQT
1SPKFDUT
5FDIOJRVF
2VBOUJUBUJWF�FYQ�

1SPEVDU�NPEFM
/BNF
"SUJGBDUT
5BTLT
1SPDFTT�TUFQT
1SPKFDUT
2VBOUJUBUJWF�FYQ�
%FTDSJQUJPO

Figure 3: Simplified structure model of an exemplary EB

�

Process Model Specifies in which order which process steps are performed.

Process Step An atomic action of a process that has no externally visible sub-

structure.

Product Model Defines the structure of software development products as well as

the tasks to be performed. It does not describe, however, how to

perform these tasks (described by the corresponding process step)

nor in which order the tasks are to be performed (described by the

process model).

Project

Characteriza-

tion

Summarizes the relevant characteristics of a project. It contains

applicability conditions for most other types of SE knowledge.

Quantitative

Experience

A pair consisting of a measurement goal and the results of the

measurement. The measurement goal is always defined at the be-

ginning of a project using five facets: the object to be analyzed, the

purpose for measuring, the property to be measured (quality fo-

cus), the role for which the data is collected and interpreted (view-

point), and the context in which the data is collected. The data

collected and interpreted is only valid within the specified context.

Role A set of responsibilities, enacted by humans.

Technique A prescription of how to represent a software development product

and/or a basic algorithm or set of steps to be followed in con-

structing or assessing a software development product.

Table 1: Main concepts of the exemplary EB

��

2.2� Project Setting

The fictive scenario described below is based on the following assumptions:

- The EF is established at department level at an automotive equipment manufac-

turer.

- The department has several groups; however, in the scenario only the groups

responsible for the software development of "ABS" and "fuel injection" equipment

are involved.

- The group "fuel injection" has just closed a contract with a car maker requiring a

"design review", something the group has never done before.

- The new project is named "Maui".

2.3� Getting the Project off the Ground

The project manager has never managed a project with a design review before.

Therefore, he needs information on projects conducted where a design review has

been performed. From the requirement to perform a "design review" he deduces that

the software documentation must at least contain the requirements and the design.

Furthermore, the product model must allow the construction and verification of these

products (according to the glossary of the organization, the "design review" is a veri-

fication of the design). He estimates that the project will run 12 months with 3-5 peo-

ple working on it at any given time.

As a first step the project manager enters his knowledge in the form of a query

searching for similar projects (in our scenario these are projects with roughly the

same duration and team size) which (a) also employed design reviews and (b) also

delivered requirements and design documents (Figure 4). The three most promising

project characterizations returned by the EB are shown in Figure 5 (structural view).

��

As can be seen, two projects, named "Hugo" and "Judy", have been performed using

design reviews.

1SPK��$IBS��
%VSBUJPO���������� �����NPOUIT

5FBN�TJ[F ������QFPQMF

5FDIOJRVFT ��\� �����^

1SPEVDU�NPEFM ��

•
•

5FDIOJRVF�
/BNF ��m%FTJHO�SFWJFXn

1SPKFDUT��\� �^•

1SPEVDU�NPEFM
"SUJGBDUT ��\3FR��%FTJHO^

5BTLT ��\$POTUSVDUJPO�7FSJGJDBUJPO^

1SPKFDUT ��\� �^•

Figure 4: Query for similar project characterizations

1SPK��$IBS��

/BNF ��O�B

,-0$ ��O�B

%VSBUJPO���������� ��������NPOUIT

5FBN�TJ[F ��O�B

1SPEVDU�NPEFM ��

5FDIOJRVFT ��\� �� ^

2VBOUJUBUJWF�FYQ� ��\� �^

"QQMJDBUJPO�%PNBJO ��m"#4n

4PM��%PNBJO ��O�B

(FOFSBMJ[BUJPO ��VOEFGJOFE

4QF[JBMJ[BUJPO ��\�

•
• •
•

•, •, ...}

5FDIOJRVF�

/BNF ��m%FTJHO�JOTQFDUJPOn

3PMFT ��\� c�^

1SPDFTT�.PEFM ��c

2VBOUJUBUJWF�FYQ����<�

(VJEFMJOFT� ��<�

)BOECPPL� �����

1SPKFDUT ��\� ^

5PPMT ��\�c��^

•,

•, •..]
•, ...}

•, •, •, •..

1SPEVDU�NPEFM

/BNF ��m4UBOEBSE�"#4n

"SUJGBDUT ��\3FR��%FTJHO�$PEF�5FTU�

%FTJHO�$3

����413�4VCTZTUFN�4ZTUFN^

5BTLT ��\$POTUSVDUJPO�7FSJGJDBUJPO

����7BMJEBUJPO��*OUFHSBUJPO^

1SPDFTT�TUFQT ��c

1SPKFDUT ��\� �^

2VBOUJUBUJWF�FYQ� �

%FTDSJQUJPO

•, •, •, •..

3PMF�

/BNF ��m*OTQFDUJPO��NBOBHFSn

3FTQPOTJCJMJUJFT ��c

5FDIOJRVFT ��\�

2VBOUJUBUJWF�FYQ� ��\� �^

•, ...}

•, •, ...
1SPDFTT�TUFQT ��\�c�^

2VBOUJUBUJWF�FYQ��

0CKFDU ��

1VSQPTF ��1SFEJDUJPO

2VBMJUZ�GPDVT ��&GGFDUJWFOFTT

7JFXQPJOU ��

$POUFYU ��

3FTVMUT� ��

•

•
•
•

1SPK��$IBS��

/BNF ��m)VHPn

,-0$ �����

%VSBUJPO���������� �����NPOUIT

5FBN�TJ[F ������QFPQMF

1SPEVDU�NPEFM ��

5FDIOJRVFT ��\� �� ^

2VBOUJUBUJWF�FYQ� ��\�����^

"QQMJDBUJPO�%PNBJO ��m"#4n

4PM��%PNBJO �����

(FOFSBMJ[BUJPO ��\� ^

4QF[JBMJ[BUJPO ��O�B

•
• •, ...

•

1SPK��$IBS��

/BNF ��m+VEZn

,-0$ �����

%VSBUJPO���������� �����NPOUIT

5FBN�TJ[F ������QFPQMF

1SPEVDU�NPEFM ��

5FDIOJRVFT ��\� �� ^

2VBOUJUBUJWF�FYQ� ��\� �^

"QQMJDBUJPO�%PNBJO ��m"#4n

4PM��%PNBJO �����

(FOFSBMJ[BUJPO ��\� �^

4QF[JBMJ[BUJPO ��O�B

•
• •, ...
•, ...

