
BINARY PACKAGING FOR THE ROBOT CONSTRUCTION KIT

*Thomas M. Roehr1, Pierre Willenbrock1

1DFKI GmbH Robotics Innovation Center, Germany, E-mail: {thomas.roehr,pierre.willenbrock}@dfki.de

ABSTRACT

This paper introduces a binary software packing mecha-
nism for the Robot Construction Kit (Rock). The use of
Rock with a variety of single-robotic systems and the use
in multi-robot scenarios has triggered the development of
a repeatable and manageable installation and upgrading
process. The mechanism is based on the widespread De-
bian packaging format and takes advantage of the avail-
able tooling. The high degree of standardization within
the Rock framework, and the application of a meta-build
tool have contributed to a build process which allows to
automatically package hundreds of associated packages.
A transparent integration into the meta-build tool allows to
maintain the typical development workflow, and enables
users to switch between custom source package variants
and binary software packages. This paper will detail the
architecture of the packaging approach, illustrate features
and show the validation, and lessons learned from daily
use.

1 INTRODUCTION

This paper introduces a binary software packaging mech-
anism for the Robot Construction Kit (Rock) [3]. Rock is
of particular interest for the space community since it fol-
lows a model-based software development approach, and
is used on a number of space related robotic systems such
as SherpaTT [9], Coyote III [9], CREX [8] and ESA’s Ex-
oMars Test Rover (ExoTeR) [4]. The use of Rock with
a variety of single-robotic systems and the use in multi-
robot scenarios such as TransTerrA [10], RIMRES [8] and
VIPE [7] has increased the need and triggered the devel-
opment of a repeatable and manageable installation and
upgrading process. The support of a component database
and streamlined, user-friendly development workflow by
the project D-Rock [2] added additional requirements for
the software packaging solution. The motivation for the
development of a binary packaging mechanism originates
from the set of application scenarios and user demands
which have been identified especially in the context of
operating heterogeneous, multi-robot systems for space
exploration [7, 10]. A large amount of software pack-
ages can be shared in a multi-robot system, but in prac-
tice this does not necessarily lead to a homogeneous soft-
ware basis: multiple architectures and distributions have
to be supported and in the case of Rock the flexibility of

the meta-build system autoproj comes with the risk of an
equally heterogeneous landscape of build configurations
in a multi-robot system, if not managed with strict user
policies.

The typical development process for robotics systems
often relies on a source-based build, i.e. requires to com-
pile a number of source packages for individual robotic
systems and for all systems used for development. This
approach wastes time, stretches the patience of develop-
ers as well as maintainers, and remains prone to errors.
While the time for performing a full source-based build
can be reduced for Linux-based systems with tools such
as ccache1 and icecc2, a better option is offered by a bi-
nary packaging system. For Linux-based systems the De-
bian distribution has set a widespread standard and due
to the distribution’s stability serves as basis for many
other Linux distributions including the popular distribu-
tion Ubuntu. The Debian ecosystem and its packaging
format allows for a robust, repeatable and standardized
process for software installation as well as upgrading.

Debian packages are also available for the popu-
lar Robot Operating System (ROS) [6], in contrast to
Rock [3], which has long lacked the provision of Debian
packages. The binary packages that can be generated with
the approach described in this paper close this gap for
Rock. But even more, the general approach introduces
a local packaging system and hierarchical releases, which
facilitate the creation and distribution of customized re-
leases. The packaging solution is based on Rock’s meta-
build tool autoproj [5] and, while the approach has been
implemented for Rock, the concept is generic enough to
be applicable for other frameworks outside the scope of
Rock.

The paper will describe the related work in Section 2.
The general architecture will be described in Section 3 fol-
lowed by a description of the practical application in Sec-
tion 4. The general lessons learned will be collected in
Section 5, while the paper concludes with a brief discus-
sion and an outlook in Section 6.

2 RELATED WORK

A number of different packaging mechanisms exists,
notably used by various Linux distributions. These distri-

1A fast C/C++ compiler cache - https://ccache.samba.org
2Distributed compiler - https://github.com/icecc

https://ccache.samba.org
https://github.com/icecc


butions offer software in the form of packages, which can
be installed into a system, and packages are distributed
in binary form, i.e compiled and ready for installation,
or in source form, requiring compilation before installa-
tion. Packages come with some meta data, e.g., to de-
scribe dependencies, allowing the packaging mechanism
to account for dependencies for building and installing
packages.

