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Abstract The novel mechanism Active Ankle fea-

tures three degrees of freedom that operate in an almost

spherical manner. In comparison to spherical devices,

its design offers advantages such as high stiffness, a sim-

ple and robust construction, and a good stress distri-

bution. In the present paper, a comprehensive study of

the design, analysis, and control of the Active Ankle

in its almost-spherical work modality is provided. In

particular, the kinematic analysis of the mechanism is

conducted, solving the full inverse, the rotative inverse,

and the forward kinematic problems. In addition, the

manipulator’s workspace is characterized and the kine-

matic control, that has been implemented on a proto-

type of Active Ankle, is presented together with ex-

perimental results that demonstrate the employability

as an ankle joint in a full body exoskeleton.
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1 Introduction

A parallel manipulator (PM) is defined as a closed-loop

mechanism in which the end effector (the mobile plat-

form) is connected to the base by at least two kinematic

chains [28]. The Delta robot [9] and its variants [7]

probably represent the most successful class of parallel

manipulators employed in industry. On the contrary, an

end effector in serial manipulators is connected to the

base by a single series of links and joints. In comparison

to a serial mechanism, a parallel mechanism generally

offers higher stiffness, speed, accuracy, and payload ca-

pacity, at the downside of a reduced workspace and a

complex geometry that needs careful analysis and con-

trol [23, 28].

If the location of a point on the end-effector’s lam-
ina [10] of a PM remains constant, the device is called a

spherical parallel manipulator (SPM). The Agile Eye

[15] and its improved variant Agile Wrist [31] are

prominent examples of SPMs with three degrees of free-

dom (DOF). The joint axes of this class of spherical

manipulators are required to intersect in a single point.

However, due to machining and assembling errors, it is

difficult to achieve an accurate intersection of all joint

axes [13]. Misalignments may lead to undesirable re-

action forces in the structure, and hence to a reduced

service life of the mechanism or sometimes makes the

complete system difficult to assemble [41]. Moreover,

the use of C-shaped links in the system prevents the

design from being used in high payload applications.

Due to the kinematic layout that requires an exact in-

tersection of all rotation axes, a high-precision manufac-

turing is indispensable for these SPMs [1]. The Argos

mechanism, an SPM with three DOF, was developed by

Vischer and Clavel [41] to overcome these shortcomings.

Their 3[R [RR/SS]S ]-design consists of three identical
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Fig. 1: A built-up prototype of the 3-DOF Active An-

kle incorporating actuators and control electronics. Its

technical specifications are outlined in Section 2.2.

legs containing a revolute joint at the base whose axis

is pointing to a virtual rotation center.

The novel, almost-spherical parallel manipulator Ac-

tive Ankle (Figure 1) has recently been introduced in

[35]. Due to its unique, simple and compact 3[R 2 [SS]]

design, the constraint of moving the end effector about

an exact center (of rotation) in case of SPMs is re-

laxed to almost spherical motions that includes a trans-

lational shift of the end effector about a tolerated, very

small domain. The motivation for the development of

the novel mechanism as an ankle joint of a full-body

exoskeleton has been provided in [35], together with a

comparison to other SPMs [39, 40, 44]. Further its type

synthesis, design, construction, and simulation results

have been laid out [35].1 Additionally, insights into the

principal solvability of the forward kinematics problem
of the Active Ankle and its different assembly modes

have been obtained [24]. The real, almost-spherical as-

sembly mode still needs a careful analysis to enable for

practical applications and systematic design modifica-

tions. Due to the spatial behavior but spherical use case

of the Active Ankle, the understanding and mod-

eling of its geometry is a challenging and interesting

problem. Its solution provides a basis for a kinematic

control strategy as a spherical device.

Contributions. In the present paper, a comprehensive

study of the design, analysis, and control of the Active

Ankle in its almost-spherical work modality is pro-

vided. First, the combinatoric and geometric type of the

parallel mechanism is set into context of the state-of-

the-art. Crucial features of its design and construction

1 Further similar designs – involving three legs and
a quadrilateral loop – are the translative 3[R2[RR]RR]-
device [26] and the spatial 3[2[UPR]U ]-manipulator [27].

are pointed out. Second, the definitions of the inverse

kinematic problems associated to the mechanism and

suitable solution methods including all required sub-

routines are presented explicitly. In particular, this in-

cludes the extension of the inverse kinematic problem

to the rotative inverse kinematic problem.2 The solu-

tion to the latter – that asks for a joint configuration

for a given orientation from SO(3), instead of a pose

from SE(3) – is provided in the form of a novel itera-

tive approach that can be described by the concept of

virtual joints [3, 6, 8]. The auxiliary output of this solu-

tion also provides a quantification to the extent of par-

asitic translative motion of the mechanism. Third, the

workspace of the Active Ankle in its almost-spherical

assembly mode is characterized in detail. This includes

the consideration of the primary rotative and the sec-

ondary translative domains of the workspace. The phys-

ically realizable boundaries are studied with respect to

constraints imposed by principal link intersections and

by limits of employed spherical joints. Fourth, the appli-

cability of the device and the elaborated solution meth-

ods of its inverse problems are demonstrated in a range

of motion analysis and in control experiments, both in

accordance with the human ankle joint.

As a side contribution, the paper contains the for-

mulation of a novel algorithm for computing the inter-

section points of three spheres by using the concept of

Cayley–Menger bideterminants. The method is called

as a subroutine during the computation of the transla-

tive endeffector shift for given input angles and plat-

form orientation. Overall, the present paper answers

the most crucial and practical questions arising in the

analysis, the control, and the employment of the Ac-

tive Ankle as an almost-spherical device.

Notation. For the notation, a few conventions are in-

troduced in accordance to [5]. The dot · is used to in-

dicate matrix-matrix, scalar-matrix, and scalar-scalar

multiplications. The inner product of a vector a =

(a1, a2, a3)T and a vector b = (b1, b2, b3)T is denoted

as a ∗ b =
∑
i ai · bi. The expression a⊗ describes the

skew-symmetric matrix, a⊗ =
( 0 −a3 +a2

a3 0 −a1
−a2 a1 0

)
= S, the

‘cross matrix’ associated to a vector a. In the opposite

direction, the vector is extracted as S⊕ = a. A vec-

tor of length one is indicated with a hat, as â (so that

‖â‖2 = â ∗ â = 1). As an operator, a normalizes as

: a 7→ â = a
‖a‖ . The matrix M◦ 1

2 contains the roots

of the elements of a matrix M (Hadamard root).

2 Within this paper, the term ‘kinematic problem’ is ex-
clusively used for a ‘finite kinematic problem’. Such problem
is also qualified as ‘geometric’ (in contrast to ‘instantaneous
kinematic’) by other authors [11, 20, 43].
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Fig. 2: Sketch of the Active Ankle [34] including (1)

base, (2) rotative actuator, (3) crank, (4 & 6) ball and

socket joints, (5) rod, (7) end-effector.

Structure. The paper is organized as follows: In Sec-

tion 2, the design and the construction of the Active

Ankle are reflected in comparison to the state-of-the-

art and its general mobility is determined. In Section 3,

the inverse kinematic problems and solution methods

suitable for its kinematic control are presented. In Sec-

tion 4, a numerical forward kinematic analysis is pre-

sented together with a characterization of the mecha-

nism’s workspace. The Section 5 presents the control of

the Active Ankle in comparison to the range of mo-

tion of the human ankle. Finally, conclusions are drawn

in Section 6.

2 Design and Topology

2.1 Type Synthesis

The combinatoric and geometric type of the spatial

almost-spherical parallel mechanism Active Ankle

are set into context in Table 1 and Table 2. With a

homogeneous distribution of five DOF to all three legs

(Table 1), the combinatorics of the Active Ankle

matches those of the Delta robot. The topological

setup of both mechanisms also equals on the level of

each of the three identical legs: Both consist of one

rotative actuator in series with one closed loop with

four spherical joints (Figure 3). For these reasons, the

Active Ankle can be classified as the (almost) ro-

tative counterpart of the Delta robot. In comparison

to the Delta robot, which provides a stiff position-

ing functionality, the Active Ankle provides a stiff

orientating feature, due to the employment of parallel

structures within the three kinematic chains.

Fig. 3: Link graph of the parallel manipulator Active

Ankle, including n = 11 links and m = 15 joints.

2.2 Design and Construction

The mechanical layout of Active Ankle is modular

and depicted in Figure 2: the device features three rota-

tive actuators fixed to the base. Each of the three mo-

tors drives a spatial quadrilateral consisting of a sym-

metric crank, two rods, and a line segment on the mo-

bile platform. The three line segments mutually inter-

sect orthogonally and together form a spatial cross on

the end-effector link. The total weight of the mechanism

including the three actuators is 1.8 Kg. With regard to

the electronics, the device features three actuator mod-

ules which include a brushless DC motor coupled with

harmonic gear drives (nominal torque 28 N m, weight

0.392 Kg), FPGA based control, and power electronics.

Each actuator module is capable of a cascaded position,

velocity, and current based torque control [35]. The pre-

sented prototype of this mechanism is designed to carry

loads upto 30 Kg.

