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ABSTRACT
This paper presents a model allowing inferences of perceivable
screen content in relation to position and orientation of mobile
or wearable devices with respect to their user. The model is
based on findings from vision science and allows prediction of
a value of effective resolution that can be perceived by a user.
It considers distance and angle between the device and the
eyes of the observer as well as the resulting retinal eccentricity
when the device is not directly focused but observed in the
periphery. To validate our model, we conducted a study with
12 participants. Based on our results, we outline implications
for the design of mobile applications that are able to adapt
themselves to facilitate information throughput and usability.
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H.5.2. Information Interfaces and Presentation (e.g. HCI):
User Interfaces

Author Keywords
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INTRODUCTION
Smartphones are available with display sizes varying from 2.2
to 7 inches with screen resolutions up to 800 pixels per inch
(PPI), while wrist-worn devices have even smaller screens, typ-
ically below 2 inches with resolutions of up to 400 PPI. With
current developments such as the Apple Watch 31 or the Sam-
sung Gear S32, sophisticated devices are available. Based on
recent forecasts, the market size is expected to grow to over 80
million sold wrist-worn units per year by 2021 [5]. Eye-worn
displays have, by design, a perceived screen size/resolution
that is different from the hardware – similar to projected dis-
plays, e.g. of hand-held projectors where screen size and reso-
lution depend on projection distance and angle.
1www.apple.com/watch/, last accessed 05/01/2018
2www.samsung.com/gears3, last accessed 05/01/2018
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Figure 1. Example use case of the proposed model: Different levels of
detail are shown depending on perceivable screen resolution based on
the device’s position and orientation in the field of view.

Delivering visual content in an appropriate manner to this large
variety of screens is a challenging task, especially when tar-
geting the smaller screens. It is thus not surprising that many
smartwatches are currently only used as auxiliary screens of
connected smartphones [31], e.g. to deliver notifications as
the wrist-worn devices are able to provide them with faster ac-
cessibility compared to smartphones [1, 12]. However, screen
content might not be easily perceivable for users, as the wrist-
worn devices are often not in the central field of view, but
only in the periphery of the user (cf. Figure 1). This leads
to a reduction of the perceived resolution due to two main
factors. Firstly, depending on the position of the arm and the
orientation of the head, the screen will be tilted and thus only
a fraction of the screen space will be visible, reducing the
overall visibility of the pixels. Secondly, the acuity of human
visual perception is much lower in the periphery of the field
of view. Only about 2◦, known as the fovea centralis, offer a
very high resolution and good chromatic vision. Towards the
periphery, resolution and chromatic sensitivity drop rapidly.
In contrast, the ability to sense movement is increased towards
the periphery. Consequently, it does not seem beneficial to
display certain types of screen content, e.g. small notification
icons, when the device’s display is not directly observed by the
user. Currently, user interface designers need to rely on their
intuition and experience to tailor content for different types
of screens. There are no models or guidelines available that
would help them to either inform the visual design according
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to the perceived resolution or to simulate the visible content
given a certain position of the device, the head, and eyes of the
user. Several attempts have been made in the past to include
the proximity of the user in the interaction with displays in
the environment of the user. By adapting the concept of Prox-
emics by Hall [10], Ballendat et al. [2] adapted possible in-
and output of environmental displays. Vogel and Balakrishnan
proposed to use the distance of a user from a public display
to change the possible interaction techniques from implicit
to explicit [35]. Besides the change in interaction technique,
the displayed content would also change from impersonal
notifications to personal information such as emails.

We extend this work towards wrist-worn displays by providing
a model that allows prediction of an effective resolution that
can be perceived by a user depending on proximity and tilt
of the device in question. We validate our model based on a
laboratory study with N=12 participants and discuss meaning-
ful use cases in which adjustments of user interfaces based on
corresponding predictions could be beneficial.

RELATED WORK
There exists a broad range of related work that focus on pe-
ripheral vision on displays in the environments (e.g. [17, 18,
19]). In contrast, near-eye displays have also been investi-
gated [6, 15]). To us, the area of interaction with wrist-worn
devices is broadly of interest, especially considering output
concepts. Furthermore, we will discuss related work in the
area of perceptual modeling as the background for our model.

Output on wrist-worn devices
While a lot of research focuses on input on small wearable
devices, the limited size makes output difficult as well. One
of the earliest interactive wrist-worn devices was developed
by Hansson and Ljungstrand [11]. Their Reminder Bracelet
allowed a connected PDA to notify the user using integrated
LEDs. With Damage, Williams et al. presented a wearable
ambient display that allowed for semi-public notifications
using LEDs as well [36]. Pasquero et al. investigated tactile
output on a smartwatch [23]. Besides notifications, they found
it to be suitable for obtaining numerical data as well.

