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ABSTRACT
Dementia has a large economic impact on our society as cost-
effective population-wide screening for early signs of dementia
is still an unsolved medical supply resource problem. A solution
should be fast, require aminimum of external material, and automat-
ically indicate potential persons at risk of cognitive decline. Despite
encouraging results, leveraging pervasive sensing technologies for
automatic dementia screening, there are still two main issues: sig-
nificant hardware costs or installation efforts and the challenge of
effective pattern recognition. Conversely, automatic speech recog-
nition (ASR) and speech analysis have reached sufficient maturity
and allow for low-tech remote telephone-based screening scenar-
ios. Therefore, we examine the technologic feasibility of automati-
cally assessing a neuropsychological test—Semantic Verbal Fluency
(SVF)–via a telephone-based solution. We investigate its suitability
for inclusion into an automated dementia frontline screening and
global risk assessment, based on concise telephone-sampled speech,
ASR and machine learning classification. Results are encouraging
showing an area under the curve (AUC) of 0.85. We observe a rel-
atively low word error rate of 33% despite phone-quality speech
samples and a mean age of 77 years of the participants. The auto-
mated classification pipeline performs equally well compared to
the classifier trained on manual transcriptions of the same speech
data. Our results indicate SVF as a prime candidate for inclusion
into an automated telephone-screening system.
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1 INTRODUCTION
Dementia has a large economic impact on our society: according
to the World Alzheimer Report 2016, dementia is about to become
a trillion dollar disease by 2018 [47]. Since many clinical trials have
failed to find a cure, a conceptual shift has occurred considering
Alzheimer’s disease (AD) as a continuum for which early interven-
tion may offer the best chance of therapeutic success [11]. This
urgent need to identify a treatment that can delay or prevent AD
has increased the number of preventional trials targeting disease
modifying risk factors for which early screening of subjects at risk
to develop cognitive impairment is highly relevant [1]. Recent re-
search has shown that prevention at prodromal stages targeting
disease mechanisms show promising results and are more likely to
be effective [52]. Many challenges remain detecting these ’silent’
stages, where clinical signs are not yet very obvious since our un-
derstanding of the pathological mechanism is still quite limited [13]
and current tools may lack sufficient sensitivity to detect subtle but
meaningful changes.

This approach has led to the current discussion on creating and
approving more clinically relevant measures for early population
based screening with low-cost tests of high sensitivity and lower
specificity [11]. For instance, currently, just 50% of cases are diag-
nosed in Europe and the US [47]. This can be attributed to effective
screenings for early signs of dementia (mild neurocognitive dis-
order) having not reached sufficient coverage. Especially in areas
with low population density, clinical facilities and experts are too
distributed to screen populations effectively, as this is still done
in a face-to face manner today. Many clinical trials suffer from
high drop out rates partly due to visit frequency and study length
[21]. This translates into a medical supply resource problem and
highlights the opportunities for telemedicine applications.

It has been put forward that new tools may address this need
fast, require neither laboratory setup nor external material, and
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automatically evaluate and indicate potential clinically relevant
persons. Therefore, research should focus on innovative comput-
erized tools that reveal robust psychometric properties for early
detection of neurocognitive disorder significantly decreasing the
workload of expert clinicians, which represent a very rare resource
in most cases. Thus, automatic, inexpensive and remote solutions
allowing a broad frontline screening of cognitive abilities in the
general population should be developed.

There is growing evidence for the feasibility of automatic speech
analysis in addressing exactly this need [25, 33, 56]. Speech-based
solutions can be remotely administered via telephone and therefore
have minimal technical user interface requirements. This makes
them a very attractive solution in the mentioned frontline screening
context.

Neuropsychological studies comparing a video and telephone
based psychometric dementia screening with a face-to-face assess-
ment, reported good ecological validity for the telemedicine appli-
cation [39]. However, such studies do not fully exploit the com-
bined opportunities of telemedicine neuropsychological screening
empowered by automatic speech analysis and machine learning
classification.

Our aim is to develop technology with which raw speech data
can be processed via the telephone—facilitated by computational lin-
guistic techniques and machine learning—in order to give a simple
risk assessment for dementia. Instead of using free, unconstrained
speech, we hope to achieve better performance and shorter assess-
ment times, through analysing performances of cognitive tests.