All packages need to be compiled at some point; ei-
ther at the user’s or at the distributor’s side, and all bi-
nary packages will depend upon a source package format.
Source based packages often include build recipes which
rely on known build systems, such as CMake or auto-
tools, and only provide additional configuration mecha-
nisms, e.g., to customize installation directories and apply
patches. The build process for the standard package for-
mat is also standardized, and allows to ease maintenance,
create packages in a reproducible way, and build packages
automatically and unattended.

This standardized process is supported by package
management toolchain on the maintainer and user site,
to organize the build, distribution and installation pro-
cess, e.g., the DebianLinux Distribution uses dpkg and
apt to manage packages at the user side, and the Com-
mon Debian Build Sytem (CDBS) [1] for package cre-
ators. A Debian package build description can handle ar-
bitrary tasks for automation, so there is no limitation on
the build system. While Debian packages respositories
can be managed with reprepro3, the apt system handles
the task of downloading packages, and their dependencies
as described in source and binary packages.

The rpm4 related packaging toolchain represents an-
other popular approach which is also used by major Linux
distributions such as Red Hat and openSUSE. In general,
the processes used for managing and distributing rpm-
based package are similar to the ones used by Debian.

In contrast to other distributions, Gentoo5 distributes
only source packages. It uses the emerge utility to han-
dle both build and installation for requested packages, and
their dependencies at the user’s side. Meta data and source
are separated, the source may be downloaded from either
one of Gentoo caches or directly from their original web
site. As source, an archive holding the source files can
be used as well as direct download of source files from
version control systems like subversion or git.

While all previously mentioned package install into
system directories, package managers such as gem, rosin-
stall, and autoproj exist for managing package installa-
tions in local (user) directories. The package manager gem
handles installing and building of packages for Ruby us-
ing the package format "Ruby gem" or just "gem". All

3Reprepro https://mirrorer.alioth.debian.org
4RPM Package Manager: http://rpm.org
5Gentoo Homepage: https://gentoo.org/

gems can be retrieved from a central respository, and the
package manager gem handles both installation to system
and user directories. The tool gem2deb can be used to
convert gems to Debian source packages, although these
packages often need some manual changes to make them
build.

ROS [6] uses rosinstall6 to maintain workspaces in
user controlled directories. Workspaces contain a num-
ber of packages and may depend on packages from other
workspaces, or from the base system. While ROS pack-
ages are typcially installed from source, ROS also pro-
vides Debian packages and Gentoo build instructions; De-
bian and Gentoo packages are generally produced and
maintained manually.

Autoproj is the package manager for Rock [3], and
like rosinstall, it manages an installation in user controlled
directories. It downloads source packages, either using
git, subversion, or an archive from a webserver, and build-
ing relies on the use of known buildsystems , e.g., CMake,
autootools (Make), or rake for Ruby packages. autoproj
accounts for source packages’ dependencies, and down-
loads, build and installs them if required. Rock package
dependencies can either be operating system dependen-
cies, i.e. Debian’s binary packages, Ruby gems, or other
Rock packages. To download, build or install custom
packages, users can dynamically extend autoproj. Pack-
age sets in autoproj define how a set of packages can be
retrieved and built, i.e. specify the location as repository
URL, the type of version control system , e.g., git or svn,
and the release, tag, branch or particular commit which
defines the version to use for a package. In addition, pack-
ages are types according to the used build systems; if no
build system shall be used packages will simply be re-
trieved. While autoproj allows to compile packages, it
cannot create binary packages.

3 BINARY PACKAGING
ARCHITECTURE

Popular Linux distributions are a good source for
identifying software practices which are suitable for large
scale development. In particular the Debian distribution
is the foundation for many other Linux distributions such
as the popular Ubuntu, Kali Linux and Purism PureOS to
name only a few. Debian has developed and standardized
the packaging and upgrading process, and comes with a
number of tools for this process. Since the target systems
of the Rock framework are mostly Debian-based systems,
a binary packaging architecture has been developed which
builds upon the expertise and tooling of the Debian com-
munity.