•

5FDIOJRVF�

/BNF ��m%FTJHO�SFWJFXn

3PMFT ��\�c�^

1SPDFTT�.PEFM ��c

2VBOUJUBUJWF�FYQ����c

(VJEFMJOFT� ��c

)BOECPPL� �����

1SPKFDUT ��\� ^

5PPMT ��\�c��^

•, •, •, •..

�

� � ��

%P�OPU�JOTQFDU�

CFGPSF�EFTJHOFS�

BHSFFT�UIBU�EFTJHO�JT�

SFBEZ�GPS�JOTQFDUJPO�

+VTUJGJDBUJPO�����

(II�

3UHS��HIIRUW

Figure 5: Result of first query

However, they have not been performed in the "fuel injection" group, but rather in the

"ABS" group. Quite strikingly, in both cases a design inspection was performed be-

sides the design review. A project characterization generalizing the characterizations

of "Hugo" and "Judy" shows this explicitly (see generalization references in "Hugo"

��

and "Judy" in Figure 5).

By interviewing the project manager of "Judy", our project manager finds out that the

inspections were performed for preparing the design review. The goal was to identify

and eliminate as many design defects as possible before the customer takes a look

at the design, thus increasing the confidence and/or satisfaction of the customer.

Based on this discussion, our project manager decides to employ design inspections

as well.

1SPK��$IBS��
%VSBUJPO���������� �����NPOUIT

5FBN�TJ[F ������QFPQMF

"QQMJDBUJPO�%PNBJO ��m'VFM�JOKFDUJPOn

2VBOUJUBUJWF�FYQ� ��\� �^•

1SPDFTT�NPEFM�
/BNF ��m4UBOEBSE�����n

2VBOUJUBUJWF�FYQ� ��\� �^•

3PMF�
/BNF ��m1SPKFDU�NBOBHFSn

2VBOUJUBUJWF�FYQ� ��\� �^•

2VBOUJUBUJWF�FYQ��
0CKFDU ��

1VSQPTF ��$IBSBDUFSJ[BUJPO

2VBMJUZ�GPDVT ��&GGJDJFODZ

7JFXQPJOU ��

$POUFYU ��

�

•

•
•

Figure 6: Query for similar quantitative experience

As the experience about inspections stems from a different application domain (i.e.,

ABS system development), the models available may not be valid for the application

domain at hand. Therefore, it is decided (i.e., a measurement goal is set) to measure

the effectiveness of inspections in this application domain, so as to extend the EB by

effectiveness models for inspections in the "fuel injection" domain. Furthermore, in-

spections are seen as a chance to improve the overall efficiency of software projects,

because defects can be found earlier in the life cycle than if system tests were con-

ducted at the end of coding and integration. It is therefore hypothesized that the re-

work effort for the correction of defects can be greatly reduced. To validate this hy-

pothesis with quantitative data, a second query is formulated (Figure 6). The query

��

searches for quantitative experiences on efficiency that were collected on similar

projects in the "fuel injection" group using the standard process model "Standard

4711", which is to be used in "Maui".

The results of the query (Figure 7) show an efficiency range of 2.7+-0.4 KLOC per

person month. If inspections make projects more efficient, the efficiency of "Maui"

should be higher than 3.1 KLOC/PM.

2VBOUJUBUJWF�FYQ�

0CKFDU���

1VSQPTF���$IBSBDUFSJ[BUJPO

2VBMJUZ�GPDVT���&GGJDJFODZ

7JFXQPJOU���

$POUFYU��� �

3FTVMUT�������,-0$���1.

�

•

•
•

2VBOUJUBUJWF�FYQ�

0CKFDU��� �

1VSQPTF���$IBSBDUFSJ[BUJPO

2VBMJUZ�GPDVT���&GGJDJFODZ

7JFXQPJOU��� �

$POUFYU���

3FTVMUT�������,-0$���1.�

�

•

•
•

2VBOUJUBUJWF�FYQ�

0CKFDU���

1VSQPTF���$IBSBDUFSJ[BUJPO

2VBMJUZ�GPDVT���&GGJDJFODZ

7JFXQPJOU���

$POUFYU���

3FTVMUT���������������,-0$���1.�

�

•

•
•

1SPK��$IBS�

/BNF���m7FTVWn

,-0$������

%VSBUJPO������NPOUIT

5FBN�TJ[F�������QFPQMF

1SPEVDU�NPEFM������

5FDIOJRVFT������

2VBOUJUBUJWF�FYQ����\� ��

"QQM��%PNBJO���m'VFM�*OKFDUJPOn

4PM��%PNBJO���

(FOFSBMJ[BUJPO���\�

4QFDJBMJ[BUJPO���O�B

•, ...}

•
• }

1SPK��$IBS�

/BNF���m1VSBDFn

,-0$������

%VSBUJPO������NPOUIT

5FBN�TJ[F�������QFPQMF

1SPEVDU�NPEFM������

5FDIOJRVFT������

2VBOUJUBUJWF�FYQ����\�

"QQM��%PNBJO���m'VFM�*OKFDUJPOn

4PM��%PNBJO���

(FOFSBMJ[BUJPO���\�

4QFDJBMJ[BUJPO���O�B

•, ...}

•
• }

3PMF

/BNF���m1SPKFDU�NBOBHFSn

3FTQPOTJCJMJUJFT������

5FDIOJRVFT���O�B

1SPDFTT�TUFQT������

2VBOUJUBUJWF�FYQ����\�•, •, •, •, ...}

1SPDFTT�NPEFM

/BNF���m4UBOEBSE�����n

1SPDFTT�TUFQT������

1SPKFDUT���\�

5FDIOJRVF���O�B

2VBOUJUBUJWF�FYQ����\�

•, •, •, ...}

•, •, •, ...}

�

Figure 7: Result of second query

As the final planning step for "Maui", the actual process models and measurement

plans are being developed. The process model "Standard 4711" is taken as a basis

and extended by design inspections and reviews. This results in a new process

model "Standard 4711 with design insp.+review". The measurement plan used in the

old projects "Vesuv" and "Purace" is tailored to the new needs, that is, the effort for

��

performing the inspections is also considered for the computation of the efficiency.