Semantic Verbal Fluency (SVF) tasks are neuropsychological
tests in which patients are given limited time (e.g. 60 seconds) to
name as many items belonging to a certain semantic category as
they can. SVF has been shown to be sensitive to even early forms
of dementia [3, 19, 43, 48]. SVF can be considered a multifactorial
task, comprising both semantic memory retrieval and executive
control processes [24, 49, 58]. Previous studies have concluded the
feasibility of automatically analysing SVF performances [31, 44],
although no study known to the authors has investigated analysis
of telephone quality recordings.

The aim of this study is therefore to benchmark a solution pro-
cessing raw telephone quality SVF data suitable for inclusion in a
fully automated dementia frontline screening for global risk assess-
ment.

2 RELATEDWORK
The following section gives an overview of efforts aiming at the
automated detection of dementia based on multiple different sensor
solutions. For this paper, we would like to differentiate between so-
lutions based on classic pervasive sensing such as home monitoring
systems and speech analysis as a special subcategory of pervasive
sensing.

2.1 Computerized cognitive screening
Digital tests that seek to assess cognitive functions, briefly and glob-
ally, are being developed with the aim to be administered remotely
[5]. The exhibited advantages of these tests are standardization of
administration and stimulus presentation as well as the measures
(e.g. reaction times and latencies) are more accurate: performances

Patient
General Practitioner/

Geriatrician

Expert F2F Follow-up

Neuropsychologist/
Neurologist

Frontline Screening

Speech Analysis

Phone-based
Patient

Figure 1: Telephone-based frontline screening scenario:
speech gets sent to the analysis server which automatically
indicates the general practitioner (GP) or the geriatrician (G)
in charge the risk for neurocognitive disorder, the GP/G also
checks via phone for excluding/confounding conditions (e.g.
substance abuse) and forwards the patient to the special-
ist who would efficiently continue with the in-depth assess-
ment.

can be compared to established norms [59] allowing the clinician
to concentrate on a personalized analysis of the patients’ needs.

For instance, the CogState Brief Battery (CogState) is a brief
computerized test which assesses reaction and processing speed,
episodicmemory, attention, workingmemory, learning, and decision-
making. [9] examined the specificity and sensitivity of the CogState
test for the diagnosis of mild cognitive deterioration, comparing
it with classical pen and paper tests with the result that it reaches
similar discrimination level as traditional tests.

CANTAB, one of most known cognitive screening tools, offers
specialized AD test battery versions for assessing prodromal states,
or mild dementia. The batteries measure motor skills, executive
function, episodic memory, visual memory information processing
and sustained attention. CANTAB has been shown to be highly
sensitive to cognitive dysfunction and ties in closely with current
neurobiological models for MCI [12, 16].

The TDAS (Touch Panel-type Dementia Assessment Scale) [27]
based originally on the pen and paper ADAS-cog test [50], measures
word recognition, instruction compliance, temporal orientation,
visuospatial skills, recognition of object use, naming, planning of the
writing process, money computation, and recognition of the time
indicated by an analogue clock. This digital test can be administered
in 30 minutes, just two-thirds of the time that ADAS-cog requires.

The CNSVS (CNS Vital Signs) [23] is a digital screening test,
assessing working memory, mental flexibility, psychomotor speed,
verbal and visual memory, set shifting and inhibition and vigilance
and sustained attention. The authors studied test-retest reliability
as well as concurrent and discriminant validity concluding that it
can be used as a reliable screening tool in medical contexts.

Phone-based screening has been investigated by Castanho et al.
(2016) comparing the delayed recall task and a classical neuropsy-
chological assessment with the Telephone Interview of Cognitive
Status (TICS) in a population of older adults. The TICS consists
of 13 items evaluating spatial, temporal and personal orientation,
working memory, attention, and verbal and semantic memory. TICS
showed high correlation levels with global scores of classical tests
as well as a satisfactory internal consistency. This method could
allow faster access to assessment for people living in rural areas
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producing similar results as the usual pencil and paper screening
tests.