6rosinstall documentation: http://docs.ros.org/

independent/api/rosinstall/html/

https://mirrorer.alioth.debian.org
http://rpm.org
https://gentoo.org/
http://docs.ros.org/independent/api/rosinstall/html/
http://docs.ros.org/independent/api/rosinstall/html/


The typical Rock workflow relies heavily on the meta-
build tool autoproj [5], which is capable of creating and
maintaining Rock installation with hundreds of source
packages. To achieve scalability, autoproj provides an in-
terface and thus standardization layer to manage hetero-
geneous package distributions in a very flexible way. The
binary packaging approach reuses the package database
which autoproj maintains - especially the dependency
tree. The following subsections describe the elements
of the architecture of a binary packaging system imple-
mented on top of autoproj in order to achieve the intended
workflow standardization.

The general architecture has to account for two major
roles of users: (a) the Rock maintainer or package creator,
and (b) the Rock user and thus main user of the created
packages. The architecture description will first focus on
the needs of a Rock maintainer, and subsequently on the
needs of end users of packages.

The Debian package generation workflow consists
of the following general steps: (a) bootstrap a source
package and apply custom patches, (b) create source tar-
ball (*.orig.tar.gz), (c) create Debian build instructions
(*.debian.tar.xz) and package specification (*.dsc), (d) use
build instructions to compile binary package, and (e) reg-
ister and host compiled binary packages in a repository

The first three steps are covered by our tool
deb_package, whereas the building and registering of
packages will be covered by our tool deb_local. To trig-
ger the build of a Debian source package, a source tar
archive (*.orig.tar.gz) and the control files need to be pro-
vided. The control files consist of the specification file
(*.dsc) and the build instructions (*.debian.tar.xz); among
other meta information they contain the package name,
version, dependency information, and the changelog. The
Debian community has automated the build process based
on these three artifacts using the pbuilder and cowbuilder
utilities, so that the most important step is the complete
and correct generation of the control files. Figure 1 shows
the core components for the tool deb_package, which per-
forms the generation of the control files and the correct
packaging of the original source files.

3.1 Prerequisites
In order to setup a general architecture for building

Rock packages a minimal level of standardization is re-
quired. Autoproj already provides a significant level of
standardization, and thereby allows to maintain a local in-
stallation with hundreds of packages. Nevertheless, to use
this capability for building Debian packages, an adaption
and harmonization layer is required, since Debian pack-
aging relies on its own strict set of policies.

Naming schema Packages in autoproj follow a path-
based naming schema, using the slash as separator be-
tween namespaces, e.g., base/types will be a package

types located in the folder base. Debian requires a can-
onization of packages name, so that the autoproj based
name base/types will be translated in a dash-based nam-
ing schema: base-types. The addition of further distin-
guishing namespaces is required in order to account for
the target framework, here: rock as default, a particular re-
lease name, here following the pattern FLAVOUR-YY.MM
to be understood as the main package branch of Rock to be
used, year and month, e.g., rock-master-18.01-base-types.
Additionally, Debian requires to add a package version
and a suffix for the target release name, e.g., 0.20171118-
1~xenial.

Release & Installation target Binary packaging of
a given set of Rock packages leads to a consistent,
distribution-like set of packages that can be used for an in-
stallation. Each such set of packages will be called a Rock
Debian package release or just release. Many Rock users
use multiple workspaces for development and require sup-
port for multiple releases in parallel, so that each release
uses a separate installation folder: /opt/rock/<release-
name>. The possibility for the parallel installation of re-
leases is a fundamental requirement for the use of hierar-
chical releases, which will be detailed in Section 3.3.

Versioning & Timestamping Rock consists of hetero-
geneous collection of packages, where no general assump-
tion can be made about the versioning schema of pack-
ages. Hence, the version is derived from the time of the
last commit for all packages which are accessed through a
supported version control system. For all packages which
are imported as tar balls, the time of last modification is
used. The extracted timestamp is enforced on the later
generated source tarball (*.orig.tar.gz), so that a repeated
generation of a source tarball has equal checksums for the
same version.

Dependency management Autoproj allows to compute
recursively all dependencies for a package including other
Rock packages, Ruby gems and Debian packages that are
available for a specified (or typically the current host’s
automatically identified) operating system. Rock binary
packages can be built for multiple architectures and distri-
butions, but autoproj currently does not consider the archi-
tecture in its dependency definitions. Therefore, an avail-
ability check for operating system dependencies is essen-
tial in order to verify the correctness of dependency infor-
mation. The existing tool dcontrol7 allows to query this
information for Debian distributions, but not for derived
ones such as Ubuntu. Therefore, a mechanism has been
introduced to query this information for Ubuntu based
systems from the online collaboration platform Launch-
pad8. An additional challenge has been the set of Ruby

7dcontrol is part of the Debian devscripts packages https://

github.com/Debian/devscripts
8Launchpad collaboration platform: https://launchpad.net

https://github.com/Debian/devscripts
https://github.com/Debian/devscripts
https://launchpad.net


Figure 1. Core components of the tool deb_package to generate the required artifacts for a Debian package
built.

gems used in Rock installations and identification of de-
pendencies. The program gem allows to manage Ruby
packages aka gems and also allows to query information
about dependencies to other gems. The default assump-
tion when building Rock binary packages is a full boot-
strap including all required gems, so that dependency in-
formation can easily be queried from the local cache.