2.3 Topology and General Mobility

The topology of the mechanism is equivalent to DELTA

robot as depicted in Figure 3. The n = 11 links Li are

enumerated as L01, L12, L13, L14, L23, L32, L33, L43,

L52, L53, and L63. The m = 15 joints Ji,j are distin-

guished using double indices, as indicated in Figure 3.

The number of independent loops of the Active An-

kle is computed with c = m−n+ 1 = 15− 11 + 1 = 5.

For computing the general mobility number by means

of the Kutzbach-Grübler formula

ds(M) = s · (n−m− 1) + f = s · (−c) + f ,

the total number of freedoms f =
∑
ij fij needs to be

determined: three rotative joints, six spherical joints,

and six universal joints, result in f = 3 ·1+6 ·3+6 ·2 =

3 + 18 + 12 = 33, yielding a general mobility of

ds(M) = 6 · (11− 15− 1) + 33 = 3 .
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Table 1: Overview of spatial parallel manipulators with general mobility d with distributions of degrees of freedom

to k kinematic chains (legs), in accordance to [12].

d = 2 d = 3 d = 4 d = 5 d = 6

k = 2

k = 3 –

k = 4 – –

k = 5 – – –

k = 6 – – – –

Table 2: Examples of mechanisms with respect to type and mobility. *Watt’s and Chebyshev’s linkages are almost

prismatic [19].

Mechanism type General mobility d

Name Group Dim. 1 3 6

Position P2 2 Peaucellier–Lipkin* – –

Flat P2R 3 Planar 4R Planar Stewart –

Spherical R3 3 Spherical 4R Agile Eye, Argos –

Position P3 3 Sarrus Delta robot –

Spatial P3R3 6 Bennett 4R Active Ankle Stewart

Fig. 4: FEM analysis of the Active Ankle.

Since the device is almost spherical, the motion param-

eter s equals six (spatial) and not three (spherical).

2.4 Design Features

The mechanism’s homogeneous and simple design leads

to a low link diversity, permits a low-cost construction,

and provides robustness against production inaccura-

cies. A crucial feature of the mechanism’s design is the

stress distribution among the structure. The six rods

that transmit the forces from the cranks to the plat-

form are only loaded with forces along their axes due
to the spherical joints attached to them. Moreover, any

force applied along the direction of its platform’s tor-

sional axis can be supported without an active torque

in the motors.

A multibody dynamics simulation analysis and a

subsequent FEM analysis have been performed to check

the deformation of the critical parts as rods and cranks

under desired loads (Figure 4). A force corresponding

to the weight of the exoskeleton is applied to the end

effector and the forces in the spherical joints are mea-

sured. In the zero configuration, this force – equivalent

to 350 N perpendicular to the end effector’s top plate –

leads to a reaction force of approximately 100N in each

spherical joint. The selected ball and socket joints are

designed for a maximum axial tensile force of 600N in

housing axis and a pivot angle of maximum of ±25◦.

The same magnitude of force occurs in the rods and

this force has been found to be less than the buckling

force of the rods (i.e. 2120N). Thus, it is ensured that
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Mechanism Ref. Links n Joints m Loops c

RRR / Cardan [37] 4 3 (6) 0 (3)
Agile Eye / Wrist [15] 8 9 2

AsySPM [44] 11 13 3
CamSPM3 [40] 8 10 4

Hexasphere [39] 14 19 6

Active Ankle [34] 11 15 5

Table 3: A comparison of mechanisms, in terms of their

members, links n, joints m, and number of independent

loops c = m− n+ 1; quoted from [35].

the mechanism resists from buckling in all possible con-

figurations [35].

2.5 Design Comparison

In this section, the design of the almost-spherical mech-

anism Active Ankle is analyzed from a principal and

from an application-motivated point of view: First, its

design is compared to that of spherical mechanisms,

and second, its design is set into contrast with devices

intended to interoperate with the human ankle.

Spherical Mechanisms. In Table 3, the almost-spherical

Active Ankle is briefly compared to a set of (purely)

spherical devices.3 The RRR chain and the Cardan

mechanism [37] with three intersecting axes represent

the most simple spherical devices: due to their serial

construction, they lack the stiffness that is offered by

their parallel counterparts. Agile Eye and its variants

are Spherical Parallel Manipulators (SPM) which of-

fer high speeds for low payloads. Due to their design,

they require high manufacturing and assembly accura-

cies. The design of the Asymmetrical Spherical Paral-

lel Manipulator AsySPM [44] involves the use of large

number of different parts due to its asymmetrical leg

configuration, . In comparison to the Active Ankle, the

3-SPS manipulator (CamSPM3 in Table 3) [40] fol-

lows a complementary actuation approach: prismatic,

instead of revolute joints are employed to actuate the

platform. The Hexasphere [39] is a redundant SPM

that features six motors to achieve the three rotative

degrees of freedom of the platform.

Ankle Exoskeletons The Active Ankle is priorly de-

signed to work as an active interface to three degree-

of-freedom (DOF) human joints. Its application at the

3 The presented comparison is an outline of a more detailed
argumentation [35].

hip and the ankle joints within the novel full body Re-

cupera exoskeleton [22] is presented in Section 5 (Fig-

ure 18). While the exoskeleton is primarily designed for

upper body rehabilitation 4 , the main purpose of the

legs is to transfer the load of the upper body exoskele-

ton system to the ground and provide some mobility

features (e.g. sitting, standing, walking etc.) to the hu-

man subject: the Recupera legs and the integrated

Active Ankle instances are considered as load trans-

fer devices according to the classification by Herr.5 In

contrast to the similar load carrying exoskeleton Bleex

[46] which only features four active DOF per leg, the

Recupera exoskeleton provides seven active DOF in

each leg, due to the role of Active Ankle as a modu-

lar spherical unit. The hydraulically-damped ankle-foot

orthosis by Yamamoto et al. [45] and the knee-ankle-

foot exoskeleton Kafo driven by artificial pneumatic

muscles [32] both only provide a single DOF at the an-

kle joint of the human.

3 Inverse Kinematics

In this section, the points on the moving platform and

crank circles are parameterized and kinematic constraint

equations for this mechanism are derived. In Table 4,

an overview of the nature of kinematics problems is

presented based on the dimensionality of the input and

output variables and the number of constraint equa-

tions. In particular, the inverse and rotative inverse

kinematics problems are presented along with their so-

lution methods.

The section is organized as follows: In Section 3.1,

the mechanism’s architecture and its constraint equa-

tions are introduced, in Section 3.2 an analytical solu-

tion to the inverse kinematics problem is provided. Fi-

nally, Section 3.3 presents an efficient solution method

to the rotative inverse kinematics problem which en-

ables controlling the mechanism kinematically in the

spherical task space.

4 The exoskeleton designs for upper body rehabilitation are
usually attached to a fixed base (e.g. ARMIN [30], Recu-
pera wheelchair system [25]) or to the patient’s torso (e.g.
RUPERT[17]) which either reduces the mobility of patients
or forces the patient to carry the weight of the exoskeleton
which might be difficult for weaker stroke patients. A more
detailed survey of exoskeletons for upper body rehabilitation
can be found in [14]
5 Herr [16] distinguishes parallel-limb exoskeletons accord-

ing to their function, ‘load transfer to the ground’, ‘torque
and work augmentation’, and ‘increase human endurance’.
Active devices are named ‘exoskeletons’, passive devices are
named ‘orthoses’.
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Fig. 5: A posture of the Active Ankle corresponding

to the configuration q = (qx, qy, qz) ≈ (−25◦, 0◦, 0◦).

The design parameters are d = r = 35 mm and l =

100 mm.

3.1 Mechanism Architecture and Constraint Equations

The six points (e1, . . . , e6) on the end effector lay on

a sphere with radius d. The points ci and cj rotate

around bij in circles of radius r for ij ∈
{

12, 34, 56
}

.

The length of the six rods is denoted by l. The global

frame O is coincident with the end effector position e

when the mechanism is in its zero-configuration (Fig-

ure 2). The unit vectors ŝ, n̂ and â are vectors along

the xE, yE and zE axes respectively expressed in the

global frame O. In this section, the parameterizations

of the end effector and crank points are presented and

the constraint equations of the mechanism are derived.

End effector points The points ei, i ∈
{

1, .., 6
}

are

rigidly attached to the end-effector. Figure 5 shows that

the pair of points (e1, e2) lies on a line L12 = (e, n̂)

along unit vector n̂ passing through point e. Similarly,

the pairs (e3, e4) and (e5, e6) lie on lines L34 = (e, â)

and L56 = (e, ŝ) respectively. The coordinates of these

points in terms of end effector position (e) and orien-

tation (ŝ, n̂, â) are expressed as:

e1 = e + d · n̂ e2 = e− d · n̂
e3 = e + d · â e4 = e− d · â
e5 = e + d · ŝ e6 = e− d · ŝ

(1)

The position vectors of six end effector points are stored

column-wise in matrix E = (e1 . . . e6). The parameter-

ization of six end effector points using the end effector

pose is implemented in the method epl (Alg. 2).