The multiple display segments of the Facet system [16] were
able to overcome the problems that arise from the small dis-
play size of current devices. On the one hand, the multiple
viewing angles allowed for different relative head positions,
and on the other, the ability to stretch applications over multi-
ple display segments reduced the effect of the small display
size. Nevertheless, the system not only requires a high amount
of hardware, but also did not adapt automatically to the user’s
context, instead relying on manual adaption.

Prior research indicates that smartwatches are ideally suited
for simple output functionalities (e.g. [1, 12]). However, cur-
rent developments and changes in the typical use cases make it
necessary that user interface designers get a better understand-
ing of the perceptual constraints these devices impose to fully
exploit their capabilities. We go one step towards understand-
ing these constraints by providing a perceptual model that
can be used for simulations, but also to automatically adapt
content and interaction capabilities.

Perceptual modeling
Perceptual models are widely used in fields that are concerned
with visual output, ranging from computer graphics [3] to in-
formation visualization [34]. These models help to determine
how visual output has to be generated to be of maximal use to
the user while at the same time minimizing computational ef-
fort. For our purpose, we need to investigate those models that
are able to predict the perception of a small display located at
an arbitrary position in the visual field of the user.

There are a number of systems that detect the distance and
relative position of the user to the display and use this informa-
tion to optimize the displayed information based on perceptual
considerations. E-conic [21] is a system that uses a tracking
system to adjust the rendering of information on an screen
located at an arbitrary position relative to the user to appear
perpendicular to the user, thus making information accessi-
ble more easily. SpiderEyes [7] is a system/framework that
gathers contextual information about users interacting with a
large display and predicts attention based on position and view
direction of the user, allowing the system to determine which
information is currently most relevant to the user.

The second group of related models comes from the efforts
to build gaze-contingent (multi-resolution) displays (GCM-
RDs): systems that use not only coarse position information
but also accurate eye-tracking to detect the gaze location of
the user and eliminate information that is not visible due to
limitations of human perception, e.g. low peripheral acuity.
However, it is important to note that models for GCMRDs
often are conservative in their predictions, i.e. they can predict
a threshold for information that is guaranteed to be impercep-
tible, but they cannot guarantee that the displayed information
is perceptible. Based on perceptual considerations, a number
of different systems and approaches have been developed [8, 9,
29, 33]. The model proposed by Reddy [27, 28], for example,
predicts contrast sensitivity throughout the visual field based
on eccentricity, i.e., how far from the center of field of view
the object is, and movement of an object. The model itself
is grounded in perceptual research about the make-up of the
retina [30] and incorporates another model for the decline of
visual acuity for moving objects [22].

By extending related work, we will provide a model that allows
the right presentation based on display properties (e.g. size,
orientation) with respect to the user. We first present the
underlying adaption model and outline possible use cases for
this adaption process afterwards.

MODEL OF PERIPHERAL DISPLAY PERCEPTION
In order to predict what information is visible to the user,
we model some aspects of the human visual system (HVS).
The model we are using is based on the work by Reddy [27,
28], who built his model to predict the perception of virtual
stimuli based on their location in the field of view. Reddy
bases his model especially on the the notion of the cortical
magnification factor from [30] to approximate the contrast
sensitivity function (CSF) across the visual field. We will
use the model to compute the highest spatial frequency that
is visible on a display, extending it to take into account the
relative location and rotation of the display.
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We specify the display D with the vertices P1, P2, P3, P4 as well
as its resolution resx and resy along its x and y axis. We assume
that the observer is located at the center of the coordinate
system, facing in the direction of the positive y axis and with a
maximal visual acuity of resfovea = 60 cycles per degree [37] in
the center of the fovea. We talk about the display dimensions
in units of visual angle (°), the size of an object projected on
the retina, and the resolution in cycles per degree.

As a first step, we calculate the observed size of the display;
that is, how large the display appears in the field of view. This
means that two objects of the same size can have a different
apparent size, if they are located at different distances from
the observer. We determine the observed size by calculating
the angle between the vectors from the observer to the centers
of the edges of the display that are furthest apart:

vx = ]PtopPbottom (1)
vy = ]PleftPright (2)

This discounts slight differences that occur at the edges due
to perspective; however, we expect those effects to be rather
small. The sensitivity of the HVS can be predicted using
a scaling factor M that depends on the eccentricity of the
observed point. We use a formula created by Reddy [27, 28]
to calculate M. They synthesized the formula from vision
literature and experimental data:

M =

{
1, if E < 5.790.
7.49/(0.3E +1)2, otherwise.