To plan the inspections, our project manager also relies on quantitative experience

gained in the group "ABS" (see Figure 5). For example, he sets the goal to achieve

an effectiveness of 0.5 (typical effectiveness achieved in "ABS" projects not

shown in Figure 5) and estimates the needed preparation effort based on this goal

(see "Quantitative exp." in Figure 5). At the same time he identifies this as a risk

factor, since the model upon which these estimations are based has not been vali-

dated for "fuel injection" projects.

1SPK��$IBS�
/BNF���m.BVJn
,-0$������
%VSBUJPO������NPOUIT
5FBN�TJ[F�������QFPQMF
1SPEVDU�NPEFM���\� �
5FDIOJRVFT����\�
2VBOUJUBUJWF�FYQ����\�
"QQM��%PNBJO���'VFM�*OKFDUJPO
4PM��%PNBJO���
(FOFSBMJ[BUJPO���VOEFGJOFE
4QFDJBMJ[BUJPO���O�B

•, ...}
•, •,...}

•, •, ...}

•

%FTJHO�FYQFSJFODF���mMPXn

2VBOUJUBUJWF�FYQ�
0CKFDU���
1VSQPTF���$IBSBDUFSJ[BUJPO
2VBMJUZ�GPDVT���&GGFDUJWFOFTT
7JFXQPJOU���
$POUFYU���
3FTVMUT������

•

•
•

2VBOUJUBUJWF�FYQ�
0CKFDU���
1VSQPTF���$IBSBDUFSJ[BUJPO
2VBMJUZ�GPDVT���&GGJDJFODZ
7JFXQPJOU���
$POUFYU���
3FTVMUT�������,-0$���1.�
�

•

•
•

1SPDFTT�NPEFM
/BNF���m4UBOEBSE������XJUI�%FT��*OTQ��3FWJFXn
1SPDFTT�TUFQT������
1SPKFDUT���\�
5FDIOJRVF���O�B
2VBOUJUBUJWF�FYQ����\�

• }

• }

� � ��� �

Figure 8: Updated experience base

Looking for further risk factors, our project manager also searches the EB for guide-

lines associated with the techniques applied. For instance, the guideline "Do not in-

spect before the designer agrees that the design is ready for inspection" was found

��

and will be employed because the justification sounds reasonable (see Figure 5).

2.4� Perform Project

During the performance of the project, the data for the defined measurement goals is

collected. The EB may be consulted for more reusable components and problem

solution statements. Detailing these reuse attempts is beyond the scope of this sce-

nario.

2.5� Learning from Project Experience

After the project was completed, 250 KLOC had been developed. Instead of the

planned 5 people, 7 people had been working on the project and project duration

was prolonged by 1 month. Yet the efficiency was measured to be 3.2 KLOC/PM.

However, the effectiveness of the inspections was only 0.4 instead of the planned

0.5. Therefore, further analysis was conducted showing that the experience of the

designers was not considered in the model of effectiveness. In all projects conducted

in the "ABS" group, the designers had a medium level of experience, whereas the

designers in the "Maui" project had only little experience.

The project characterization that is the result of the post-mortem analysis, the gath-

ered quantitative experiences, and the tailored process model "Standard 4711 with

design insp.+review" become new instances of the EB. The relationships to existing

instances are also specified (Figure 8; the relationships are indicated by connectors

to Figure 5 and Figure 7).

Since a new important applicability factor (design experience) was identified, all ex-

isting project characterizations are extended by this new attribute (see gray texts in

Figure 5, Figure 7, and Figure 8). For "Maui" the attribute value is "low", whereas for

"Hugo" and "Judy" as well as their generalization the attribute value is "medium". For

��

all other projects, the attribute value is set to "unknown", because it would require too

much effort to collect this information. Moreover, this information would be impossible

to get (at least in part), since some of the old project managers have already left the

software development organization.

2.6� Strategic Aftermath

From the inspection effectiveness and the project efficiency, no conclusive evalua-

tion can be done with respect to the hypothesis that inspections increase project effi-

ciency, because "Maui" could be an outlier regarding efficiency. The 3.2 KLOC/PM

are quite promising, but further empirical evidence is needed. For this reason, the

"fuel injection" group creates a new process model "Standard 4711 with design

insp.". This process model shall be applied in the next three "fuel injection" projects

to be able to build a more valid efficiency model.

Since it is also expected that the inspection effectiveness will be better if more expe-

rienced designers take part, inspection effectiveness will also be measured in future

projects.

2.7� Conclusion from the Sample Scenario

The scenario illustrates that:

- An EB can supply knowledge users did not expect (in the scenario, the project

manager did not know that design reviews were performed in the "ABS" group).

- Goal-oriented, organizational learning leads to strategically relevant knowledge

faster than learning on the level of individuals or groups (see strategic aftermath).

Even if the explicitly available knowledge does not meet the current needs per-

fectly, it can be taken advantage of (see utilization of "design review" experience

in the "ABS" group).

��

- SE knowledge is not static. It is complemented on a continuous basis. In the sce-

nario, both concrete instances and structural knowledge (e.g., "design experi-

ence" is relevant for selecting the right effectiveness model) are added.

3� Knowledge Representation

As we have seen in the above sample scenario, in the context of software develop-

ment and improvement programs many kinds of artifacts need to be stored. Exem-

plary kinds of artifacts are process models, product models, resource models, quality

models, all kinds of software artifacts (e.g., code modules, system documentation),

lessons learned about these artifacts, and observations (results and success re-

ports). To be able to learn and reuse effectively, all these artifacts have to be repre-

sented in a uniform way. Characterizations are a natural way to achieve this goal

(Prieto-Díaz (1991)). Characterizations "extend" artifacts by complementing the in-

formation contained within the artifacts. The additional information is necessary to

enable users to retrieve the most appropriate artifact. In the above scenario the proj-

ect manager characterizes the project for which he is responsible. This characteriza-

tion is then matched against the characterizations (instances) stored in the EB (see

Figure 5).

For an artifact to be part of the EB, it needs a characterization. This characterization

is structured by the concept associated with the respective artifact, for example, a

technique, a quantitative experience, a process step, etc. (see Figure 3). Thus, all

artifacts of one type are characterized using the same "characterization structure"

(also called "characterization schema"). Consequently, the EB will be integrated from

a heterogeneous set of information sources. Integration of the diverse artifacts into a

coherent model requires a flexible, modular overall schema for the EB that allows

��

interfacing with various tools and information sources.