3.2 Preparing Debian source packages

Autoproj supports retrieving repositories from vari-
ous version control systems and tar archives. It supports
building using CMake, oroGen (which uses CMake), au-
totools and Ruby gems using Rake. As already men-
tioned, autoproj manages the dependencies between pack-
ages and, most of the time, packages provide information
about the required dependencies through a manifest file.
In addition, a user can inject additional information or
packaging control directives into autoproj, e.g., for pack-
ages that are located outside the administrative realm of
the user or maintainer.

Patching & overlay The tool deb_package uses au-
toproj to retrieve the package source, information about
direct dependencies, and other meta information about
the package. For most packages this information is suf-
ficient to generate the Debian control files, since the
CDBS [1] provides a parametrizable set of Makefile frag-
ments which can be reused, according to the source pack-
ages build system.

In all cases, the binary packing system allows to ap-
ply patches to the source to correct inconsistencies or fix
build instructions. These patches come in form of an over-
lay over the existing source packages. In practice, fixing
existing build instructions is often required for Ruby pack-
ages, since these were either incomplete or too narrowly
focused on a single architecture or distribution.

Ruby packages A significant portion of Rock packages
are extra Ruby gems and Ruby packages the framework
provides by itself. Although the CDBS provides support
for other interpreter languages such as Python or Perl, it
does not for Ruby. Therefore, a central element of this
packaging architecture is dedicated to automate the binary
package generation for Ruby packages. Unfortunately,
Ruby packages do not follow a strict standardization, and
require a special treatment in many cases. Still, the De-
bian workflow uses a tool called gem2deb9 which con-
verts gems which follow a particular standardized layout
into the required Debian source artifacts. Therefore, the
general workflow aims at converting any Ruby package
into a gem, thereby enforcing a level of standardization.
As a result, the packing process can easily also account
for external gems which need to be packaged as well, e.g.,
when they are not provided by the package management
system of the operating system. This means, that all exter-
nal Ruby gems that are required by a package in the Rock
framework automatically become part of the generated
binary Rock package distribution. Still, the customiza-
tion of the target installation folder, e.g., to the mentioned
/opt/rock/<release-name>, required an adaptation of the
gem2deb tool to allow parametrization.

Since gems also come in a variety of versions, the
packaging supports version pinning for the built Ruby
gems. Typically however, if a gem is already available for
a particular Linux distribution, this package is preferred
over (re)packaging it; this policy will likely change in the
future, since it can lead to conflicts when a release requires
a more recent version of these gems.

Multiple architectures and distributions The compi-
lation of Rock for the ARM architecture has been another
reason to develop the binary packaging system. Although

9Debian Ruby packaging suite https://packages.debian.org/
sid/gem2deb

https://packages.debian.org/sid/gem2deb
https://packages.debian.org/sid/gem2deb


Figure 2. Workflow of deb_local

Figure 3. Illustration of the dependencies
for a hierarchical release drock-18.01,
which reuses the packages of the release
master-18.01

a dedicated cross compilation workflow has been con-
sidered, numerous hindrances especially regarding Ruby
packages have been identified. Therefore, the packaging
assumes building directly on a system with the given ar-
chitecture; other architectures can be built for using plat-
form emulation or container-based building.

Generating the Debian source artifacts for various ar-
chitectures and distributions is based on feeding a user-
defined setting of the operating system into autoproj in-
stead of using the auto-detected one. Controlling the set-
ting allows to generate the Debian source artifacts for all
target platforms with a single build system.

Special treatment is required for a subset of Ruby
gems, e.g. concurrent-ruby, to remove any architecture
specific prebuilt extensions.