(3)

M is then used to scale the maximal available resolution of the
fovea to predict the highest visible spatial frequency:

reseye = Mresfovea (4)

Based on these values, we can calculate the observed reso-
lution of the display. We know the spatial frequency of the
display based on its resolution and observed size and use the
highest visible spatial frequency as a cut-off for what can be
observed. From this, we get the resolution in cycles per display
axis by multiplying with the size of the display.

vresx = min(
resx

2vx
,reseye)vx (5)

vresy = min(
resy

2vy
,reseye)vy (6)

To visualize the predictions of the model, we provide a tool
that – given a display position and orientation in relation to
the user’s eyes – renders a picture representing the effective
display resolution, e.g. to assess text readability for different
sizes or fonts. We distinguish whether a person is (a) directly
looking at the display or (b) looking straight ahead and observ-
ing the display in the periphery. The tool takes a picture, e.g. a
screenshot of a smartwatch application, converts it to the CIE
L*a*b* space [20], and only the luminance information is fur-
ther considered. A second-order Butterworth filter [4] is used
to remove frequencies that would not be visible according to
our model. Figure 2 shows an example for a display with an
edge length of 20 mm and a resolution of 200 × 200 pixels.
The tool is available on GitHub3.
3https://github.com/fkerber/perception-model-tool

Figure 2. Input image and prediction for a square display with an edge
length of 20 mm and a resolution of 200 × 200 pixels of a distance of
40 cm from the observer and an angle (horizontal, vertical) of (10◦, 20◦).

USER STUDY
To validate our perceptual model, i.e. to assess the accuracy
of our predictions for the effective display resolution depen-
dent on position and orientation relative to the observer, we
conducted an empirical user study with the goal to measure
a user’s ability to perceive certain types of content on the de-
vice’s display and to compare these findings to our predictions.

We recruited 12 participants (5 female) aged 22-33 (M=26.1
years) that stated they did not need glasses for near vision. We
first conducted a near-vision test at a distance of 16 inches
(around 40 cm) to determine visual acuity in the range 20/200
to 20/20 in Snellen notation [32] in which all participants
reached comparable values in the range 20/32 to 20/25.

Apparatus and Experimental Design
We conducted our evaluation using Landolt rings, a standard
stimulus used in vision tests. The symbol used – the Landolt C
– is a ring with a gap at one of eight positions (top, right, bottom,
left and the 45◦ positions in between). The subject’s task is
to decide at which position the gap is. In contrast to using a
Snellen chart, cognitive recognition and similarity only play a
subordinate role [26]. To cover the typical interaction space
of a wrist-worn device, we sampled positions in the typical
comfort zone for the left arm. Considering the participants’
eye position (defined as the central point between both eyes)
as the point of origin, the target positions are placed at a
distance of 40 cm, as it is the canonical distance for near-
vision tests [13]. However, the results are not tied to the
distance, as the measurements give information about the
angular resolution, which can be generalized to other distances.
Four horizontal directions (0◦, 22.5 ◦, 45 ◦ and 67.5◦) and three
vertical ones (-30◦, 0 ◦ and 30 ◦) were combined to generate a
set of twelve sample points that cover a large area of the typical
field of view (requiring only the left half due to symmetry).

To be able to reliably test the perception at the sample points
under realistic conditions, we constructed an apparatus that
enabled us to place a smartwatch (Simvalley AW-414.Go) at
the target positions (see Figure 3). The device provides a
display with a screen diagonal of 1.54" and a screen resolution
of 240 pixels × 240 pixels that is oriented orthogonally to the
viewer. Based on the given screen resolution, Landolt rings
with a gap size up to 48 pixels could be displayed.

To ensure that the distance and orientation between device
and participant remained stable, a chin rest was used. As
we primarily focused on peripheral vision, we instructed our
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Figure 3. Study setup in the laboratory environment.

participants to always look straight ahead and not to focus on
the device in the periphery. To ensure this, we used a secondary
display in the direct line of sight to display a green marker
the participants should focus on. We checked the line of gaze
by utilizing a stationary eye tracker (Tobii Eye Tracker 4C4)
mounted on the display. Whenever we detected a deviation
from the marker (indicated by coloring it red), we cleared
the smartwatch display and displayed another stimulus of the
same size as soon as the user again focused on the marker.