2.2 Automated Screening Based on Pervasive
Sensing

Manifold research has been done into the feasibility of home moni-
toring systems for modelling domestic circadian activities (activ-
ity patterns following a biological 24h rhythm). As such rhythms
are typically disturbed by dementia—especially nocturnal activity
patterns—these techniques provide a useful basis for automatic
dementia detection/screening. Using infrared sensors to monitor
nocturnal activities, studies have found significant differences be-
tween dementia patients and healthy controls (e.g. [53]). Similarly,
the same technical setup has been shown to effectively model daily
routines [17]. Following the same rationale and technique [30]
leveraged automatic detection of instrumental activities of daily
living (IADL) in patients with MCI and healthy participants. Be-
sides promising results, such studies are often carried out with very
small sample sizes (N < 50) and focus mainly on the automatic
classification of activities rather than the actual neurocognitive
disorder. Moreover, the installation of home-monitoring systems
require significant resources and a person’s consent to be moni-
tored in their private life; two issues that render such a solution
unrealistic in broad population frontline screening.

Also focusing on circadian rhythm monitoring but using less
complex wrist-worn technology, [42] found significant correlations
between sleep patterns and common dementia staging scales. How-
ever, similar to the above-mentioned studies, sample size is rela-
tively small and the main automatic analysis effort was spent on
activity monitoring rather than prognostic classification problems.

Beyond such passive sensing approaches, there is also research
on the diagnostic use of pro-active sensing situations: situations
that are framed by some task/instruction producing more diagnosis
related variance. Leveraging virtual reality technology, [54] used a
realistic virtual reality (VR) fire evacuation task to predict amnestic
Mild Cognitive Impairment (MCI; often considered as the precur-
sor of dementia), Alzheimer’s disease (AD) and controls from task
performance reaching area under the curve (AUC) values of more
than 80%. Though very sensitive, the classification setup requires
a lot intervention from technicians to analyse the VR task perfor-
mance. Moreover, the VR screening setup has similar limitations as
the classic neurological assessment: it requires the expensive VR
laboratory and test persons have to leave their home.

Other studies combine gait and balance analysis through a hip-
/foot-worn accelerometer and specific walking tasks [7, 26]. Such
approaches take advantage of classic geriatric assessments show-
ing age-/dementia-related gait irregularities when confronted with
a simple straight-line walking task or dual task paradigms (e.g.
walking and mental arithmetic task).

These pervasive sensing approaches reveal several shortcomings
for our use case. They are either very technology-heavy, which
implies significant investments, and rely heavily on activity recogni-
tion which represents an ongoing classification research challenge
in itself. Alternatively, they have to be done in laboratories far
away from peoples’ homes. Conversely, automatic speech analysis
recently has reached a technical readiness level that renders it very

attractive for speech based pervasive solutions. Moreover, the only
technical requirement is a working telephone which can be consid-
ered as ubiquitous in most countries even for an aged population
such as the dementia screening target group.

2.3 Automated Screening Based on Speech
Authors have reported studies on automated dementia screening
with possible applications in phone-based telemedicine scenarios.
[57] extracted paralinguistic features from speech based cognitive
tests and trained classifiers to discriminate between healthy con-
trols and patients with AD. Furthermore, [33] used ASR to extract
features from a story retelling task and was able to discriminate
between MCI and healthy controls with an Area Under the Curve
(AUC) score of 80.9%. [51] used four spoken cognitive tests (Count-
down, Picture description, Repetition and SVF), extracted paralin-
guistic features to discriminate individuals with MCI, early AD
and healthy controls (HC). Trained models achieve an accuracy of
87% for early AD vs. HC and 81% for MCI vs. HC. Not focusing
on dementia detection but on Parkinson’s Disease, [29] report an
application which is phone-based and acts as a passive listener to
monitor speech over time. However, as soon as an anomaly is de-
tected the app also uses classic cognitive speech tasks to elicit richer
and more controlled variance (i.e. a psychomotor task: continuously
repeating pa-ta-ka during a given period of time)

Multiple studies report approaches that are less feasible in phone-
based screening scenarios but provide strong evidence for the effec-
tiveness of speech-based screening for dementia patients, including
early stages. Overall, reported work either uses speech from con-
versations, spontaneous speech tasks, reading or repetition tasks,
and fluency tasks.