All tasks that can be performed based only on the characterizations of the artifacts

can be carried out generically (in Figure 2, these tasks are printed in italics), whereas

all tasks requiring to view or change the artifact itself must be performed using spe-

cialized (i.e., artifact-specific) tools. This also fulfills a very practical need of our proj-

ect partners: It must be possible to integrate already existing (artifact-specific) tools.

In this section, we will focus on the knowledge representation used in our EB system

for the generic tasks, while the EB system architecture is subject of the next section.

One important aspect to be considered when choosing an adequate representation

is the way people work. When solving problems, people often do so by referring to

examples of similar past problems. Such "reference" is usually through context in-

formation (e.g., "the process model that was used in the project I worked on last

year"). Explicitly modeling (characterizing) a context (e.g., the project environment) of

artifacts also allows to discover experience in an EB previously unknown to the user

(e.g., by querying for "process models used in small projects"). Queries considering

the context can also be employed for analyzing the contents of an EB, possibly re-

sulting in generalized or aggregated experience.

Representing the context while minimizing the maintenance effort demands the

characterizations to reference each other. This introduces the construct of semantic

relationships, denoted as nonterminal attributes in Section 2. Once nonterminal at-

tributes are represented explicitly, they can also be used to conduct context-sensitive

��

retrieval.

3&'4&/0

	3FQSFTFOUBUJPO

'PSNBMJTN�GPS

4PGUXBSF�&OHJOFFSJOH

POUPMPHJFT
�

��$PODFQUT

��"UUSJCVUFT

��4JNJMBSJUJFT

��%FQFOEFODJFT�

����SFMBUJPOTIJQT

����WBMVF�JOGFSFODFT

����BTTFSUJPOT

.FUB�LOPX MFEHF

2VBOUJUBUJWF

�FYQFSJFODF

5FDIOJRVF

3PMF

1SPDFTT

��4UFQ

1SPDFTT

�NPEFM

1SPEVDU

�NPEFM

1SP K�

$IBS�

.FBTVSF�

NFOU

1SPDFTT

.PEFMMJOH

4&�UFDIOPMPHJFT

1SPKFDU�JOGP

$PODFQUVBM�LOPXMFEHF

*OTQFDUJPO

NBOBHFS

1SPKFDU

NBOBHFS

3PMF

4UBOEBSE

"#4

1SPEVDU

NPEFM

$POUFYU�TQFDJGJD�LOPXMFEHF

0OUPMPHZ

2VBOUJUBUJWF�

FYQFSJFODF

.FBTVSFNFOU

4&�UFDIOPMPHJFT

+VEZ

7FTVW

1VSBDF

)VHP

1SPKFDU

DIBS

1SPKFDU�

JOGP

1SPDFTT

TUFQ

4UBOEBSE

����

1SPDFTT

NPEFM
1SPDFTT

.PEFMMJOH

Figure 9: Knowledge levels of SE knowledge

Since each software development project is different, it is very unlikely that one finds

an artifact exactly fulfilling one’s needs. The retrieval mechanism must therefore be

able to find similar artifacts, which may then be tailored to the specific needs of the

project at hand.

Similarity-based retrieval with incomplete information can also be realized based on

characterizations as approaches by various researchers show. For instance, faceted

classification (Prieto-Díaz (1991)) can be used to search for artifacts of one kind.

Ostertag, Hendler, Prieto-Díaz, and Brown (1992) extended faceted classification to

also include nonterminal attributes.

In addition to the assertions provided by Ostertag’s approach, we identified the need

to provide value inferences (i.e., automatic value computations for attribute values

��

that can be derived from other attribute values). This minimizes the number of attrib-

ute values that the user has to supply and thus reduces the maintenance effort.

To further support the user, we use the characterization schemas to guide charac-

terizations of both new artifacts (task "record" from Figure 2; see also Figure 8) and

needed artifacts (task "specify"; see Figure 4). This also mirrors the organizational

separation of project organizations (dealing only with characterizations and the arti-

facts themselves, but not with characterization schemas) and the EF (responsible for

defining characterization schemas).

These conclusions led us to the definition of the knowledge levels shown in Figure 9.1

To operationalize the retrieval, input, and maintenance activities, we need a formal

representation of the conceptual knowledge of an EB. In the Artificial Intelligence (AI)

literature, such conceptual knowledge is represented as an ontology (Kalfoglou

(1999); Landes, Schneider and Houdek (1998); Sumner et al. (1998); Uschold and

Gruninger (1996)). For SE ontologies, we use a special representation formalism

named REFSENO (representation formalism for software engineering ontologies;

Tautz and Gresse von Wangenheim (1999)) incorporating the above mentioned rep-

resentation constructs.

Figure 9 shows a simplified ontology of an EB and an excerpt from Section 2 for the

context-specific knowledge. As can be deduced from this small example, automated

1 The division into three levels is state-of-the-art, though they are called differently for different ap-

proaches (e.g., "meta model", "class diagram", "instances" in UML (RATIONAL (1997)), or "model-

ing formalism", "data model", "data" in the database community).

��

support for ensuring the consistency of the context-specific knowledge is needed.

The generic tasks operate on the context-specific knowledge and are guided by the

conceptual knowledge. For example, in Section 2 the project manager was inter-

ested in information about projects that are similar to the one he was responsible for.

Thus, to retrieve project information, the EB system provided him with the schema

for "project characterizations" (part of the conceptual knowledge; see Figure 3). He

then instantiated this schema by providing a characterization of the project he was

responsible for (task "specify"; see Figure 4). The EB system determines the poten-

tial instances (in this case, all stored "project characterizations"; task "identify"),

computes the similarity of the potential instances to the queried one, and ranks them

in descending order (task "evaluate"). Ideally, that is, if the similarity measure is de-

fined adequately, the most similar "project characterization" is the best candidate to

reuse (task "select"). However, in practice it is hard to define similarity right the first

time (Henninger (1996), Gresse von Wangenheim et al. (1999)). Therefore, support

for inspecting the artifact right away (in this case the "project characterization") is

necessary. We will address this requirement in the next section.