3.3 Building Debian packages
Once the artifacts have been created few steps remain

in order to build the final Debian package. An initial base
image for an operating system and architecture combina-
tion is constructed using pbuilder for that purpose. Our
tool deb_local uses a standard approach with cowbuilder
and pbuilder to create the build environment: the com-
bined use of these tools allows the repeated building of
Debian packages within clean environments, i.e. each
build copies a default base image and then populates it
with the dependencies of each package. This approach
allows to quickly identify missing build-dependencies.

Parallel build deb_local takes a number of autoproj
package names or autoproj meta packages (a collection of
autoproj packages) and generates Debian binary packages
for them and all of their dependencies, as required. Since
installing all required dependencies, and building binary
packages can take a long time, the build jobs are run in
parallel, if configured. Figure 2 illustrates the workflow
of the package building using deb_local.

Hierarchical release structures The creation of binary
package releases requires an initial investment in mainte-
nance and standardization of packages. To avoid the un-
necessary repetition of build and maintenance activity for
binary packages that are already available in a particular
binary Rock package release, hierarchical release struc-
tures have been enabled. While a release allows to la-
bel a consistent and compatible set of packages, the con-
cept of hierarchical releases allows to relate releases by
a parent child relationship and thus share software pack-
ages through inheritance. Each build can be configured, so
that it depends upon another binary Rock package release.
This effectively adds a custom package repository and be-
fore creating a new Debian source package, this package
is searched for in the known ancestor releases. A new
release might reuse an existing release, but still needs to
override a subset of packages with customized version.
For that purpose, a Rock maintainer who created a new
release can provide a list of packages (or name patterns)
which will be ignored when found in ancestor releases; all
their reverse dependencies will be ignored as well.

3.4 Integration with Rock
In order to allow an existing installation of Rock to

use the Debian packaging, a mechanism had to be found
to transparently integrate the set of generated packages.
Firstly, packages are hosted via the use of reprepro -
these repositories can be seamlessly integrated into the
apt-based package management. Secondly, the user is re-
quired to only add a particular package set to the manifest
of the autoproj based installation. The package set con-
tains the information about all available Debian packages
as part of a list of so-called osdeps files, and by default the
definition of binary packages will override existing source
package definitions; one osdeps file exists per Rock De-
bian package release and per architecture.

An automated procedure has been embedded into the
package set in order to: (a) detect the operating system
and the architecture, (b) set necessary environment vari-
ables, (c) automatically add the required repositories to
/etc/apt/sources.list.d/ based on the Rock release name,
which has to be selected by the user, and (d) render a sin-
gle osdeps file under consideration of blacklisted pack-
ages and multiple ancestor releases.

Blacklisting binary packages refers to disallowing the
use existing binary packages for a workspace. Blacklist-
ing enables a Rock user to follow the classical develop-
ment workflow while at the same time allowing the use
of Debian packages in a Rock installation, i.e. while De-
bian packages will be preferably used in any existing in-
stallation they can be overridden by local packages when
blacklisted.

Overall, the Debian package integration has been de-
signed to require minimal Rock user interaction. This ap-



proach avoids the compilation all packages, which are not
actively developed by a Rock user and can thereby signif-
icantly speed up of the installation process as well as the
subsequent builds.

4 EVALUATION

The development and implementation of the binary pack-
aging architecture has been a continuous process, where
numerous shortcoming and additional requirements have
been identified and fixed in a iterative manner.

4.1 Rock maintainer workflow
The general maintainer workflow has been outlined

in the main part of this paper, and the latest created bi-
nary Rock package release comes with approximately 310
packages, proving the capability of the current approach.
Maintaining such large number of packages is only pos-
sible with a high degree of standardization, and the main
issue for adding packages is the reproduction and interpre-
tation of errors requiring extensive logging capabilities.
Due to the large number of packages, the build process
can take a long time, and in order to account for the prior-
ity of core package sets and to facilitate the maintenance
on the level of package sets, these are build in order of
their inter-dependency.

4.2 Rock user workflow
The project VIPE [7] serves as platform to verify

the full set of features of the binary packaging for Rock
users. The use of additional packages, e.g., such as the
simulation, required additional verification of build proce-
dures, and identified incorrect definitions in oroGen com-
ponents. The application of Debian packages in the con-
text of VIPE showed that a large number of Rock pack-
ages come with the implicit assumption that they are in-
stalled into the same installation directory. However, this
assumption breaks as soon as a dependency exists only as
Debian package. This requires fixing for both: (a) using
the Debian packages in contexts of such packages, and (b)
creating binary packages for this set of packages. Addi-
tionally, erroneous include directives are exposed, since
no standard include path is assumed. The verification in
the project has shown that the usage of the Debian pack-
ages can substantially increase the quality and robustness
of the Rock software stack in general.