The most liberal setting consists of conversations with clinicians.
Audio files of spontaneous speech from conversations [10, 28], or
classical autobiographic patient interviews [25] have been used in
small setups, yielding significant effects. For such data, considerable
effort has to be spent on preprocessing the data (e.g. annotating
turns or trimming the audio file) in order to prepare it for further
computational learning.

Tasks, eliciting spontaneous speech, are slightly more restricted
and therefore easier to process; descriptions of the Cookie Theft
Picture or comparable visual material, allows for extracting a wide
variety of features and yields very good results [2, 18, 32, 41]. Simi-
larly, some researchers report positive results from speech samples
based on an animated film free recall task [20].

Reading or repetition tasks are the most handy to deal with, in
the sense of automated processing, as they need little transcription
and provide an inherent ground truth. Simple sentence reading has
been shown to provide enough variance to effectively discriminate
between AD and HC with an accuracy of 84% [38].

Verbal fluency tasks, such as the semantic animal fluency task,
have produced rich variance to discriminate between AD patients
and HC [32, 34, 61]. The benefits of semantic vs. phonemic flu-
ency tasks have been discussed in multiple publications and there
is a large body of neuropsychological evidence reporting demen-
tia patients’ difficulties in semantic fluency tasks, concluding that
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SMC MCI D
N 40 47 79
Age 72.65 (8.3) 76.59 (7.6) 79.0 (6.1)
Sex 8M/32F 23M/24F 39M/40F
Education in years 11.35 (3.7) 10.81 (3.6) 9.47 (4.5)
MMSE 28.27 (1.6) 26.02 (2.5) 18.81 (4.8)
CDR-SOB 0.47 (0.7) 1.68 (1.11) 7.5 (3.7)

Table 1: Demographic data and clinical scores by diagnos-
tic group;mean (standard deviation); SMC=’SubjectiveMem-
ory Complaints’, MCI=’Mild Cognitive Impairment’, D=
’Dementia’, MMSE=’Mini Mental State Examination’, CDR-
SOB=’Clinical Dementia Scale - Sum of Boxes’.

dementia patients and MCI patients have significant more diffi-
culties in semantic, e.g., animal, fluency tasks compared to other
psychometric standard tests.

In summary, speech analysis provides a powerful opportunity to
broad dementia screening as it has minimal technical requirements
and leverages amature technology—ASR—and can be done remotely
in almost all geographic areas. Sensitivity can even be increased
through the use of specific psychometric speech tasks, such as the
semantic verbal fluency task. Therefore, our aim is to benchmark an
entirely automatic pipeline for dementia screening using telephone-
quality audio recordings of a classic dementia screening speech
task, ASR and machine learning classifiers on top.

3 METHODS
In order to address the above-mentioned challenges, this section
will elaborate on the technical pipeline of the proposed system and
provide evidence for its feasibility. In the following, the telephone-
based speech data processing and the machine learning experiment
will be described.

3.1 Participants
Within the framework of a clinical study carried out for the Euro-
pean research project Dem@care, and the EIT Digital project EL-
EMENT, speech recordings were conducted at the Memory Clinic
located at the Institut Claude Pompidou and the University hos-
pital in Nice, France. The Nice Ethics Committee approved the
study. Each participant gave informed consent before the assess-
ment. Speech recordings of elderly people were collected using an
automated recording app which was installed on a tablet computer.
Participants underwent a clinical assessment including a battery of
recorded speech-based tasks.

Each participant went through an assessment including: Mini-
Mental State Examination (MMSE) [15], the phonemic and semantic
verbal fluency [55], and the Clinical Dementia Rating Scale [40].
Following the clinical assessment, participants were categorised
into three groups: control participants that complained about hav-
ing subjective cognitive impairment (SMC) but were diagnosed as
cognitively healthy after the clinical consultation, patients with
MCI and patients that were diagnosed with dementia (D), including
AD. For the AD group, the diagnosis was determined using the
NINCDS-ADRDA criteria [37]. Related mixed/vascular dementia

was diagnosed according to the ICD 10 [60]. For the MCI group,
diagnosis was conducted according to Petersen criteria [46]. Partic-
ipants were excluded if they had any major audition or language
problems, history of head trauma, loss of consciousness, psychotic
or aberrant motor behaviour.