For the implementation of the generic tasks we evaluated candidate approaches to

implement a system that supports OL in the software domain. Case-based reasoning

(CBR) technology is a promising approach (Althoff and Bartsch-Spörl (1996); Althoff

(1997); Althoff (1999); Tautz and Althoff (1997)) to us. There are two main argu-

ments, a technical and an organizational one, why we selected CBR as the most

promising AI technology.

While the representation and reuse of software knowledge recommends an ap-

proach from the knowledge-based systems field, learning from examples suggests

an approach from the field of machine learning. A technology that is rooted in both

��

fields is CBR. It is a generalization of the faceted classification and, thus, also offers

a natural (i.e., direct) solution for similarity-based retrieval based on incomplete in-

formation (as exemplified in Section 2).

From an organizational perspective, the tasks shown in Figure 2 have to be sup-

ported. Already Althoff and Wilke (1997) motivated that CBR can be applied as a

human-based, technologically independent strategy. That is, the basic CBR cycle

(see Figure 10) consisting of the steps "retrieve – reuse – revise – retain", as de-

scribed by Aamodt and Plaza (1994), is completely carried out by humans. Viewing

CBR as a human-based strategy enables the use of CBR methods for the tasks

shown in Figure 2. More details can be found in Tautz (1999).

New
Case

New
Case

Proposed
Case

Tested/
Repaired

Case

Learned
Case

Retrieved
CasePrevious

Cases

&RQFHSWXDO

.QRZOHGJH

5
HWULHYH

5

H
X
V
H

5HYLVH

5

H

W

D

L

Q

Query

Suggested
Artifact

Applied
Artifact

&DVH�� �Problem (characterization)/Solution
(artifact) Pair

4XHU\� Query at hand defines new case (problem
without solution)

5HWULHYH��New case is used to find most similar
case among the known (previous) cases

5HXVH� New and retrieved case are combined to a
proposed case including the suggested artifact

5HYLVH� Suggested artifact is applied and evaluated

5HWDLQ��Useful experiences from applying the
artifact are retained by adapting the case base and
the conceptual knowledge

Figure 10: Case-Based Reasoning

The next section focuses on the implementation of the EB integrating the generic

and artifact-specific tasks of Figure 2.

��

4� System Architecture

In this section, we present a system architecture for a "Software Engineering

Experience Environment" (SEEE) (see Figure 11). We distinguish between general

purpose EF tools and artifact-specific application tools. General purpose tools oper-

ate on the characterizations of the artifacts (attribute values which can be searched

for) in the EB, whereas the application tools operate on the artifacts themselves.

Both kinds of tools act as clients using the EB server as a means for retrieving and

versioning SE artifacts. The interplay of the different tools has been exemplified in

the sample scenario (see Section 2). In the following we will explain parts of the

tasks shown in Figure 2 and use them to illustrate how the proposed SE experience

environment works.

��

$SS
OLFD

WLRQ
�7RR

OV
()�7RROV

3URMHFW�,QIRUPDWLRQ�7RRO

3URFHVV�0RGHOLQJ�7RRO

0HDVXUHPHQW�7RRO

6HDUFK�7RRO

,QSXW�0DLQWHQDQFH
7RRO

1DWLYH�WRRO�GDWD

'DWDEDVHV)LOHV

([SHULHQFH�%DVH

&KDUDFWHUL]DWLRQV�
2WKHU�FDVH�EDVHG�NQRZOHGJH

�&DVH�%DVH

&YQFSJFODF�#BTF
4FSWFS

2
Q
WR
OR
J
\�
�V
S
HF

LI
LH
G

X
VL
Q
J
�5
(
)
6
(
1
2
�

&%5�:RUNV

Defines behavior of Data transfer

Figure 11: Architecture of the Software Engineering Experience Environment

In the beginning of a project the general purpose Search Tool is started and the new

project is (partially) specified guided by the characterization schemas (case models

in terms of CBR tools) for project characterizations, techniques, and product models

(tasks "specify" and "identify"). The Search Tool then returns a list of similar project

characterizations (cases in terms of CBR tools) by using the CBR tool of the EB

server (tasks "evaluate" and "select"). Starting from the project characterizations, the

user can navigate to characterizations of relevant artifacts such as techniques em-

ployed, quantitative experiences collected, etc. The navigational search is supported

through case references (links between cases), that is, for each case the user navi-

gates to, the CBR tool is used to retrieve it.

��

Next, project goals (including measurement goals to enable strategic learning for the

software development organization) are set based on the results of the step before.

This is done in a similar manner: The Search Tool is invoked to find similar meas-

urement goals from the past. However, these measurement goals and the respective

measurement plans have to be adapted to project-specific needs. For this purpose, a

cross-reference, which is stored as part of the artifact’s characterization in the case

base, is passed to the measurement planning tool. The Measurement Tool thus in-

voked loads the old measurement plan (using the data retrieval services of the EB

server) and allows the project manager to tailor it to the project’s needs (task "util-

ize"). The new measurement plan is saved using the data storage services, but its

characterization is not specified yet. That is, no case is stored for it and, therefore, it

is not considered as part of the EB. Thus, it is not available to other projects (yet).

This avoids the usage of unvalidated artifacts.

In the same way, process models and other artifacts needed by the project are re-

trieved and tailored to specific needs of the project at hand. The project is then ex-

ecuted.

Once the project is finished, the project’s artifacts (which are deemed worthwhile to

keep) are stored in the EB for future projects. For this purpose, the quality of the ar-

tifacts is determined through careful analysis with the help of the application tools

(task "collect"). For those artifacts to be stored (task "copy"), the export-interface of

the application tools compute the attributes’ values of the attribute’s characterization

automatically as far as possible (task "initially characterize new artifact"). This is nec-

essary because the general purpose EF tools are not able to read the native data

format of the application tools. The procedure may involve inserting several semanti-

cally related characterizations (e.g., for a code module each function may be char-

��

acterized separately in addition to the characterization of the whole module). For this

purpose, the artifact has to be split into chunks (task "split"). Attribute values, which

cannot be computed automatically, must be entered manually. This is realized

through invoking the (general purpose) Input/Maintenance Tool, which prompts the

user for the missing values. This procedure is followed for all artifacts to be stored.