Crank points The crank points ci, i ∈
{

1, .., 6
}

are al-

lowed to move on the circles defined by the motion of

three actuators. The pair of points (ci, cj) lie diametri-

cally opposite to each other on a circle of radius r with

center bij , ij ∈
{

12, 34, 56
}

. The position vector of six

crank points are parameterized using input joint angles

(qx, qy, qz) with the set of equations

c1(qx) = b12 + c12(qx) c2(qx) = b12 − c12(qx)

c3(qy) = b34 + c34(qy) c4(qy) = b34 − c34(qy)

c5(qz) = b56 + c56(qz) c6(qz) = b56 − c56(qz) .

(2)

In (2), centers (b12, b34, b56) lie on (yz, zx, xy) planes at

a distance of l units along (z, x, y) axes respectively.

The general points (c12, c34, c56) on these circles are de-

scribed as

b12 = l · k̂ , c12(qx) = r · cos(qx) · ĵ + r · sin(qx) · k̂

b34 = l · î , c34(qy) = r · cos(qy) · k̂ + r · sin(qy) · î

b56 = l · ĵ , c56(qz) = r · cos(qz) · î + r · sin(qz) · ĵ .

The position vectors of six crank points are stored column-

wise in matrix C = (c1 . . . c6). The parameterization of

six crank points using the input joint angles is imple-

mented in the method cpl (Alg. 3).

Kinematic constraint equations The length of the line

segment joining the crank points (ci) to the end effector

points (ei) equals the rod length l.

‖ei − ci‖ = l , i ∈
{

1, .., 6
}

(3)

Substituting (1) and (2) in (3), and squaring both sides,

the six distance constraints equations are derived:

(ex + d · nx)2 + (ey + d · ny − r · cos(qx))2

+ (ez + d · nz − l − r · sin(qx))2 = l2
(4)

(ex − d · nx)2 + (ey − d · ny + r · cos(qx))2

+ (ez − d · nz − l + r · sin(qx))2 = l2
(5)

(ex + d · ax − l − r · sin(qy))2 + (ey + d · ay)2

+ (ez + d · az − r · cos(qy))2 = l2
(6)

(ex − d · ax − l + r · sin(qy))2 + (ey − d · ay)2

+ (ez − d · az + r · cos(qy))2 = l2
(7)

(ex + d · sx − r · cos(qz))
2 + (ey + d · sy − l

− r · sin(qz))
2 + (ez + d · sz)2 = l2

(8)

(ex − d · sx + r · cos(qz))
2 + (ey − d · sy − l

+ r · sin(qz))
2 + (ez − d · sz)2 = l2

(9)
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Type Well-determined Over-determined

Direction Name In Eqs Out Method Name In Eqs Out Method

Inverse
rikp RE

67−−→ (q, e) (Alg. 6)
ikp (RE , e) 67−−→ q (Alg. 1)

ikp? (RE , e)
37−−→ q (Alg. 4)

Forward
fkp q

67−−→ (RE , e) (Alg. 7)
tfkp (q,RE) 67−−→ e –

tfkp? (q,RE)
37−−→ e (Alg. 5)

Table 4: Overview of problem characteristics, dim(RE) = 3, dim(e) = 3, dim(q) = 3

3.2 Inverse Kinematics

Problem 1 (Inverse Kinematics) The Inverse Kine-

matics Problem (ikp) is defined as the problem of find-

ing the input joint angles needed to achieve a specific

pose of the end effector [21], formally,

[qx, qy, qz] = ikp(PE), PE ∈ SE(3) ,

where PE is the homogeneous transformation matrix of

the end effector E with respect to the global frame O

and [qx, qy, qz] are the active rotative joint angles.

PE =


sx nx ax ex
sy ny ay ey
sz nz az ez
0 0 0 1


It must be noted that the system of non-linear equa-

tions is overdetermined in context of the ikp as the

number of unknowns (three) is less than the number of

equations (six).

The method ikm in Alg. 1 provides an analytical

solution method to ikp. The computation of the inter-

sections of sphere and circle in Line 4 and Line 5 of

Alg. 1 can be conducted by means of the intersection

method SphInt (Alg. 9) for three spheres.6 In Line 7,

a pair of antipodal points is selected from the set of

four intersection points by maximizing the cosine sim-

ilarity between two normalized difference vectors. The

line segment between the selected two points represents

the current alignment of the rod. The angle between

the current alignment and the zero reference alignment

(Line 9) of one rod yields the angle of one input joint,

determined in Line 10 of Alg. 1.

Since the ikm solution depends on the knowledge

of the end effector shift (ex, ey, ez), it is not sufficient

for achieving a kinematic control of the mechanism in

spherical task space SO(3). Therefore it is required to

6 For a given a circle C(mC , rC , n̂C) with midpoint mC ,
radius rC , and unit normal n̂C , two substituting spheres
SA(mA, rA) and SB(mB , rB) are given by the midpoints
mA,mB = mC ± 4

3
· rC · n̂C and the radii rA = rB = 5

3
· rC .

calculate the input joint angles only from the desired

orientation of the end effector.

3.3 Rotative Inverse Kinematic Model

Problem 2 (Rotative Inverse Kinematics) The Ro-

tative Inverse Kinematic Problem (rikp) is to find the

input joint angles needed to achieve a desired orienta-

tion of the end effector without having the knowledge

of end effector position, formally,

[qx, qy, qz, ex, ey, ez] = rikp(RE), RE ∈ SO(3) ,

where, RE is the rotation matrix of the end effector

w.r.t the global frame, [qx, qy, qz] and [ex, ey, ez] are the

active rotative joint angles and end effector shift respec-

tively.

In this case, the system of nonlinear equations (4–9) is

well determined as the number of unknowns is equal

to the number of equations. To the best knowledge

of the authors, it is not possible to derive a closed

form solution to this problem due to coupled nature

of the constraint equations. Instead of employing stan-

dard nonlinear solvers, a novel tailored and efficient al-

gorithm is presented which is suitable for real time con-

trol of this mechanism. Its core idea is to decompose

the overall equation system into two different equation

sets and orthogonally iterate between their solutions to

achieve the required overall solution with a desired ac-

curacy. For concrete explanation, two subproblems re-

lated to the geometry of Active Ankle are presented,

namely, the Relaxed Inverse Kinematic Problem (ikp?)

and the Relaxed Translative Forward Kinematic Prob-

lem (tfkp?). Based on their analytical solutions, the

solution to the rotative inverse kinematic problem is

presented.

3.3.1 Relaxed Inverse Kinematic Model

Since the nature of inverse kinematic problem is over-

determined (see Table 4), the two rod equations in each
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(a) Physical setup of the Active Ankle. (b) Relaxed structure for ikm? (Alg. 4). (c) Relaxed structure for tfkm? (Alg. 5).

Fig. 6: The mechanism Active Ankle and relaxed variants featuring additional freedoms (virtual joints).

Algorithm 1 Inverse kinematic model (ikm)

Require: Target pose Pe

Ensure: Joint configuration (qx, qy , qz)

1: function ikm(Pe)
2: (e1, . . . , e6)← epl(Pe) . Platform coords
3: for ij ∈

{
12, 34, 56

}
do

4: pi+, pi−← S(ei, di) ∩ C(bij , c
2
, ẑij)

5: pj+, pj−← S(ej , dj) ∩ C(bij , c
2
, ẑij)

. Sphere-circle intersections for i and j

6: I ←
{
pi+,pi−

}
, J ←

{
pj+,pj−

}
7: p+,p−← argmax

pi∈I,pj∈J

(
(pi−bij) ∗ (bij−pj)

)
8: rij ← p+ − p− . Antipodes
9: dij ← c(0)

i − c(0)

j . Zero Posture

10: qx, qy , qz ← ∠(d12, r12),∠(d34, r34),∠(d56, r56)
11: return (qx, qy , qz)

leg are subtracted to obtain a well determined system

of leg equations. Problem 1 is relaxed in the sense that

it ensures le1c1 = le2c2 , le3c3 = le4c4 , le5c5 = le6c6 and

not leici = l, i ∈
{

1, .., 6
}

. A geometric interpretation

of this relaxation is shown in Figure 6b: the rods can

be interpreted as virtual prismatic joints which change

their lengths in pair in each leg.

Three leg equations Subtracting (5) from (4), (7) from

(6), (9) from (8), the three leg equations are derived.

rey cos qx + r(ez − l) sin qx + d(lnz − e ∗ n) = 0

rez cos qy + r(ex − l) sin qy + d(lax − e ∗ a) = 0

rex cos qz + r(ey − l) sin qz + d(lsy − e ∗ s) = 0

(10)

The three leg equations, with the leg index j ∈
{1, 2, 3}, are of the form:

Ej · cos(qj) + Fj · sin(qj) +Gj = 0 (11)

Relaxed IKP Solution Using the tangent half angle sub-

stitution,

tj = tan(
qj
2

), cos(qj) =
1− t2j
1 + t2j

, sin(qj) =
2tj

1 + t2j
,

a quadratic equation in t is obtained

(Gj − Ej) · t2j + 2 · Fj · tj + (Gj + Ej) = 0 . (12)

The two solutions of the above quadratic equation is

given by:

tj1,2 =
−Fj ±

√
E2
j + F 2

j −G2
j

Gj − Ej
qj+ , qj− = 2 · atan2(−Fj ±Hj , Gj − Ej)

(13)

where Hj =
√
E2
j + F 2

j −G2
j . The expressions for Ej ,

Fj and Gj for the three legs are given in Table 5.