Each participant performed the SVF task during a regular con-
sultation with one of the Memory Center’s clinician who operated
the mobile application which was installed on an iPad tablet. In-
structions for the vocal tasks were pre-recorded by one of the
psychologist of the center ensuring a standardised instruction over
the experiment. Administration and recording were controlled by
the application and facilitated the assessment procedure.

3.2 Speech Data Processing
Speech was recorded through a mobile tablet device using the built-
in microphone. The recordings were digitised at 22050 Hz sampling
rate and at 16 bits per sample. To simulate telephone conditions, the
recordings were downsampled to a 8000 Hz sampling rate, using
the Audacity1 software. Since the tablet device’s microphone is
used in mobile phones, no further transformations were applied.

Recordings of patients were analysed manually and automat-
ically. For manual analysis, a group of trained speech pathology
students transcribed the SVF performances following the CHAT
protocol [36] and aligned the transcriptions with the speech signal
using PRAAT [4]. For the automatic transcription, the speech signal
was separated into sound and silent parts using a PRAAT script
based on signal intensity. The sound segments were then anal-
ysed using Google’s Automatic Speech Recognition (ASR) service2,
which returns several possible transcriptions for each segment to-
gether with a confidence score. The list of possible transcriptions
was searched for the one with the maximum number of words that
were in a predefined list of animals in French. In case of a tie, the
transcription with the higher confidence score was chosen.

3.3 Features
We extracted a variety of features from the generated transcripts.
All hereunder reported features are either clinically accepted (i.e.
word count), have been proven to have diagnostic power based
on previous medical research (i.e. clusters and switches) or proved
to have diagnostic power based on research in the field of compu-
tational linguistics (i.e. semantic metrics). Moreover, all features
are firmly based on clinical research and therefore explicable and
understandable by medical experts.

3.3.1 Word Count: The count of distinct correct responses (an-
imals), excluding repetitions, is the standard clinical measure for
evaluation of SVF. Its diagnostic power for even early stages of
cognitive impairment has been shown in countless studies.

3.3.2 Clusters and Switches: Many previous researchers [22, 34,
48, 58] have shown that production in SVF is guided by so called
clusters—clusters of words that are produced in rapid succession
and often shown to be semantically connected. We determine clus-
ters in multiple ways—taxonomy-based [58] and statistical [34]
1http://www.audacityteam.org/
2https://cloud.google.com/speech/
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Figure 2: Technical pipeline: the automatic frontline screening using machine classification and feature selection of clinically
relevant features feeding the machine learning classifier for neurocognitive screening.

semantic, as well as temporal analysis [14]—and compute mean
cluster size and number of switches between clusters as features.

3.3.3 Semantic Metrics: Many purely semantic metrics have
been suggested for the analysis of SVF, that look at the type of
words produced. We include frequency norms [35] estimated from
large text corpora and computed as the mean frequency of any
produced word and semantic distance [35] approximated using
neural word embeddings trained on external text resources. We
include the mean semantic distance between any produced word,
the overall mean of means of semantic distances inside a temporal
cluster and the the mean semantic distance between any temporal
cluster.

3.4 Classification Experiment
In order to evaluate the feasibility of using SVF in a telephone
screening scenario, we performed a machine learning experiment.
We built classifiers that discriminate the healthy population from
the impaired samples. People were counted into the impaired pop-
ulation, when they belonged to either the MCI or dementia groups.
First we established a performance baseline, training models based
on features extracted from manual transcripts. After that we used
the transcripts from ASR to extract features and constructed models.

In all scenarios we used Support Vector Machines (SVMs)[8]
implemented in the scikit-learn framework [45]. Due to our lim-
ited amount of data—166 samples—we could not keep a separate
hold-out set for testing and instead used leave-one-out cross val-
idation. For each sample, the data is split into a training-set—all
samples but the one—and a test-set—the one held-out sample. The
classifier is trained on the test set and evaluated on the held-out
training set. To find a well-performing set of hyperparameters for
the SVM (i.e., kernel,C ,γ ), we performed parameter selection using
cross-validation on the training set of the inner loop of each cross
validation iteration.