The requirement for blacklisting packages in order to
use a custom version of a source Rock package instead
of the binary version is an essential feature. The same
holds for the generation of new binary package releases,
since projects such as VIPE branch packages, but still
want to exploit the benefit of the binary Rock packages.
This shows, that the future development has to account
for the fact that the role of a Rock user overlaps more

and more with the one of a Rock maintainer in order to
provide a custom, project-related binary package release.
Hence, the addition and consideration of a blacklisting of
packages for the generation of packages is currently under
development.

4.3 Field Testing
A major testcase was given through the Field Trials

of FT-UTAH [9], which required the in-field operation of
a multi-robot team. Customization and parametrization of
the software stack during the field trip was necessary in or-
der to tackle newly identified requirements or bugs in the
software stack. In order to minimize the necessary com-
pilation of packages, three different binary Rock package
releases were accounted for: master-16.07, master-16.08,
and master-16.09. The use of these three releases exposed
one of the biggest issues of the current workflows namely
the API compatibility between releases. The Rock release
master-16.09 embeds a major revision of one of the core
packages namely base/types which led to binary incom-
patibilities between the releases master-16.08 and master-
16.09. Hence, a consistent application of a single release
had to be maintained during the operation.

To allow for reinstalling packages, all Debian pack-
age repositories including the Rock package repositories
where mirrored for all required architecture10 and avail-
able on-site. Satellite-based internet connection was lim-
ited and only usable for the remote operation of the sys-
tem, thus not available for maintenance. The general setup
of the repository mirrors allowed to maintain the standard
workflow. Nevertheless, a handful packages were miss-
ing from the mirroring process, and the API incompatibil-
ities required an update of ARM-based systems in use to
master-16.09. The release master-16.09 had not been pre-
pared for ARM-based system, such that a manual built had
to be triggered on site. Unfortunately, the local building
of binary packages for this architecture was not possible,
since the corresponding base image was not available. All
Rock core packages were used as binary packages, and
no compilation issues (of dependant packages) and build
inconsistencies were identified. This allowed to focus on
the essential tasks of the test campaign.

4.4 Architectures and distributions
The support for multiple architecture and distribu-

tions has been verified and extended throughout the gen-
eral development. The set of Rock core packages has
been sucessfully build for (a) distributions such as Ubuntu
14.04,15.10,16.04 and Debian Wheezy and Jessie, and (b)
for architectures: amd64, i386, armel and armhf. The ar-
chitecture support for armel and armhf relies on building
the packaging in the emulation environment qemu. Al-

10The tool apt-mirror http://apt-mirror.github.io was used
for this purpose

http://apt-mirror.github.io


though the process of building packages within a qemu
environment is most likely slower than a pure cross-
compilation approach, it supports a homogeneous work-
flow for all architectures. The generated packages for the
ARM platform have been successfully deployed on the so-
called payload items in the project TransTerrA and serve
as basis for operating the camera which is required for the
visual servoing processes.

4.5 Package deployment
To speed up the deployment of Rock onto remote ma-

chines, the project D-Rock [2] has fostered an ansible11

based Rock bootstrap. The automation with ansible in
combination with the usage of Rock’s binary packages,
allows to prepare operative system and development en-
vironment within minutes, and is suitable for a parallel
deployment of multiple-systems.

5 LESSONS LEARNED

The following section will elaborate on the general
lessons learned throughout the development of the binary
packaging system for Rock including: (a) preferring a lo-
cal build approach over an external build farm, (b) prefer-
ring standards over custom solutions, and (c) the impor-
tance of small features for user acceptance.

External Infrastructure The general development has
started by anticipating the use of external build infrastruc-
ture and more specifically OpenSUSE. Although SUSE
is known for the packaging format rpm, the infras-
tructure is also capable of building Debian packages.
This initial approach triggered the implementation of the
deb_package tool for Rock, which generates the initial
artifacts *.orig.tar.gz, *.debian.xz, and *.dsc. The major
drawback arising from developing the initial packaging
approach in combination with the openSUSE infrastruc-
ture12 was the dependency upon external servers, which
made debugging tedious and time consuming. At the cur-
rent stage the use of an external infrastructure can be re-
considered, since the build recipes of packages have been
verified and fixed, which was not the case in the early de-
velopment stage.