At each position we conducted a staircasing procedure to
assess the user’s ability to perceive the position of the gap.
We always started with a medium-sized stimulus (gap size
of the Landolt-C 25 pixels) and adjusted the gap size for
subsequent trials based on the Best PEST approach [14, 24]
taking prior answers into account. The participants indicated
the location of the gap verbally so the experimenter could
record the response and trigger the next stimulus.

Before each stimulus presentation, we displayed a sequence
of three random noise patterns for 200 ms each as distractor.
The procedure was terminated after 50 recorded answers and
then repeated for the remaining sample positions (in balanced
order to rule out sequence or fatigue effects).

Hypothesis and Measures
We formulate the following hypothesis: For all examined posi-
tions and orientations of the smartwatch, the measured visual
acuity correlates to the predictions from our perception model.
As a measure for visual acuity in our setup, we consider the
smallest gap size that could be reliably detected (as provided
by the Best PEST procedure after 50 trials).

Results
The results in terms of smallest reliably detectable gap size
for our twelve sample points are shown in Table 1 (Mean
values for N=12 participants) along with the predictions of
our model. As the predictions of our model are issued in
cycles per axis (CPA), we transfer the observable gap sizes
(in pixels) accordingly. For the second sample point (that
maps to direct observation in the fovea), the computed values
are cut off by the actual display resolution (i.e. the values
would not increase further just because the display gets closer).
For the sample points at the outermost horizontal position
(67.5 ◦), as well as those in the 45◦ horizontal direction and
4https://tobiigaming.com/eye-tracker-4c/,
last accessed 05/01/2018

± 30 ◦ vertical direction, the display resolution of 240 × 240
pixels was potentially not sufficient to display a Landolt ring
in a reliably recognizable size for many participants. In this
sense, a reported value of 48 pixels is to be interpreted as a
lower bound here; the actual value might be larger. Hence, we
excluded corresponding values from further analysis.

Hor. angle Vert. angle Min. obs. gap size Prediction
(◦) (◦) (Pixels) (CPA) (CPA)

Mean SD Mean SD

0 -30 26 7.9 18.5 6.0 17.8
0 0 1 0.0 120* 0.0 120*
0 30 31.7 9.5 15.2 5.0 17.8

22.5 -30 31.7 4.6 15.4 1.4 12.3
22.5 0 13.9 6.9 34.5 3.4 29.7
22.5 30 40.8 3.0 11.8 0.8 12.3
45 -30 (46.5) (7.8) (10.3) (4.1) 6.4
45 0 31.6 3.0 15.2 6.7 8.5
45 30 (46.4) (7.5) (10.3) (2.7) 6.4

67.5 -30 (47.75) (0.9) (10) (0.2) 3.6
67.5 0 (47.1) (2.2) (10.2) (0.5) 3.9
67.5 30 (48) (0.0) (10) (0.0) 3.6

Table 1. Results of our validation study in terms of smallest reliably de-
tectable gap size (Mean for N=12 participants) along with the predictions
from our model. Values indicated with a * are capped due to the display
resolution of 240 pixels per axis. (Values) are subject to limitations by
the maximum displayable Landolt ring size with a gap size of 48 pixels.

We calculated a linear regression with the remaining 87 sam-
ples to fit the model to our own data and provide a more accu-
rate formula representing our experimental results. We found
a statistically significant regression equation (F(1,85) =
4223.632, p < .001), with an R2 of .98. The adjustement to
the initial model is 4.278+0.964∗ (InitialPrediction). A vi-
sual presentation of the observed results in comparison to the
predictions of our model is depicted in Figure 4. Again, the
values for the blue line at the leftmost positions are expected
to be lower, i.e. the model fit could be even better if we were
able to test with a higher maximal apparent resolution.

Figure 4. Comparison of our predicted values (adjusted by the outcome
of the linear regression analysis) along with the observed ones. Shaded
area presents the standard deviation for the observed values. The sample
positions are shown in ascending order based on predicted values.

Discussion
Following our results, we can confirm our hypothesis and
validate the model based on 87 sample points from 12 partici-
pants. The remaining sample points we tested follow the same
direction as predicted by the model, but due to the display
resolution, an exact determination of the threshold value could
not be achieved. While we only tested the left hemisphere
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(considering the device being worn on the left wrist), the re-
sults can easily be transferred to the right hemisphere as the
geometrical properties are analogous. The results show that
for a typical smartwatch–user distance of 40 cm, meaningful
predictions for the perceived screen resolution can be made.