3.5 Performance Measures
The performance of ASR systems is usually determined using Word
Error Rate (WER) as a metric. WER is a combination of the types
of mistakes made by ASR systems in the process of recognition.
Mistakes are categorized into substitutions, deletions and intrusions.
Let S, D and I be the count of these errors and N the number of
tokens in the ground truth. Then

WER =
(S + D + I )

N

SinceWER considers all utterances, including off-task speech which
is not reflected in any of our features, we used a slightly adapted
version. Instead of comparing the ground truth annotation of the
recording and the ASR results, we transformed both into a list of
animals and calculate the WER for these sequences. We refer to the
result as the Verbal Fluency Error Rate (VFER) in further discussion.

As performance measures for prediction of each class in the ML
classification experiment, we report the receiver operator curve
(ROC), as different tradeoffs between sensitivity and specificity
are visible. We also report area under curve (AUC) as an overall
performance metric.

4 RESULTS
We first evaluate the VFER on the automatic transcript, which is
determined to be 33.4%. Of the errors made by the ASR, 69% are
deletions, 22% are substitutions and 9% are intrusions. Substitutions
are the least problematic error, since they only skew the word
count—the single most predictive feature—in rare cases, where a
word is substituted with a previously named one.

Figure 3 shows the receiver operator curve (ROC)—a plot of true
positive rate vs. false positive rate—for both classification experi-
ments. Models based on features extracted from manual transcripts
have an AUC of 0.852 and models built on features extracted from
automatic transcripts show an AUC of 0.855. Since a high sensitivity
is key for screening applications, a sensible sensitivity-specificity
trade-off for the automatic model could be at a sensitivity of around
0.85 and a specificity of 0.65.
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Figure 3: Receiver Operator Curve (ROC) for features based
on manual transcripts (green) and on automatic transcripts
(red). Area under curve (AUC) is reported in the legend.

5 DISCUSSION
The results of our experiments show, that (1) the fully automated
analysis of phone-based SVF is feasible for dementia screening, (2)
the phone-based pipeline produces classification results comparable
to the gold-standard manual transcription based classifiers and (3)
the word error rate for the ASR approach is acceptable despite the
reduced telephone bandwidth and the aged population.

In general, regarding screening scenarios, high sensitivity scores
are important. Our classification experiment based on the fully
automated pipeline shows a good AUC and for screening scenario a
good sensitivity of 0.85 and decent specificity of 0.65. For achieving
better specificity results, it may be necessary to include additional
tasks, especially focusing on the differentiation of MCI and healthy
controls. Nevertheless, this is not the main goal for broad screening,
as false positives are less expensive for a health-care system than
false negatives.

In our experiments, the automated ASR-/phone-based screening
pipeline and the pipeline based on manually transcribed speech
reach comparable classification results. This is very encouraging,
as the transcription of speech is the number-one resource-straining
factor, showing that an automatic speech-based system has be-
come a powerful alternative to manual analysis of speech-based
psychometric tests.

ASR is often considered to be the main weakness in speech
based automatic screening approaches [56]. Our results show an
overall error rate of 33.4 % for the automated system, compared
to the manual transcripts. This result represents an improvement
over results of other authors using ASR systems for evaluating
the SVF tasks [33, 44]. In line with previous research, more word
errors are produced by the ASR for dementia patients, compared
to healthy subjects, which can be explained by age-related speech
erosion. Considering the types of errors, insertions and deletions
are both problematic for further analysis, as they skew the raw
word count, the single most predictive performance indicator in
SVF for dementia detection. Substitutions affect the word count less,

only in rare cases, where a word is substituted with a previously
named one, generating a false repetition.

6 CONCLUSION
In this paper we set out to benchmark a telephone-based analysis
of SVF for inclusion into a fully automated dementia frontline
screening for global risk assessment. Our results show that SVF is a
prime candidate for inclusion into an automated pipeline, providing
decent sensitivity and specificity scores. Additionally, we show that
the phone-based classification is as effective as the gold-standard
manual transcription based classifier displaying an acceptable ASR
word error rate despite telephone setup and the aged sample for
the experiments.

Further research will be directed into finding additional tests,
that offer increased sensitivity and specificity in combination with
SVF. The idea of this series is to validate and construct a system,
that solely based on the telephone as a technological interface
and administrable in less than 10 minutes, perfectly fits the need of
broad dementia screening tools. It should also serve epidemiological
research studies and inclusion for pharmaceutical trials, which
aim at including representative shares of the population by cost-
effective screening for persons with early onset neurocognitive
impairments.
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