The absolute minimum of the two solutions is cho-

sen so that the mechanism stays close to the zero config-

uration and respects the physical constraints imposed
by either link intersection or limits of passive spherical

joints. The solution is implemented in the method ikm?

in Alg. 4.

3.3.2 Relaxed Translative Forward Kinematic Model

Translative Forward Kinematic Problem (tfkp) is de-

fined as the problem of finding the end effector shift

from the input joint configuration and desired orienta-

tion of the end effector, formally,

e = tfkp(qx, qy, qz,RE) . (14)

Table 5: Parameters for ikm? solution

Leg Index (j) Ej Fj Gj

j = 1 rey r(ez − l) d(lnz − e ∗ n)

j = 2 rez r(ex − l) d(lax − e ∗ a)

j = 3 rex r(ey − l) d(lsy − e ∗ s)
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Algorithm 2 Calculation of effector points (epl)

Require: Homogeneous transformation of end effector PE

Ensure: End effector point matrix E

1: function epl(PE)

2:

[
ŝ n̂ â e

0 0 0 1

]
← PE . Extraction

3: e1 ← e + d · n̂, e2 ← e− d · n̂
4: e3 ← e + d · â, e4 ← e− d · â
5: e5 ← e + d · ŝ, e6 ← e− d · ŝ
6: E ← (ei : 1 ≤ i ≤ 6)
7: return E

Algorithm 3 Calculation of crank points (cpl)

Require: Input joint angles [qx, qy , qz]
Ensure: Crank point matrix C

1: function cpl(qx, qy , qz)
2: c1 ← (0 , r · cos qx , l+ r · sin qx)T

3: c2 ← (0 ,−r · cos qx , l − r · sin qx)T

4: c3 ← (l+ r · sin qy , 0 , r · cos qy)T

5: c4 ← (l − r · sin qy , 0 ,−r · cos qy)T

6: c5 ← (r · cos qz , l+ r · sin qz , 0)T

7: c6 ← (−r · cos qz , l − r · sin qz , 0)T

8: C ← (ci : 1 ≤ i ≤ 6)
9: return C

The solution to this problem provides the parasitic mo-

tion of the end effector. As noted in Table 4, this prob-

lem is an over-determined problem as the number of un-

knowns are three while the number of constraint equa-

tions equals to six. Each rod length constraint (4–9)

represents the equation of a sphere where the end effec-

tor point [ex, ey, ez] moves on its surface. They repre-

sent the system of equations of six spheres and the end

effector of Active Ankle must lie at their intersection

point. However, while solving the ikm? it is already en-

sured that the two rod lengths forming a leg should be

the same. So, end effector coordinates can be computed

by solving the three rod equations including one from

each leg which makes the problem well-determined. The

problem is relaxed in the sense that it ensures either

le1c1 = le3c3 = le5c5 = l or le2c2 = le4c4 = le6c6 = l and

not leici = l, i ∈
{

1, .., 6
}

. A geometric interpretation

of this relaxation is shown in Figure 6c: the unchosen

rods can be interpreted as virtual prismatic joints which

will adjust their lengths so that the chosen rod length

becomes equal to l after solving the problem. Overall,

the six sphere intersection problem reduces to a three

sphere intersection problem.

Relaxed TFKP Solution. Three spheres intersect in max-

imally two points [38]. Without the loss of generality,

one can choose to solve for spheres represented by (4),

(6) and (8). This particular choice of sphere centers (si)

and radii ri, i ∈ {1, 2, 3} is shown in the method tfkm?

in Alg. 5. The end-effector coordinates are estimated

using

e+, e− = SphInt(s1, s2, s3, r1, r2, r3) . (15)

The method SphInt is specified in Alg. 9 in Appendix B.

The solution with a norm less than equal to d is selected

to avoid the mechanism to leave its assembly. This is

implemented in the method tfkm? in Alg. 5.

3.3.3 Solution Approach

The estimated end effector coordinates are defined as

ẽ = [ẽx, ẽy, ẽz]. In the sequel, the approximate nature

of a variable x is expressed by using a tilde x̃. The

homogeneous transformation matrix of the end effector

w.r.t. the global frame is given by

P̃E =

[
RE ẽ3×1
01×3 1

]
. (16)

With an estimated homogeneous transformation matrix

(P̃E), the estimated positions of the six end effector

points stored in matrix Ẽ are calculated with the help

of Alg. 2 as

Ẽ = epl(P̃E) . (17)

The ikm? solution as presented in Section 3.3.1 is

used to calculate the estimated input joint angles q̃ =

[q̃x, q̃y, q̃z] required to achieve the estimated end effec-

tor position and desired orientation. It must be recalled

that for the derivation of three leg equations (10), the

two distance constraint equations of each rod consti-

tuting a leg are subtracted from each other and hence

forcing the two virtual rod lengths of each leg to be

equal. Thus, any approximate solution to the inverse

kinematic model comes at a cost of incorrect leg lengths.

[q̃x, q̃y, q̃z] = ikm?(P̃E) (18)

The estimated input joint angles are now used to

estimate the position of six crank points using Alg. 3.

C̃ = cpl(q̃x, q̃y, q̃z) (19)

The estimated position vectors of the six end effec-

tor points (ẽi) and the six crank points (c̃i) are ex-

tracted from end effector points matrix Ẽ (17) and

crank points matrix C̃ (19) respectively. The length

of six virtual rods are calculated from ẽi and c̃i using:

‖ẽi − c̃i‖ = l̃i , i ∈ {1, ..., 6} (20)
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Algorithm 4 Relaxed inverse kinematic model (ikm?)

Require: Homogeneous transformation of end effector PE

Ensure: Input joint angles [qx, qy , qz]

1: function ikm?(PE)
2: for j ∈ (1, 2, 3) do

3: Hj ←
√
E2

j + F2
j −G2

j . Table 5

4: qj+ , qj− ← 2 · atan2(−Fj ±Hj , Gj − Ej)
5: qj+ ← atan2(sin qj+ , cos qj+) . Wrap to ±π
6: qj− ← atan2(sin qj− , cos qj−) . Wrap to ±π
7: qj ← min(

∣∣qj+ ∣∣ , ∣∣qj− ∣∣)
8: [qx, qy , qz]← (qj : 1 ≤ j ≤ 3)
9: return [qx, qy , qz]

Algorithm 5 Relaxed translative forward kinematic

model (tfkm?)

Require: Input joint angles [qx, qy , qz] and rotation matrix
RE

Ensure: End effector position e

1: function tfkm?(qx, qy , qz ,RE)
2: (r1, r2, r3)← l

3: s1 ← (−dnx, r · cos qx − dny , l − dnz + r · sin qx)T

4: s2 ← (l − dax + r · sin qy ,−day , r · cos qy − daz)T

5: s3 ← (r · cos qz − dsx, l − dsy + r · sin qz ,−dsz)T

6: e+, e− ← SphInt(s1, s2, s3, r1, r2, r3) . Alg. 9
7: if ‖e+‖ < d then

8: e← e+
9: else

10: e← e−

11: return e

Fig. 7: Normal working mode, active joint angles:

(qx, qy, qz) ≈ (0.0872, 0.1748, 0.2614) and end effector

shift: (ex, ey, ez) ≈ (0.0127, 0.1515, 0.3807)

Fig. 8: Upside – down working mode, active joint an-

gles: (qx, qy, qz) ≈ (0.4566, 0.2377, 0.4663) and end ef-

fector shift: (ex, ey, ez) ≈ (65.6274, 65.9876, 66.7599)

A least square error function to minimize the change

in virtual rod lengths is defined as follows:7

Ergd(ẽi, c̃i) =

6∑
i=1

(l̃i − l)2 (21)

To minimize the least squared error, the new end ef-

fector coordinates (ẽ = [ẽx, ẽy, ẽz]) are estimated. Solv-

ing for the new end effector position in each iteration

is equivalent to solving the relaxed forward kinematic

model in translative domain (see Section 3.3.2). The so-

lution ensures that the leg lengths become equal to l.