Jenkins Jenkins13 is a Java-based solution typically
used in the context of Continuous Integration (CI). Jenk-
ins comes with a wide range of supporting plugins, e.g.,
a matrix-based control scheme to build for multiple archi-
tectures and multiple operating systems. The initial ap-
proach was to construct a single job to package, and build
each Rock package and its defined dependencies accord-
ingly. Unfortunately, operating with the Jenkins frontend

11Ansible http:/www.ansible.com
12openSUSE Homepage: https://www.opensuse.org
13Jenkins Homepage: https://jenkins.io

for development purposes was slow, and still required cus-
tomization scripts to trigger building software packages.
In effect, Jenkins was an overhead to control the packag-
ing and build process, and worse led to code and logic
fragmentation. The use of Jenkins helped to structure the
initial approach of standardization, but the direct use of
the existing Debian toolchain in combination with auto-
proj has more advantages. The use of Jenkins can be re-
considered, when the existing set of source packages is
relatively stable, and does not require significant mainte-
nance as in the given case.

Standardization as road to success The generation of
binary packages and usage has initially required substan-
tial work in order to fulfill the policies of the Debian
Build System. The lack of strict standardization of Ruby
packages required adaption to allow each package to be
converted to a Ruby gem as prerequisite for the use of
gem2deb. An additional requirement arose through em-
bedded C-extension, and the Ruby gem rake-compiler has
been selected as means for standardization and to facilitate
the building of C-extensions for different architectures.
To reach a sufficient level of standardization, additional
adaptation for a number of Ruby gems was required, these
adaptions included fixing specification files and correcting
build instructions. The large set of CMake based pack-
ages required only very few adaptation, and most require-
ments for change were related to building bindings for in-
terpreter languages such as Ruby or Python. Generally,
the ability to build a large set of CMake based packages
shows the benefit of standards, which allow large-scale au-
tomation and improve robustness of a toolchain in general
through ease of maintenance. The use of non-standardized
packages comes with high maintenance cost, so that the
benefit of a particular dependency should be well evalu-
ated. Same holds for the standardization of workflows,
which should be kept simple to maintain and simple to
use at the same time.

User interaction and experience Developing the gen-
eral architecture would not have been possible without
early adopters, which dealt with some of the early restric-
tions of the approach. Only the early and continuous use
of the generated binary packages has led to a transparent
integration into the standard Rock workflow. Although the
use of binary packages offers significant benefits, this is
not sufficient in order to attract a user base. Only an easy
to use, smooth, while still transparent and robust work-
flow for Rock users will lead to the required user accep-
tance of the overall approach. The integration of binary
Rock packages into autoproj therefore tried to minimize
the changes to the existing development workflow. Ad-
ditional features were required to enable users to identify
and report errors, e.g., by providing an access to meta-
information for each binary package.

http:/www.ansible.com
https://www.opensuse.org
https://jenkins.io


Internet dependency The initial setup of a host that can
build binary Rock packages requires a connection to the
Internet in order to retrieve images of the target distribu-
tions and to retrieve installation packages. For offline op-
eration it is therefore necessary to anticipate all required
architectures and prepare the base images accordingly;
likewise all required package repositories have to be mir-
rored and made accessible offline. Again, Ruby gems re-
quire a special treatment and all required gems have to be
bootstrapped. Only these preparatory steps will allow for
a build process, which will support full offline operations.

6 CONCLUSION & OUTLOOK

The Debian community has paved the way for most el-
ements of the binary Rock packaging system. In com-
bination with the meta-build system autoproj a tool has
been developed which allows for the generation of bi-
nary releases and which allows to maximise the reuse of
these packages for derivative works. Facilitating the flex-
ible reuse of binary packages using hierarchical release
structures is expected to lead to a significant productivity
gain for robotic software development and maintenance of
robots in general.

Since the Debian packaging system is used, the in-
stallation process hooks into the common apt-based sys-
tem. Therefore, new users require no special training,
and the approach almost transparently hooks into exist-
ing autoproj-based installations. The result is a system
which leverages the stability of existing workspaces and
the quality of the software stack. At the same time it
applies minimal constraints to developers to use Rock’s
traditional workflow and the Rock’s Debian packages for
existing installations.

Future work will focus on improving the workflow for
hierarchical releases for Rock users, and evaluating the
application of the build infrastructure for Python libraries.