The newly inserted cases have to be validated and disseminated. Therefore, they

are initially marked as "to be validated" at the time of their insertion. Experience en-

gineers from the EF analyze and review the newly acquired assets to guarantee a

minimal quality (tasks "analyze" and "review"). In case of minor quality deficits, the

experience engineers also correct the assets by invoking the respective application

tool (task "evolve"). During the review, the experience engineers also assess the re-

use potential of the artifacts by using the respective application tool. As a result, the

artifact may be modified to increase its reuse potential (task "evolve"). Usually this

requires modification of the artifact’s characterization (using the Maintenance Tool).

In case of major quality deficits, the assets will be rejected. In case the artifacts pass

the review, their characterizations are completed by the quality properties of the ar-

tifacts (task "complete characterization"). Finally, the corresponding cases are

marked "validated" (task "publish") and persons interested in the new artifacts are

informed (task "inform").1 After this, it is possible for other projects to access the new

1 Statistical data can also be kept with the cases, so as to assess their usefulness (e.g., data on how

often they had been applied successfully, or to what extent they had to be modified to be applica-

ble).

��

artifact.

For implementing the architecture presented above, we use commercially available

software, namely CBR-Works from tec:inno, Kaiserslautern (CBR-Works (1999)), as

the CBR tool within the EB server. The application and EF tools are built using the

Java platform to ensure high portability across our customers’ platforms.

5� Current Status

Up to now important parts of the above-described SEEE have been implemented

and validated. Main parts of it are shown in Figure 12. This subpart of the SEEE is

called Intelligent Retrieval and Storage System (INTERESTS). In addition, some of

the tasks shown in Figure 2 have been validated using other technologies.

The first instantiation of INTERESTS was the CBR-PEB system (Althoff, Nick &

Tautz (1999)). Its objective is to provide a repository of CBR systems (i.e., tools and

applications). It is accessible over the web1 since July 1998 and as of September

1999 it includes 60 (characterizations of) CBR systems. Besides contributing to the

validation of INTERESTS, CBR-PEB was the first application where the Goal-

Question-Metric technique was used for evaluating EBs (Nick, Althoff, and Tautz

(1999)).

1 http://demolab.iese.fhg.de:8080/

��

6HDUFK�7RRO

,QSXW�0DLQWHQDQFH
7RRO

([SHULHQFH�%DVH
&KDUDFWHUL]DWLRQV�

2WKHU�FDVH�EDVHG�NQRZOHGJH

�&DVH�%DVH

&YQFSJFODF�#BTF
4FSWFS

2
Q
WR
OR
J
\�
�V
S
HF
LI
LH
G

X
VL
Q
J
�5
(
)
6
(
1
2
�

&%5�:RUNV

Defines behavior of Data transfer

([SHULHQFH�)DFWRU\�WRROV

Figure 12: Intelligent Retrieval and Storage System (INTERESTS)

The Intelligent Process and Quality Management (IPQM) system was the second

instantiation of INTERESTS. Its objective is to provide - in collaboration with Fraun-

hofer Institute for Manufacturing Engineering and Automation (IPA) - a technical in-

frastructure for supporting continuous improvement processes in hospitals (Althoff,

Bomarius et al. (1999)). As of September 1999 it successfully passed field tests in

three different hospitals and a demonstrator is publicly accessible over the web1. Be-

sides validating INTERESTS and REFSENO technically, the IPQM project showed

that both are also applicable for non-SE domains (see Figure 13).

1 http://demolab.iese.fhg.de:8080/Project-KVP-EB/

��

1SPCMFN���*EFB

,FZXPSET

4PMVUJPOT

-FTTPOT�-FBSOFE

4PMVUJPO�$POUSPMMJOH
SFBMJ[FE�CFOFGJU�	TBWJOHT�DPTUT

CFOFGJDJBSZ
OFH��BGGFDUFE�QFSTPOT

3FTQPOTJCJMJUJFT���4UBUVT

#BTJD�1SPCMFN

%FTDSJQUJPO

1SPUPDPM

&YQFDUFE�#FOFGJU

4PMVUJPO��
%FTDSJQUJPO

1SPUPDPM

&YQFDUFE�#FOFGJU

4PMVUJPO��
%FTDSJQUJPO

1SPUPDPM

&YQFDUFE�#FOFGJU

4PMVUJPO��

Figure 13: Main concepts in the IPQM system

A third instantiation of INTERESTS is the Knowledge Management Product Experi-

ence Base (KM-PEB). Its objective is to provide (a) a descriptive framework for

knowledge management tools and approaches as well as (b) a repository of these

tools that is accessible over the web1. Besides contributing to the validation of

INTERESTS and REFSENO, KM-PEB also provided much experience on develop-

ing characterization schemas and instantiating them (see Figure 14). In addition, it

will be used for a roll-out of the evaluation program originally set up for CBR-PEB

(Nick, Althoff, and Tautz (1999)).

While the above three projects resulted in public demonstrator systems, there have

been additional collaborations with industrial partners, which provided us with feed-

1 http://demolab.iese.fhg.de:8080/KM-PEB

��

back for INTERESTS and the tasks presented in Figure 2. An ongoing collaboration

with Allianz Life insurance is concerned with the development of a lessons learned

repository. Besides INTERESTS, we validated parts of our conceptualization that

had been reused within this project. In a collaboration with DaimlerChrysler the goal

was to build up experience about software inspections. Within this project we vali-

dated the recording tasks shown in Figure 2.

Figure 14: Main concepts in the KM-PEB system

The experiences gained in these and other projects resulted in a detailed description

of the EF tasks (Tautz (1999), Althoff, Birk et al. (1999)) and a structured set of solu-

tion methods for these tasks. For this purpose research results from case-based rea-

soning, organizational memories, knowledge management, domain analysis, and

software reuse have been combined (Tautz (1999)). The objective of this task-

decomposition hierarchy is to guide the tailoring to company-specific needs, to ana-

��

lyze employed processes for strengths and weaknesses, and to build up libraries for

reusable problem-solving methods. The validation of these objectives is a major

challenge and currently ongoing within the scope of building IESE’s own EF (Tautz

(1999)).

A first application tool (see Figure 11) that currently is being technically integrated

with INTERESTS is a tool for supporting the selection of SE technologies called

KONTEXT (KnOwledge maNagement based on the application conTEXt of software

engineering Technologies; see Birk and Kröschel (1999), Birk (1999)).