ẽ = tfkm?(q̃x, q̃y, q̃z,RE) (22)

The two solutions in tfkm? lead to two distinct solu-

tions for the rikm, out of which we are primarily inter-

7 For improving computational efficiency, the error function
can also be chosen to minimize the change in three instead of
six rod lengths: the solution of ikm? already ensures that the
two rod lengths equal in each leg.

ested in the solution with norm less than d. Each es-

timation of the end effector position using the method

tfkm? minimizes the least squared error function in the

next iteration. Hence, the estimated end effector coordi-

nates are substituted back into the (16) and the subse-

quent calculations are iterated until the Ergd(ẽi, c̃i) <

ε is achieved. The overall rotative inverse kinematic

model is implemented in the method rikm (Alg. 6). It

must be noted that ẽ is initialized as 0 at the beginning

of the algorithm (Line 2) but this choice does not af-

fect the convergence of the algorithm.8 The two almost

spherical working modes (solutions to the rikm) for an

axis u ≈ (0.2127, 0.5344, 0.8180)T and angle φ ≈ 0.3140

are shown in Figure 7 and Figure 8. The numerical con-

vergence towards normal working mode is depicted in

Table 6.

8 Instead the convergence to the correct physical configu-
ration is guaranteed by selecting the appropriate intersection
point within tfkm?.
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Iteration 0 1 2

qx 0.0872 0.0872 0.0872

qy 0.1745 0.1748 0.1748

qz 0.2612 0.2613 0.2614

ex 0.0 0.0071 0.0127

ey 0.0 0.1499 0.1515

ez 0.0 0.3678 0.3807

Ergd 0.3370 4.12 · 10−04 4.29 · 10−07

Table 6: A numerical example showing the convergence

of RIKM for an axis u ≈ (0.2127, 0.5344, 0.8180)T and

an angle φ ≈ 0.3140.

Algorithm 6 Rotative inverse kinematic model (rikm)

Require: Desired orientation of the end effector, RE

Ensure: Joint angles [qx, qy , qz] and end effector shift
[ex, ey , ez]

1: function rikm(RE , ε)

2: P̃E ←
[

RE 03×1

01×3 1

]
. Initialization

3: while Ergd <ε do

4: (ẽ1 . . . ẽ6)← epl(P̃E) . Alg. 2
5: [q̃x, q̃y , q̃z]← ikm?(P̃E) . Alg. 4
6: (c̃1 . . . c̃6)← cpl(q̃x, q̃y , q̃z) . Alg. 3
7: Ergd ←

∑6
i (‖ẽi − c̃i‖ − l)2 . Rigidity error

8: ẽ← tfkm?(q̃x, q̃y , q̃z ,RE) . Alg. 5

9: P̃E ←
[

RE ẽ3×1

01×3 1

]
. Update

10: [qx, qy , qz]← [q̃x, q̃y , q̃z]
11: [ex, ey , ez]← [ẽx, ẽy , ẽz]
12: return [qx, qy , qz , ex, ey , ez]

Benchmarking and Convergence. The solution strategy

presented above to solve rikp is compared with some

standard non-linear solvers like Levenberg-Marquardt

(LM) and Trust Region Dog Leg (TRDL) implemented

in fsolve function of MATLAB as well as constrained

optimisation solver using Active Set algorithm imple-

mented in MATLAB function called fmincon. A total of

1000 random orientation samples are chosen from the

physically feasible workspace of the mechanism (Fig-

ure 14) and are provided as the input to this prob-

lem. RIKM solver demonstrates robust convergence in-

side the physically feasible workspace of the mechanism.

The number of iterations for convergence and the CPU

time9 of rikm are recorded for benchmarking its effi-

ciency in comparison to standard solvers for a tolerance

of ε = 1.e−06 mm (See Figure 9 and Figure 10). With

9 Intel Core i7 CPU 950 @ 3.07GHz x 8PC, 6GB RAM

average iterations for convergence equals to 3.42 and

CPU time equals to 2.58 milli-seconds, it was found

that rikm performed 21 times faster than TRDL based

solver. Hence, it is the most suitable method to achieve

a kinematic control on the Active Ankle as described

in Section 5.

Discussion. The computation scheme of the novel rikm

algorithm – that solves the problem of coupled mo-

tion kinematics in context of the Active Ankle ef-

ficiently – is displayed in diagram in Figure 11. From

that scheme, it can be observed that the auxiliary vari-

ables l̃ – that reflect violations of structural (rigidity)

constraints – can be interpreted as virtual joints. The

method rikm ensures that at termination after a few

iterations (see Table 6), the values of l̃ equal zero. From

the viewpoint of kinematic synthesis, this consideration

opens a perspective for extending the Active Ankle

from an almost spherical design to a fully-controllable

six-DOF mechanism that, in particular, could also act

as a perfect spherical mechanism (compare [27]).

4 Forward Kinematics

For reasoning about potential applications and future

modifications of a novel mechanical design, its features

and limitations require consideration. In particular, the

workspace of a novel design needs to be characterized.

Therefore, the forward kinematic problem of the Ac-

tive Ankle is firstly introduced together with a con-

cise modeling as a numerical optimization problem in

Section 4.1. Based on these prerequisites, the physical

workspace of the Active Ankle is evaluated in Sec-

tion 4.2 with regard to the configuration space, the (pri-

mary) rotative taskspace, and the (secondary) transla-

tive taskspace. The analysis is focused on the physi-

cally realizable workspace that is constrained by the

specific mode the mechanism is assembled in.10 In par-

ticular, the principal limitations (given by link intersec-

tion) of the physical taskspace are set into perspective

with those given by the employed spherical joints. The

rotative domain of the taskspace is visualized by means

of rotation vectors (closely related to angle-axis rep-

resentation and quaternions [5]). The color model has

been adopted to represent the joint configuration of a

certain posture.11

10 A complementary analysis focusing on global aspects of
Active Ankle’s workspace is available in [24].
11 A bright red, green, or blue tone indicates a strong in-
fluence of particular joint (the x, y, or z-joint, respectively),
compare Figure 12.
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Fig. 9: Comparison of number of iterations for conver-

gence amongst different RIKM solution strategies

Fig. 10: Comparison of CPU time for convergence

amongst different RIKM solution strategies

d̃ t̃q̃ R

1

2

3

4

Fig. 11: Computation scheme of the rotative inverse

method rikm. The matrix of workspace variables is the

end-effector pose P̃ E
∼= (R, t̃). The vector of config-

uration variables q̃ is given by (qx, qy, qz). The vector

of design variables, denoted by d̃, includes the vector l̃

that is checked for constraint violation in the abortion

criterion of rikm in Alg. 6. The computation in rikm

consists of the steps (1) ikm?, (2) epl, (3) cpl, and (4)

tfkm?.

4.1 Solution Approach

Problem 3 (Forward Kinematics) The forward kine-

matic problem (fkp) of the Active Ankle is to com-

pute a pose of the end effector PE for given joint angles

(qx, qy, qz), as

PE = fkp(qx, qy, qz) . (23)

While the inverse kinematic problem ikp (Prob. 1) is

solved analytically (Section 3.2), the forward kinemat-

ics Prob. 3 is solved via a numerical optimization

nfk(q;P (0)

E ) in Alg. 7. The core of the numerical opti-

mization is the formulation of a target function cost

that, in essence, expresses the constraint violation be-

tween endeffector and base. With regard to this, the

presented modeling and solution procedure is closely re-

lated to the approach described in [33]. Technically, the

computation of the function cost displayed in Alg. 8

relies on three summands explained next.

Distance summand (DS) The summand c reflects, as

(3), the distance constraints given by the rod length l,

as

c
(
E,C, l

)
=

6∑
i=1

( ‖ei − ci‖2 − l2

l2

)2
, (24)

expressed by E = (e1 . . . e6) and C = (c1 . . . c6). Here,

the points ei depend on the pose PE (epl in Alg. 2)

and the points ci depend on the configuration vector q

(cpl in Alg. 3).

Representation summands (RS) Instead of the matrix

representation PE, the cost function is based on the

vectorial representation of the end effector’s pose

x = (φ, ux, uy, uz, ex, ey, ez)
T ,

containing the angle-axis representation of orientation

and three position variables. Due to the applied angle-

axis representation, two technical cost summands are

introduced for enforcing the algorithm to converge: the

cost n, defined as

n(x) =
(‖(ux, uy, uz)‖2 − 12

12

)2
. (25)

represents a penalty for violation of the constraint ‖û‖ =

1. The third summand a, defined as

a(x, s) =
( (φ2 + s2φ)− π2

π2

)2
, (26)

represents a penalty for violation of the constraint |φ| ≤
π. Here, s denotes the vector of slack variables s =

(sφ)T for modeling inequality constraints.
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Algorithm 7 Numerical forward kinematics (nfk)

Require: Configuration q = (qx, qy , qz)T , initial search pose
P (0)

E

Ensure: An endeffector pose PE feasible for q

1: function nfk(q;P (0)

E )
2: C ← cpl(q) . Alg. 3
3: x(0) ← mat2vec(P (0)

E ) . Alg. 12
4: s(0) ← 0 . Init. slacks
5: x∗, s∗ ← argmin

(x,s)

cost(x(0), s(0);C, l) . Optim.

6: PE ← vec2mat(x∗) . Alg. 13
7: return PE

Algorithm 8 Vectorial constraint violation function

Require: Pose vectorx, slack vector s, crank pointsC,
rod length l

Ensure: Scalar value v representing the constraint violation

1: function cost(x, s;C, l)
2: PE ← vec2mat(x) . Alg. 13
3: E ← epl(PE) . Alg. 2
4: v ← c(E,C; l) + n(x) + a(x, s) . (24, 25, 26)
5: return v

Method Based on the introduced cost terms, the nu-

merical forward computation nfk in Alg. 7 is modeled

as an quadratic unconstrained optimization method.