USE CASES
A model that allows prediction of perceivable screen contents
provides the possibility to define areas with similar properties.
As perception directly influences how people can interact with
a device, we name these areas interaction zones. Consequently,
the question arises how a user in general, or more specifically
which applications, can benefit from such zones. We outline
meaningful use cases and show how applications can adapt
their interaction concepts according to our interaction zones.

Level of detail adjustment Mapping the device’s distance to
the user provides the possibility to represent different levels
of detail. Considering, for example, message notifications
(email, Facebook, WhatsApp, etc.), in a coarse overview
large application icons can be shown (referred to as “ab-
straction” in [19]). If the device’s position allows for more
information to be perceived by the user, details such as
the message’s issuer could be added. When the device is
directly focused, the complete message text could be dis-
played (see Figure 1 for a visualization of the described use
case). In this sense, the adaptation can also be interpreted as
mapping of interest or engagement (cf. [25]). Transferring
the level-of-detail concept to a map navigation application,
coarse information could be large symbols for turn-by-turn
instructions, whereas a more fine-grained view could show
details about crossings or a detailed map view with street
names. The presented model can be used to decide which
level of detail should be displayed based on the device’s
distance and orientation to the user.

Adaptive touch targets A distance mapping can also be used
to adapt the design of user interface elements. As the
user cannot see and act precisely if the device is further
away, fewer but larger displayed options should be shown,
whereas small distances permit more options. A use case is
a music player that shows a single, large play/pause button
in the periphery for gaze-free interaction and more detailed
options, e.g. to perform playlist selections, if the device is
in a position that allows better perception.

Proximity-based input selection The device’s distance to
the user may be used to trigger input modes. If for ex-
ample the device approaches very close to the user’s mouth
(so that the display cannot be observed anymore), speech
recognition could be activated. If the device is easily reach-
able with the user’s (dominant) hand and clearly observable,
a keyboard could be displayed, as the user should then be
able to interact with the typically small buttons on it.

Energy-saving The predictions can also be used to save en-
ergy by adjusting the display state (on/off) and bright-
ness/contrast based on how visible the content of the devices
is within the field of view. This could improve existing ad-
justments that use other sensors like surround brightness or
in-pocket detection of phones.

CONCLUSION AND FUTURE WORK
We presented and validated a model that allows inference of
perceivable screen content on wrist-worn devices given their
position in relation to an observer’s eyes. The model is built
on insights from vision science and considers properties of
the human visual system to predict what information is visible
to an observer. As a first step to provide useful tools for user
interface designers, we implemented a tool to visualize how
a given type of screen content is perceived depending on the
distance and orientation of the smartwatch display w.r.t. to
the observer. We thereby distinguish whether the device is
actively observed, i.e. the user is directly looking at the display,
or whether it is located in the peripheral field of view. Given
the output of our model, user interface designers can adapt the
visual appearance of their applications in a way that assures
that users are able to perceive the desired screen content.

Limitations
The laboratory setup in which we validated our model gave
us the advantage of restricting the position and orientation of
both, user and smartwatch to known values. Furthermore, due
to ideal lighting conditions, effects such as contrast decreases
due to sunlight could not be taken into account. Due to the
ongoing miniaturization of hardware and constant increase
in computing power, a wrist-worn device with an integrated
(depth) camera could be used instead to track the distance
to a user’s head. Given such a device, an in-the-wild study
would be beneficial to test our hypothesis in a more realistic
usage scenario. The conducted investigation based on 12
participants with normal eyesight does not guarantee that the
model is transferable to a wider audience, e.g. with corrected-
to-normal eyesight, as for example glasses might influence the
perception in the periphery. The limited screen resolution does
not provide the possibility for a detailed investigation towards
the outer areas of the observable field in the periphery.

Future Work
As a next step, we will derive specific guidelines based on the
proposed interaction zone concept and evaluate them based
on prototypic device implementations. Although we already
outlined zones with meaningful distinction on the output as
well as the input side, it is still an open question where ex-
actly the borders of these zones can be found. Furthermore,
it is worthwhile to investigate whether we have to consider
user-dependent preferences (apart from vision-related aspects
which should be integrated in the prediction, or physical prop-
erties such as arm length) or whether the same zones are
suitable for a general audience. Consequently, adaptive ap-
plications have to be developed to evaluate these aspects in
a user study focusing on user experience and preference. In
addition, a wider audience, e.g. wearers of glasses or contact
lenses, could be investigated with our apparatus. Also, other
aspects such as the influences of color contrast could be taken
into account.
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