6� Discussion and Outlook

The advantages and disadvantages of approaches like the EF/EB approach (see

also Bergmann et al. (1999) and Bartlmae (1999)) with respect to knowledge main-

tenance and their comparison with approaches using more formal ontologies are cur-

rently discussed in the literature (see, e.g., Menzies (1999), Liao et al. (1999), Kalfo-

glou (1999), Althoff (1999a)). Maurer and Holz (1999) argued that the processes in-

volved in learning software organizations are very important (which is supported by

Althoff, Birk et al. (1999)) and showed how to integrate repository-based approaches

with process-oriented ones. Snoek (1999) developed a descriptive framework for

knowledge management approaches that explicitly considers this aspect among oth-

ers (see also the description on KM-PEB). Weibelzahl (1999) describes a two-step

CBR approach that is well suited to support processes for sales support in the web.

Data mining approaches for automatically supporting the manual techniques for

populating OMs are described in Anand, Aamodt, and Aha (1999). The evaluation of

OMs as well as the particular knowledge assets within an OM are, for instance, dis-

��

cussed in Menzies and van Harmelen (1999), Bartsch-Spörl (1999), and Nick, Alt-

hoff, and Tautz (1999). A product experience base for machine learning algorithms is

described in Lindner and Studer (1999).

References

AAMODT, A. & PLAZA, E. (1994). Case-based reasoning: Foundational issues,

methodological variations, and system approaches. AICOM, 7(1):39–59.

ALTHOFF, K.-D. (1997). Validating case-based reasoning systems. Proc. 5. Leipzi-

ger Informatik-Tage, 157-168. Forschungsinstitut für Informationstechnologien e.V.,

Leipzig.

ALTHOFF, K.-D. (1999a). Panel on Knowledge Maintenance: Does Meta-Knowledge

Complicate KM? The CBR Perspective. In Proc. of the 11th International Conference

on Software Engineering and Knowledge Engineering (SEKE’99), June 16 to 19,

405.

ALTHOFF, K.-D. (1999b). Evaluating Case-Based Reasoning Systems. Springer

Verlag, LNAI series, to appear.

ALTHOFF, K.-D. & BARTSCH-SPÖRL, B. (1996). Decision support for case-based

applications. Wirtschaftsinformatik, 38(1), 8–16.

ALTHOFF, K.-D., BIRK, A., GRESSE VON WANGENHEIM, C. & TAUTZ, C. (1998).

��

Case-based reasoning for experimental software engineering. In: M. Lenz et al.

(eds.), Case-Based Reasoning Technology – From Foundations to Applications.

Springer-Verlag.

ALTHOFF, K.-D., BIRK, A., HARTKOPF, S., MÜLLER, W., NICK, M., SURMANN, D.

& TAUTZ, C. (1999). Populating, Utilizing, and Maintaining a Software Engineering

Experience Base. In F. Bomarius & G. Ruhe (eds.), Learning Software Organizations

- Methodology and Applications, Springer Verlag, to appear.

ALTHOFF, K.-D., BOMARIUS, F., MÜLLER, W. & NICK, M. (1999). Using Case-

Based Reasoning for Supporting Continuous Improvement Processes. In: P. Perner

(ed.), Maschinelles Lernen - FGML’99 - Proc. German Workshop on Machine

Learning, IBaI Report, Institute for Image Processing and Applied Informatics, Leip-

zig, ISSN 1431-2360, pages 54-61.

ALTHOFF, K.-D., NICK, M. & TAUTZ, C. (1999). CBR-PEB: A Tool for Implementing

Reuse Concepts of the Experience Factory for CBR-System Development. In E.

Melis, Proc. 5th German Conference on Knowledge-Based Systems (XPS’99) Work-

shop on Case-Based Reasoning (GWCBR’99); also: IESE-Report No. 058.98/E,

Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Ger-

many. CBR-PEB is publicly accessible via http://demolab.iese.fhg.de:8080/.

ALTHOFF, K.-D. & WILKE, W. (1997). Potential uses of case-based reasoning in

experience based construction of software systems and business process support.

In: R. Bergmann & W. Wilke (eds.), Proceedings of the 5th German Workshop on

Case-Based Reasoning, LSA-97-01E, 31–38, Centre for Learning Systems and Ap-

plications, University of Kaiserslautern.

ANAND, S. S., AAMODT, A. & AHA, D. W. (eds.) (1999). Automating the Construc-

tion of Case Based Reasoners. Proc. Workshop ML-5 at the 16th International Con-

��

ference on Artificial Intelligence (IJCAI’99), July 31 – August 6.

BARTLMAE, K. (1999). An Experience Factory Approach for Data Mining. In Proc.

2nd Workshop "Data Mining and Data Warehousing as foundation of recent decision

support systems" (DMDW99), LWA99 Collection, ISBN 3-929757-26-5, pages 5-14,

University of Magdeburg, September 1999.

BARTSCH-SPÖRL, B. (1999). Cases as Knowledge Assets. In S. Schmitt & I. Voll-

rath (eds.), Challenges for Case-Based Reasoning - Proc. of the Workshops of the

3rd International Conference on Case-Based Reasoning, LSA-99-03E, Centre for

Learning Systems and Applications, University of Kaiserslautern, I-25 - I-28.

BASILI, V. R. & CALDIERA, G. & ROMBACH, H. D. (1994). Experience Factory. En-

cyclopedia of Software Engineering, volume 1, 469–476. John Wiley & Sons.

BASILI, V. R. & ROMBACH, H. D. (1991). Support for comprehensive reuse. IEE

Software Engineering Journal, 6(5):303–316.

BERGMANN, R., BREEN, S., GÖKER, M., MANAGO, M. & WESS, S. (1999). De-

veloping Industrial Case-Based Reasoning Applications - The Inreca Methodology.

Springer Verlag.

BIGGERSTAFF, T. & RICHTER, C. (1987). Reusability framework, assessment, and

directions. IEEE Software, 4(2): 41-49.

BIRK, A. (1999). Knowledge Management of Experiences about the Application

Context of Software Engineering Technologies. PhD thesis, Department of Computer

Science, University of Kaiserslautern, forthcoming.

BIRK, A. & KRÖSCHEL, F. (1999). A Knowledge Management Lifecycle for Experi-

ence Packages on Software Engineering Technologies. In F. Bomarius (ed.), Proc.

Workshop on Learning Software Organizations, Fraunhofer Institute for Experimental

Software Engineering, Kaiserslautern, Germany, 115-126.