For the initial pose P (0)

E (Line 1) prior knowledge can be

used or an initialization by the ‘zero’ or a ‘random’ pose

is applied. For the optimization (Line 5) a standard gra-

dient descent for local optimization, for example BFGS,

can be applied. The conversion methods mat2vec and

vec2mat are stated in Appendix C. Due to the non-

negativity of the three summands of the target function

cost, the function value

c
(
E,C, l

)
+n(x) + a(x, s) = 0 (27)

certifies an optimization result PE that fulfills all re-

quired constraints that are given in (24, 25, 26).

4.2 Workspace Characterization

In contrast to Prob. 3, that asks for the output poses

of one joint configuration, the problem of workspace

analysis is asking for the solvability of Prob. 3 for all

poses PE ∈ SE(3). As such, the analysis of workspace

is crucial for the design and the operation of machines

since it provides a ‘global view’ onto the properties of

a mechanism.

Problem 4 (Workspace Analysis) Given the mech-

anism Active Ankle, determine for each pose PE ∈

Table 7: Layered illustration of the configura-

tion domain of the Active Ankle. The symbols

‘x’ and ‘-’ indicate the feasible and the infea-

sible joint angles q = (qx, qy, qz) ∈ Q3 with

Q ≈ (−69.2◦,−49.4◦,−29.6◦,−9.8◦, 9.8◦, 29.6◦, 49.4◦,

69.2◦, 89.0◦). For each of the nine arrays, qx ∈ Q is

fixed while qy and qz vary.

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - - 1

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - x - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - x - - - - - -

- - x - - - - - - -

- - - - - - - - - -

- - - - - - - - - - 2

- - - - - - - - - -

- - - - - - - - - -

- - - - - - x - - -

- - - - - x x x - -

- - - - x x x - - -

- - - x x x - - - -

- - - x x - - - - -

- - - x - - - - - -

- - - - - - - - - -

- - - - - - - - - - 3

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - x x x - - -

- - - x x x x - - -

- - - x x x x - - -

- - - x x x - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - - 4

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - - x x x - - - -

- - - x x x x - - -

- - - x x x x - - -

- - - - x x x - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - - 5

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - -

- - x x x - - - - -

- - - x x x - - - -

- - - - x x x - - -

- - - - - x x - - -

- - - - - - - - - -

- - - - - - - - - -

- - - - - - - - - - 6

- - - - - - - - - -

- - - - - - - - - -

- - x - - - - - - -

- - - x - - - - - -
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SE(3), if at least one joint configuration q = (qx, qy, qz)
T

exists such that the endeffector is located at PE. For

each such q, let the overall configuration be described

as (q,PE,E,C), so that the problem is formally be de-

noted as{
q,PE,E,C

∣∣ fkp(q) = PE,

E = epl(PE), C = cpl(q), PE ∈ SE(3)
}
.

Since the input space has dimension three (q), while

the ambient dimension of the output space equals six

(PE), the feasible output set of Active Ankle is a

lower dimensional.

In the remainder of this section, discrete approxi-

mations of the workspace of the Active Ankle are

provided by evaluating the forward geometry on regu-

lar grids in the configuration space. Instead of consid-

ering the overall vector (q,PE,E,C) of Prob. 4 with

3 + 16 + 18 + 18 = 55 variables, projections [4] to the

essential (1) configuration, (2) translative, and (3) ro-

tative domains are explored. Three further constraints

are introduced in the sequel to judge the physical real-

izability of obtained configurations.

Simplex constraints (SC) Let (a, b, c,d) denote the

3-simplex spanned by four vertices a, b, c,d and let
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svol( ) denote its signed volume, computed as

svol( (a, b, c,d)) =
1

6
· det(a− d, b− d, c− d).

For Active Ankle, the simplices

S23 = (c2, e2, c3, e3) S24 = (c2, e2, c4, e4)

S45 = (c4, e4, c5, e5) S46 = (c4, e4, c6, e6)

S61 = (c6, e6, c1, e1) S62 = (c6, e6, c2, e2)

are introduced together with the inequality constraints

svol
(
S23

)
> 0 svol

(
S24

)
> 0

svol
(
S45

)
> 0 svol

(
S46

)
> 0

svol
(
S61

)
> 0 svol

(
S62

)
> 0 ,

(28)

matching the zero posture signs, to exclude those setups

that imply a rod interference and a different assembly

mode.

Proximity constraint (PC) Similarly, the end effector

point e is kept nearby the origin 0 with the constraint

‖e− 0‖2 ≤ d2 , (29)

to exclude the potential ‘upside-down’ assembly mode

of the Active Ankle from the realizable workspace.

Ball-and-socket constraint (BC) Finally, a constraint

is introduced to study the effect of the physical limi-

tations of the employed ball-and-socket joints: let the

rod vectors ri be defined as ri = ei − ci, let the base

planes Bi be defined as B1 = B2 = (1, 0, 0)⊥, B3 =

B4 = (0, 1, 0)⊥, B5 = B6 = (0, 0, 1)⊥, and let the ef-

fector planes Ei be defined as E1 = E2 = (e1 − e2)⊥,
E3 = E4 = (e3 − e4)⊥, E5 = E6 = (e5 − e6)⊥. With

these preparations, the constraints of the passive ball-

and-socket joints are expressed by∣∣∠◦(ri, Bi)∣∣ ≤ 25◦ ∧
∣∣∠◦(ri, Ei)∣∣ ≤ 25◦ , (30)

where the absolute angle in degree
∣∣∠◦∣∣ between a vec-

tor a and a plane H, that specified by the plane normal

vector n as H = H(n) = n⊥, is computed as∣∣∠◦(a, H(n)
)∣∣ = asin

( |a ∗ n|
‖a‖ · ‖n‖

)
· 360

◦

2π .

By means of (27–30), the realizability of Active

Ankle’s configurations can be classified: the workspace

limits with respect to interferences of links of the mech-

anism (28, 29) and feasible intervals of passive ball-and-

socket joints (30) are considered, compare [29]. In the

following three-dimensional illustrations, four views are

provided to motivate a spatial imagination of all three

displayed domains: in each case, the image perspectives

from left-to-right are: (i) ‘from top’ (k̂), (ii) ‘from left’

(̂i), (iii) ‘from slanted above’ ((1, 1, 1)), and (iv) ‘from

right’ (ĵ), compare [5]. The color encoding in Figures 12–

17 is defined by a bijection in which colors encode joint

configurations: the relation can be read off from Fig-

ure 12 and 15 in which the color of a point correlates

to its position in the depicted configuration space. The

vectors q = (qx, qy, qz) ∈ Q3 used for in these illustra-

tions are given given by Q ≈ (−89.0◦ + z · 178
◦

49◦ : 0 ≤
z ≤ 49, z ∈ Z) with |Q| = 503 = 125000.

4.2.1 Configuration Domain

The workspace projection to the domain of the pseudo

vectors q = (qx, qy, qz)
T , encoding the Active An-

kle’s configurations,{
q ∈ Q

∣∣ fkp(q) = PE, PE ∈ SE(3)
}
, (31)

is first illustrated in a sliced manner in Table 7: from the

table, information about the boundaries of the feasible

configuration domain of Active Ankle are deduced.

It is further observed that the feasible set is line sym-

metric with respect to (1, 1, 1), but not point symmetric

with respect to the zero configuration (0, 0, 0) ∈ Q. Spa-

tial images of the configuration domain are provided in

Figure 12 and Figure 15. The angles qx, qy, and qz in

Figure 15 lay in the range [23.61◦, 23.61◦], instead of

[45.41◦, 41.78◦] in Figure 12 (Table 8), due to the ball-

and-socket constraint (30) (−45.41◦,−23.61◦,23.61◦,

41.78◦ ∈ Q).

4.2.2 Translative Domain

The workspace of the Active Ankle in the translative

domain{
p ∈ R3

∣∣ fkp(q) = PE, PE =
(
R p
0 1

)
∈ SE(3)

}
(32)

is depicted in Figure 13 and Figure 16. Together with

the numerical data in Table 7, the images indicate that

the end effector shift takes place within the positive

octant of the global coordinate system O (see Figure 5).

Using the ball-and-socket joints with a cone angle of

±25◦ (30), the end-effector shift is restricted by the

(loose) upper bound of
√

3 · 2.53mm ≈ 4.38mm.

4.2.3 Rotative Domain

For depicting the workspace within the rotative do-

main, the angle–axis representation is employed:{
φ · û ∈ R3

∣∣ exp(φ · û⊗) = R, φ ∈ [0, π],

fkp(q) = PE, PE =
(
R p

0 1

)
∈ SE(3)

}
.

(33)
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Fig. 12: Visualization of the feasible workspace in joint configuration domain. The set of feasible joint angles
{
q
}

has a ‘simplex-like’ shape with ‘curved’ facets in the joint configuration space Q (compare to Table 7).