Acknowledgment

The development of the Binary Packaging Architecture
has been supported by the German Space Agency (DLR
Agentur) with federal funds of the Federal Ministry of
Economic Affairs and Energy for the project TransTerrA
under grant agreement 50RA1301 to design the basic ar-
chitecture, and for the project VIPE under grant agree-
ment 50NA1516 to use and evaluate the application of
the binary packaging. The development of the local build
infrastructure in the project D-Rock has been supported
by the Federal Ministry of Education and Research under
grant agreement 01IW15001.

References

[1] Mark Dequènes et al. The Common Debian Build
System. Available at: https://build-common.
alioth . debian . org / cdbs - doc . html, (Ac-
cessed: 9 April 2018). 2018.

[2] DFKI GmbH Robotics Innovation Center. D-Rock:
Model, methods and tools for the model based soft-
ware development of robots. Available at: https:
//robotik.dfki-bremen.de/en/research/

projects/d-rock.html, (Accessed: 3 January
2018). 2018.

[3] DFKI GmbH Robotics Innovation Center. The
Robot Construction Kit. Available at: http : / /
www.rock- robotics.org, (Accessed: 22 May
2011). 2011.

[4] ESA. ESA Lab Rover Prototypes. Available at:
http : / / www . esa . int / Our _ Activities /

Space _ Engineering _ Technology /

Automation _ and _ Robotics / Lab _ Rover _

prototypes, (Accessed: 5 January 2018). 2018.

[5] Sylvain Joyeux. autoproj. Available at: https://
github.com/rock-core/autoproj, (Accessed:
9 April 2018). 2018.

[6] Anis Koubaa, ed. Robot Operating System (ROS).
Vol. 707. Studies in Computational Intelligence.
Cham: Springer International Publishing, 2017.
DOI: 10.1007/978-3-319-54927-9.

[7] Daniel Kuehn, Alexander Dettmann, and Kirch-
ner Frank. “Analysis of Using an Active Artificial
Spine in a Quadruped Robot”. In: Proceedings of
the 4th International Conference on Control, Au-
tomation and Robotics (ICCAR). Auckland, NZ:
IEEE, 2018.

[8] Thomas M. Roehr, Florian Cordes, and Frank
Kirchner. “Reconfigurable Integrated Multirobot
Exploration System (RIMRES): Heterogeneous
Modular Reconfigurable Robots for Space Explo-
ration”. In: Journal of Field Robotics 31.1 (Jan.
2014), pp. 3–34. DOI: 10.1002/rob.21477.

[9] Roland Sonsalla et al. “Field Testing of a Coopera-
tive Multi-Robot Sample Return Mission in Mars
Analogue Environment”. In: Proceedings of the
14th Symposium on Advanced Space Technologies
in Robotics and Automation (ASTRA 2017). Lei-
den, NL, 2017.

[10] Roland Sonsalla et al. “Towards a Heterogeneous
Modular Robotic Team in a Logistic Chain for
Extraterrestrial Exploration”. In: Proceedings of
the International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space. Mon-
treal, Canada: International Symposium on Ar-
tificial Intelligence, Robotics and Automation in
Space, 2014.

https://build-common.alioth.debian.org/cdbs-doc.html
https://build-common.alioth.debian.org/cdbs-doc.html
https://robotik.dfki-bremen.de/en/research/projects/d-rock.html
https://robotik.dfki-bremen.de/en/research/projects/d-rock.html
https://robotik.dfki-bremen.de/en/research/projects/d-rock.html
http://www.rock-robotics.org
http://www.rock-robotics.org
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Automation_and_Robotics/Lab_Rover_prototypes
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Automation_and_Robotics/Lab_Rover_prototypes
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Automation_and_Robotics/Lab_Rover_prototypes
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Automation_and_Robotics/Lab_Rover_prototypes
https://github.com/rock-core/autoproj
https://github.com/rock-core/autoproj
http://dx.doi.org/10.1007/978-3-319-54927-9
http://dx.doi.org/10.1002/rob.21477

	INTRODUCTION
	RELATED WORK
	BINARY PACKAGING ARCHITECTURE
	Prerequisites
	Preparing Debian source packages
	Building Debian packages
	Integration with Rock

	EVALUATION
	Rock maintainer workflow
	Rock user workflow
	Field Testing
	Architectures and distributions
	Package deployment

	LESSONS LEARNED
	CONCLUSION & OUTLOOK