��

CBR-WORKS (1999). (http://www.tecinno.de/tecinno_e/ecbrwork.htm)

FELDMANN, R. & TAUTZ, C. (1998). Improving best practices through explicit

documentation of experiences about software engineering technologies. Proceed-

ings of the International Conference on Software Process Improvement in Research

and Education (INSPIRE ’98), London, England.

GRESSE VON WANGENHEIM, C., ALTHOFF, K.-D. & BARCIA, R. M. (1999). Intel-

ligent Retrieval of Software Engineering Experienceware. In Proc. of the 11th Inter-

national Conference on Software Engineering and Knowledge Engineering

(SEKE'99), June 16 to 19, 128-135.

HENNINGER, S. (1996). Supporting the construction and evolution of component

repositories. Proceedings of the 18th International Conference on Software Engi-

neering (ICSE'96), Berlin, Germany.

HENNINGER, S. (1997). Capturing and formalizing best practices in a software de-

velopment organization. Proceedings of the 9th International Conference on Software

Engineering and Knowledge Engineering (SEKE'97), Madrid, Spain.

KLEINER, A. & ROTH, G. (1997). How to make experience your company’s best

teacher. Harvard Business Review, 75(5): 172-177.

KALFOGLOU, Y. (1999). Panel discussion notes: knowledge maintenance - The role

of Formal Ontologies. Proceedings of the 11th International Conference on Software

Engineering and Knowledge Engineering (SEKE’99), Kaiserslautern, Germany, 401-

404.

KOTTER, J. P. (1996). Leading change. Harvard Business School Press, Boston.

LANDES, D., SCHNEIDER, K. & HOUDEK, F. (1998). Organizational learning and

experience documentation in industrial software projects. In S. Decker & F. Maurer

(eds.), Proceedings of the Interdisciplinary Workshop on Building, Maintaining, and

��

Using Organizational Memories (OM-98), 47-64, Brighton, UK.

LIAO, M., ABECKER, A., BERNARDI, A., HINKELMANN, K. & SINTEK, M. (1999).

Ontologies for Knowledge Retrieval in Organizational Memories. In F. Bomarius

(ed.), Proc. Workshop on Learning Software Organizations, Fraunhofer Institute for

Experimental Software Engineering, Kaiserslautern, Germany, 11-25.

LINDNER, G. & STUDER, R. (1999). AST: Support for Algorithm Selection with a

CBR Approach. In: P. Perner (ed.), Maschinelles Lernen - FGML’99 - Proc. German

Workshop on Machine Learning, IBaI Report, Institute for Image Processing and Ap-

plied Informatics, Leipzig, ISSN 1431-2360, pages 62-71.

MAURER, F. & HOLZ, H. (1999). Process-Oriented Knowledge Management for

Learning Software Organizations. In Proc. Twelfth Workshop on Knowledge Acquisi-

tion, Modeling and Management (KAW’99), Banff, Oct. 16-21.

MENZIES, T. (1999). Knowledge Maintenance Heresies: Meta-Knowledge Compli-

cates KM. In Proc. of the 11th International Conference on Software Engineering and

Knowledge Engineering (SEKE’99), June 16 to 19, 396-400.

MENZIES, T. & VAN HARMELEN, F. (1999). The Second Banff KAW’99 Track on

Evaluation of KE Methods. http://www.cse.wvu.edu/timm/banff99/.

NICK, M., ALTHOFF, K.-D. & TAUTZ, C. (1999). Facilitating the Practical Evaluation

of Organizational Memories Using the Goal-Question-Metric Technique. In Proc.

Twelfth Workshop on Knowledge Acquisition, Modeling and Management (KAW’99),

Banff, Oct. 16-21.

OSTERTAG, E., HENDLER, J., PRIETO-DÍAZ, R. & BRAUN, C. (1992). Computing

similarity in a reuse library system: an AI-based approach. ACM Transactions on

Software Engineering and Methodology, 1(3): 205-228.

PRIETO-DÍAZ, R. (1991). Implementing faceted classification for software reuse.

��

Communications of the ACM, 34(5): 89-97.

RATIONAL (1997). Unified Modeling Language Version 1.1. Rational Software Cor-

poration.

SENGE, P. M. (1990). The fifth discipline: The art and practice of the learning or-

ganization. Doubleday Currency, New York.

SNOEK, B. (1999). Knowledge Management and Organizational Learning - System-

atic Development of an Experience Base on Approaches and Technologies. Diploma

thesis, Department of Computer Science/Fraunhofer Institute for Experimental Soft-

ware Engineering, University of Kaiserslautern. Available at:

http://demolab.iese.fhg.de:8080/KM-PEB/.

SUMNER, T., DOMINGUE, J., ZDRAHAL, Z., HATALA, M., MILLICAN, A.,

MURRAY, J., HINKELMANN, K., BERNARDI, A., WESS, S. & TRAPHÖNER, R.

(1998). Enriching Representations of Work to Support Organisational Learning. Pro-

ceedings of the Interdisciplinary Workshop on Building, Maintaining and Using Or-

ganizational Memories (OM-98), 109-128, Brighton, UK.

TAUTZ, C. (1999). Customizing Software Engineering Experience Management

Systems to Organizational Needs. PhD thesis, Department of Computer Science,

University of Kaiserslautern, forthcoming.

TAUTZ, C. & ALTHOFF, K.-D. (1997). Using case-based reasoning for reusing soft-

ware knowledge. In D. Leake & E. Plaza (eds.), Case-Based Reasoning Research

and Development - Proceedings of the 2nd International Conference on Case-Based

Reasoning, Providence, RI, July 1997. Springer-Verlag. 156-165.

TAUTZ, C. & GRESSE VON WANGENHEIM, C. (1999). REFSENO: A representa-

tion formalism for software engineering ontologies. Proc. 5th German Conference on

Knowledge-Based Systems (XPS99) Workshop on Knowledge Management, Or-

��

ganizational Memory, and Reuse, 61-71; also: Technical Report IESE-Report No.

015.98/E, Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern

(Germany).

USCHOLD, M. & GRUNINGER, M. (1996). Ontologies: Principles, methods, and ap-

plications. The Knowledge Engineering Review, 11(2): 93-136.

WEIBELZAHL, S. (1999). Conception, Implementation, and Evaluation of a Case-

Based System for Sales Support in the Internet. Diploma thesis, University of Trier;

Available at: http://www.cs.uni-sb.de/users/jameson/pdf/weibelzahl.pdf).