Fig. 13: Visualization of the feasible workspace in translative domain. The set of feasible positions
{
e
}

has a

‘cone-like’ shape and is contained in the positive octant of the coordinate system.

Fig. 14: Visualization of the feasible workspace in rotative domain . The set of feasible orientations
{
φ · û

}
,

expressed in angle-axis representation, has line-symmetric shape with respect to the axis (1, 1, 1)T .

In the rotative domain, the (1, 1, 1)-symmetric set in

Figure 14 has a simplex-like shape that intersects the

joint axes at −45.88◦ and 42.12◦ (Table 8). The re-

duced set, cut by the ball-and-socket constraints (30),

depicted in Figure 17, has a cube-like shape with side

lengths of about 2 · 23.61◦ (Table 8).

Numerical data. An overview of the numerical data of

Figures 12–17 is provided in Table 8. Due to the 3-

symmetric design of the Active Ankle, the numer-

ical values are identical for all three axes in all three

domains.

5 ROM Analysis and Control of Active Ankle

Active Ankle is used as a 3 DOF active spherical

module at hip and ankle joints in the Recupera full

body exoskeleton, as shown in Figure 18. This section

presents the range of motion (ROM) analysis of the Ac-

tive Ankle and the experimental results of its kine-

matic control based on the Rotative Inverse Kinematic

Model (rikm) from Section 3.3. For sake of brevity, the

results are only reported for its application as an ankle

joint.

Table 8: Overview of numerical values of the two

datasets: Dataset A is constrained by (27–29) and con-

tains 9843 samples, dataset B is constrained by (27–30)

and contains 2478 samples. The terms lp and up in-
dicate the plot ranges, lc, and uc represent maximal

coordinates of the point clouds, and la and ua indicate

intersections of clouds’ surfaces with coordinate axes.

Domain Configuration Translative Rotative

[lp, up] [−90◦, 90◦] [−3.5 mm, 3.5 mm] [−180◦, 180◦]

Dataset A

Figure 12 Figure 13 Figure 14

[lc, uc] [−78.10◦, 78.10◦] [0 mm, 4.87 mm] [−65.27◦, 62.92◦]

[la, ua] [−45.41◦, 41.78◦] [0 mm, 1.37 mm] [−45.88◦, 42.12◦]

Dataset B

Figure 15 Figure 16 Figure 17

[lc, uc] [−23.61◦, 23.61◦] [0 mm, 2.53 mm] [−31.25◦, 31.95◦]

[la, ua] [−23.61◦, 23.61◦] [0 mm, 1.03 mm] [−23.61◦, 23.61◦]
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Fig. 15: Visualization of the feasible workspace in joint configuration domain restricted by the ball-and-socket

constraint (30). The set of feasible joint angles
{
q
}

has a ‘cube-like’ shape in the joint configuration space Q
(compare to Figure 12).

Fig. 16: Visualization of the feasible workspace in translative domain restricted by the ball-and-socket constraint

(30). The set of feasible positions
{
e
}

has a ‘pen-like’ shape contained in the positive octant of the coordinate

system (compare to Figure 13).

Fig. 17: Visualization of the feasible workspace in rotative domain, restricted by the ball-and-socket constraint

(30). The set of feasible orientations
{
φ · û

}
has the shape of a deformed cube (compare to Figure 14).

5.1 Range of motion analysis

The three primary motions available at the human an-

kle (dorsiflexion–plantarflexion φα, eversion–inversion

φβ , and adduction–abduction φγ) are shown in Fig-

ure 20. Their overall ranges of motion are shown in

Table 9. During most activities of daily living, only a

partial ROM is required: walking on an even surface

(10◦ − 15◦ plantar flexion and 10◦ dorsiflexion), walk-

ing upstairs (37◦ total ROM), walking downstairs (56◦

total ROM) [36].

To demonstrate the suitability of Active Ankle

mechanism for human ankle related applications (see

Figure 19), these movements have been performed on

this mechanism using rikm and its ROM has been eval-

uated. The ROM offered by the Active Ankle is sub-

jected to the physical motion limits of the ball and

socket joints. For the presented prototype in Figure 1,

the ball and socket joints used have a motion range of

±25◦. Thus, the maximum possible motion range for

the three rotative joints (J01,12, J01,32, and J01,52) lays

between −25◦ and +25◦. The three task space trajecto-

ries in angle-axis representation, where ω represent the

angular speed and t is the time, are selected.

uα = (+1,−1,−1)T , φα = 28.65◦ · sin(ω · t) + 8.65◦

uβ = (+1,+1,−1)T , φβ = 25.00◦ · sin(ω · t) + 10.0◦

uγ = (+1,+1,+1)T , φγ = 33.59◦ · sin(ω · t) + 3.44◦

Table 9: Comparison of primary motion ranges, dor-

siflexion – plantarflexion (DF–PF), eversion–inversion

(EV–IV), and adduction–abduction (AD–AB), at hu-

man and Active Ankle.

Motion type
Human Ankle Active Ankle

min. max. abs. min. max. abs.

DF – PF −20◦ 50◦ 70◦ −19.83◦ 37.23◦ 57.06◦

EV – IV −15◦ 35◦ 50◦ −15.00◦ 35.00◦ 50.00◦

AD – AB −30◦ 45◦ 75◦ −29.20◦ 36.96◦ 66.16◦
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The input joint angles needed to perform these mo-

tions are plotted against the task space angles (φα,

φβ , φγ) in Figures 21–23. The end effector shift en-

countered while performing these motions have been

shown in Figures 24–26. In all cases, it can be observed

that the shifts are less than 1 mm in magnitude and

hence practically insignificant. The available ROM con-

strained by the physical limits of the ball and socket

joints are shown against the human ankle ROM in Ta-

ble 9. It is evident that the presented design can fullfil

the range of motion required for most day to day ac-

tivities. These results show the suitability of Active

Ankle in full body exoskeletons, ankle rehabilitation

devices, and humanoid robots.

5.2 Kinematic Control Experiments

The Rotative Inverse Kinematic Model (rikm) has been

implemented within the real time Robot Construction

Kit (RoCK) [18] to achieve a kinematic control of the

Active Ankle. For a tolerance of ε = 1.e−06 mm,

the algorithm converges in four to six iterations, can be

implemented with a control loop frequency of 1 kHz,

and is thus suitable for most applications from a con-

trol perspective. The kinematic control of Active An-

kle is implemented on a mid-level control PC commu-

nicating with the FPGA electronics of the actuators

which implement low level cascaded position, velocity,

and torque controllers. These low level controllers en-

sure safety limits at position, velocity and current levels

in any selected control mode [2].

To demonstrate the performance of the kinematic

control, the following three task space trajectories cor-

responding to dorsiflexion–plantarflexion φα, eversion–

inversion φβ , and adduction–abduction φγ movements

are selected:

uα = (+1,−1,−1)T , φα = 17.19◦ · sin(ω · t) + 5.19◦

uβ = (+1,+1,−1)T , φβ = 18.69◦ · sin(ω · t) + 7.44◦

uγ = (+1,+1,+1)T , φγ = 25.19◦ · sin(ω · t) + 2.58◦

The tracking during the three aforementioned tra-

jectories is shown in Figures 27–29 where (q̃x, q̃y, q̃z) are

the desired input trajectories to the joints and (qx, qy, qz)

demonstrate the real joint states. The maximum ab-

solute errors between desired and real joint trajecto-

ries of the three actuators, calculated as qe = max

(| q̃x−qx |, | q̃y−qy |, | q̃z−qz |), during the dorsiflexion–

plantarflexion, eversion–inversion and adduction–abduc-

tion movements are 0.61◦, 0.79◦, and 0.23◦, respec-

tively. The maximum of the mean absolute errors of the

three actuators during the three movements are 0.37◦,

0.47◦, and 0.09◦, respectively. These figures demonstrates

the robustness of the low level controller.

6 Conclusion and Outlook

This article presents crucial aspects of the Active An-

kle, a novel parallel manipulator with mobility three

that moves in an almost spherical manner. The de-

sign considerations, specifications, and the inverse and

forward kinematic models are presented, unveiling its

distinctive features and its suitability as a spherical

joint module in an exoskeleton. For each of the kine-

matic problems, a detailed algorithmic treatment is pro-

vided. The kinematic control of Active Ankle is pre-

sented with a comparison of its motion range to that

of a human ankle joint. The primary application of this

almost-spherical parallel mechanism is an active spher-

ical joint module where small translations of the endef-

fector can be tolerated. Alternately, it may also be inte-

grated as a submechanism together with a regional ma-

nipulator for obtaining precise six DOF motions. Here,

its translations need to be compensated by the other

joints of the overall device. In the future, the modeling

of the mechanism can be extended to include its in-

stantaneous kinematics and dynamics due to a compu-

tationally efficient rotative inverse kinematic model. A

cascaded position, velocity, and torque controller in the

SO(3) task-space will enable an ideal almost-spherical

mechanism for diverse applications. Equipped with a

modular controller implemented on an embedded pro-

cessor, the Active Ankle will serve as a versatile, ac-

tive 3-DOF spherical joint within a full-body hybrid

serial-parallel exoskeleton.

A Reference Configurations

A set of reference configurations of the mechanism Ac-

tive Ankle is displayed in Table 10.

B Sphere Intersection Problem

The method SphInt in Alg. 9, called from Alg. 5, com-

putes the intersection of three spheres using distance

geometry. It is based on the quadrance [42] between

two vectors a and b,

Q(a, b) = (b− a) ∗ (b− a) ,

the squared distance between a and b, and its gener-

alization to vector sets, the Cayley–Menger bidetermi-

nants [38].

C Representation Conversion Methods

The conversion methods mat2vec and vec2mat, called

from Alg. 7 and Alg. 8, are stated in Alg. 12 and Alg. 13.
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Fig. 18: Active Ankle applied as

3-DOF hip and ankle joints in the

Recupera full body exoskeleton.

Fig. 19: Integration of Active Ankle

as a foot unit of an exoskeleton, with

motors, sensors, and electronics.

Fig. 20: Illustration of the three

primary rotations of the human

ankle joint.
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Fig. 21: Active Joint angles during

dorsiflexion – plantarflexion motion.
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Fig. 22: Active joint angles during

the eversion – inversion motion.
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Fig. 23: Active joint angles during

the adduction – abduction motion.
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Fig. 24: End effector shift during the

dorsiflexion – plantarflexion motion.
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Fig. 25: End effector shift during the

eversion – inversion motion.
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Fig. 26: End effector shift during the

adduction – abduction motion.
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Fig. 27: Trajectory tracking during

dorsiflexion – plantarflexion motion.
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Fig. 28: Trajectory tracking during

the eversion – inversion motion.
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Fig. 29: Trajectory tracking during

the adduction – abduction motion.



Design and kinematic analysis of Active Ankle 19

Table 10: Reference configurations with joint angles, end-effector poses, and point coordinates

Ind. Joint angles Position Orientation Effector points Crank points

i q = (qx, qy , qz) e φ û eT1 , eT3 , eT5 eT2 , eT4 , eT6 cT1 , cT3 , cT5 cT2 , cT4 , cT6

(0, 35, 0) (0,−35, 0) (0, 35, 100) (0,−35, 100)
1 (0◦, 0◦, 0◦)

0
0
0

 0◦

0
1
0

 (0, 0, 35) (0, 0,−35) (100, 0, 35) (100, 0,−35)
(35, 0, 0) (−35, 0, 0) (35, 100, 0) (−35, 100, 0)

(0.047, 34.867,−3.05) (0.047,−34.867, 3.05) (0, 34.867, 96.95) (0,−34.867, 103.05)
2 (−5◦, 0◦, 0◦)

0.047
0
0

 −5◦

1
0
0

 (0.047, 3.05, 34.867) (0.047,−3.05,−34.867) (100, 0, 35) (100, 0,−35.)
(35.047, 0, 0) (−34.953, 0, 0) (35, 100, 0.) (−35, 100, 0)

(0, 35.186, 0) (0,−34.814, 0) (0, 35, 100) (0,−35, 100)
3 (0◦, 10◦, 0◦)

 0
0.186

0

 10◦

0
1
0

 (6.078, 0.186, 34.468) (−6.078, 0.186,−34.468) (106.078, 0, 34.468) (93.922, 0,−34.468)
(34.468, 0.186,−6.078) (−34.468, 0.186, 6.078) (35, 100, 0) (−35, 100, 0)

(−9.058, 33.808, 0.418) (9.06,−33.807, 0.418) (0, 35, 100) (0,−35, 100)
4 (0◦, 0◦, 15◦)

0.001
0.001
0.418

 15◦

0
0
1

 (0.001, 0.001, 35.418) (0.001, 0.001,−34.582) (100, 0, 35) (100, 0,−35)
(33.808, 9.06, 0.418) (−33.807,−9.058, 0.418) (33.807, 109.059, 0) (−33.807, 90.941, 0)

(−8.636, 33.929, 3.428) (8.662,−33.625,−2.667) (0., 34.867, 103.05) (0.,−34.867, 96.95)
5 (5◦, 10◦, 15◦)

0.013
0.152
0.381

 17.991◦

0.213
0.534
0.818

 (6.088,−1.399, 34.815) (−6.062, 1.703,−34.053) (106.078, 0., 34.468) (93.922, 0.,−34.468)
(33.379, 9.19,−5.099) (−33.353,−8.886, 5.86) (33.807, 109.059, 0.) (−33.807, 90.941, 0.)

(0.822, 34.876,−3.047) (−0.727,−34.84, 3.053) (0, 34.867, 96.95) (0,−34.867, 103.05)
6 (−5◦,−3◦,−1◦)

0.048
0.018
0.003

 −5.995◦

0.839
0.509
0.189

 (−1.783, 3.105, 34.818) (1.879,−3.069,−34.812) (98.168, 0, 34.952) (101.832, 0,−34.952)
(34.991,−0.593, 1.895) (−34.896, 0.629,−1.889) (34.995, 99.389, 0) (−34.995, 100.611, 0)

Algorithm 9 Intersection of three spheres (SphInt)

Require: Spheres; midpoints m1, m2, m3 and radii r1, r2,
r3

Ensure: Intersection; points p+ and p−, with ‖p+ − si‖ = ri
and ‖p− − si‖ = ri for i ∈

{
1, 2, 3

}
, or empty set

1: function SphInt(m1, m2, m3, r1, r2, r3)
2: R1 ← r21, R2 ← r22, R3 ← r23

3: Q←


0 1 1 1 1
1 0 Q(m1,m2) Q(m1,m3) R1

1 Q(m2,m1) 0 Q(m2,m3) R2

1 Q(m3,m1) Q(m3,m2) 0 R3

1 R1 R2 R3 0


4: D(1234) ← 1

8
· det(Q) . CM determinant

5: if D(1234) < 0 then . Empty intersection
6: return ∅
7: D(123)←−1

4
·Minor(Q, (0, 1, 2, 3), (0, 1, 2, 3), 0)

8: D(123;124)←−1
4
·Minor(Q, (0, 1, 2, 3), (0, 1, 2, 4), 0)

9: D(123;134)←−1
4
·Minor(Q, (0, 1, 2, 3), (0, 1, 3, 4), 0)

10: v1 ←m2 −m1

11: v2 ←m3 −m1

12: v0 ← −D(123;134) · v1 +D(123;124) · v2

13: v∆ ←
√
D(1234) · (v1 × v2)

14: p+ ←m1 + 1
D(123)

· (v0 + v∆)

15: p− ←m1 + 1
D(123)

· (v0 − v∆)

16: return p+,p−

Algorithm 10 Matrix minor (Minor)

Require: Matrix A ∈ Rm×n, row indices R = (r1, r2, . . . , rp),
column indices C = (c1, c2, . . . , cq), x ∈

{
0, 1

}
Ensure: Determinant of the submatrix A[R][C] ∈ Rp×q

1: function Minor(A, R, C, x)
2: if x = 0 then . Index handling
3: do ri ← ri + 1 for ri ∈ R
4: do cj ← cj + 1 for cj ∈ C
5: A[R][C] ← Extract(A, R, C) . Submatrix
6: m← det(A[R][C]) . Minor
7: return m

Algorithm 11 Submatrix extraction (Extract)

Require: Matrix A ∈ Rm×n, row indices R = (r1, r2, . . . , rp)
with 1 ≤ ri ≤ m for 1 ≤ i ≤ p, and column indices C =
(c1, c2, . . . , cq) with 1 ≤ rj ≤ n for 1 ≤ j ≤ q

Ensure: Submatrix A[R][C] ∈ Rp×q extracted by R and C

1: function Extract(A, R, C)
2: R← ( êm

r1
êm
r2

. . . êm
rp

)T . R ∈ Rp×m

3: C ← ( ên c1
ên c2

. . . ên cq
) . C ∈ Rn×q

4: A[R][C] ← R ·A ·C
5: return A[R][C]

Algorithm 12 Conv. from pose matrix to pose vector

Require: Pose matrix P ∈ SE(3)
Ensure: Pose vector x = (φ, ux, uy , uz , px, py , pz)T

1: function mat2vec(P )

2:
(
R p

0 1

)
← P

3: φ← acos
(

tr(R)−1
2

)
∈ [0, π]

4: û←
{

((R−RT )⊕) φ 6= π

diag(1
2
· (R + I))◦

1
2 ) φ = π

5: (ux, uy , uz)← û

6: (px, py , pz)← p
7: x← (φ, ux, uy , uz , px, py , pz)T

8: return x

Algorithm 13 Conv. from pose vector to pose matrix

Require: Pose vector x = (φ, ux, uy , uz , px, py , pz)
Ensure: Pose matrix P ∈ SE(3)

1: function vec2mat(φ, ux, uy , uz , px, py , pz)
2: û← (ux, uy , uz)T

3: p← (px, py , pz)T

4: R← exp(φ · û⊗)

5: P ←
(
R p

0 1

)
6: return P
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