
Efficient k-Means on GPUs
Clemens Lutz

DFKI GmbH
clemens.lutz@dfki.de

Sebastian Breß
DFKI GmbH

sebastian.bress@dfki.de

Tilmann Rabl
TU Berlin

tilmann.rabl@tu-berlin.de

Steffen Zeuch
DFKI GmbH

steffen.zeuch@dfki.de

Volker Markl
TU Berlin

volker.markl@tu-berlin.de

ABSTRACT
k-Means is a versatile clustering algorithm widely-used in prac-
tice. To cluster large data sets, state-of-the-art implementations use
GPUs to shorten the data to knowledge time. These implementations
commonly assign points on a GPU and update centroids on a CPU.

We show that this approach has two main drawbacks. First, it
separates the two algorithm phases over different processors, which
requires an expensive data exchange between devices. Second, even
when both phases are computed on the GPU, the same data are read
twice per iteration, leading to inefficient use of memory bandwidth.

In this paper, we describe a new approach that executes k-means
in a single data pass per iteration. We propose a new algorithm to
updates centroids that allows us to perform both phases efficiently on
GPUs. Thereby, we remove data transfers within each iteration. We
fuse both phases to eliminate artificial synchronization barriers, and
thus compute k-means in a single data pass. Overall, we achieve up
to 20× higher throughput compared to the state-of-the-art approach.

ACM Reference Format:
Clemens Lutz, Sebastian Breß, Tilmann Rabl, Steffen Zeuch, and Volker
Markl. 2018. Efficient k-Means on GPUs. In DaMoN’18: 14th International
Workshop on Data Management on New Hardware, June 11, 2018, Houston,
TX, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3211922.3211925

1 INTRODUCTION
To find patterns in large data sets, k-means [21, 22] is an essential
tool in the data scientist’s toolkit. In particular, practitioners of
sciences involving “big data”, such as genome analysis [16, 31, 33]
and climatology [8, 10, 19] require fast k-means implementations
for a short data to knowledge time. Furthermore, many algorithms
build on top of k-means to cover new use-cases, e.g., BIRCH [34]
and streaming k-means [30]. Thus, speeding up k-means enables
data scientists to create new insights by exploiting larger data sets
in higher quality. Although relational databases support k-means
via SQL [17, 24], high-performance k-means requires specialized
database features [25]. The ubiquitous availability of GPUs provided

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DaMoN’18, June 11, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Asso-
ciation for Computing Machinery.
ACM ISBN 978-1-4503-5853-8/18/06. . . $15.00
https://doi.org/10.1145/3211922.3211925

Point Assignment Centroid Update

Point Assignment Centroid Update

Point Assignment Centroid Update
Transfer

Cross-Processing

Multi-Pass

Single-Pass

Barrier

Figure 1: k-Means Execution Strategies.

by cloud computing platforms [1, 2] promises inexpensive and fast
execution of machine learning algorithms. However, to exploit the
full performance of GPUs, algorithms require careful design and
tuning, as shown by previous research on accelerating relational data
management with GPUs [5, 6, 12, 14, 15, 18, 26, 27].

Harnessing the computing power of GPUs requires an efficient
execution strategy. In Figure 1, we show individual steps to achieve
this goal. k-Means refines results by iterating over two phases: Point
Assignment and Centroid Update. Research over the last decade
focused mostly on accelerating both k-means phases on CPU or
GPU separately [7, 11, 13, 29, 32]. In particular, they assign points
on GPU and update centroids on CPU, thus cross-processing over
multiple processors. This Cross-Processing strategy has the inherent
overhead of exchanging data between GPU and CPU over the PCI-e
bus in every iteration. Some approaches perform Point Assignment
and Centroid Update on GPUs [4, 20]. However, both types of
approaches introduce artificial synchronization barriers between the
two phases. The barriers require the algorithm to make two passes
over points data per iteration, and cause the multi-pass problem.

Our contributions are as follows:
(1) We outline an algorithm for a highly-efficient GPU-optimized

Centroid Update to solve the cross-processing problem.
(2) We introduce the Single-Pass execution strategy on GPUs to

solve the multi-pass problem.
(3) We show a preliminary comparison of our Single-Pass execu-

tion strategy to previous approaches.

2 APPROACH
The main challenges to compute k-means in a single pass are two-
fold: 1. Due to the fundamentally different hardware architectures
of CPUs and GPUs, the Centroid Update designed for CPUs is
cache-inefficient on GPUs. 2. The two phases of k-means, Point
Assignment and Centroid Update, access data in opposite directions
(row- vs. column-wise access). Thus, fusing these phases to a single
data pass is non-trivial [12]. We describe the key insights of our
approach that address these challenges.

https://doi.org/10.1145/3211922.3211925
https://doi.org/10.1145/3211922.3211925
https://doi.org/10.1145/3211922.3211925

DaMoN’18, June 11, 2018, Houston, TX, USA C. Lutz et al.

Efficient Centroid Update on GPU. The large, per-core L2
cache of CPUs allows cache-efficient algorithms to store working
sets of up to several megabytes in size. In contrast, on GPUs, tens to
hundreds of threads store their private working sets in several tens of
kilobytes shared memory caches. The aggregate size of the working
sets can easily exceed the available cache space, which leads to cache
thrashing. Due to these architectural differences, Centroid Update
strategies optimized for CPUs underperform on GPUs. Nevertheless,
in principle, such a CPU-optimized Centroid Update is capable of
running on GPUs [20]

Our first key insight is that, in Centroid Update, we are able to
process each data feature independently of the others. We use this
insight to reduce the cache space required by each thread to store its
working set. In a CPU-optimized design, we partition data among
all threads (i.e., cores) and process them in parallel. Finally, we
aggregate the results of all partitions into a new set of centroids. In
contrast, in our GPU-optimized Centroid Update, we partition data
and decompose each data point into its discrete features. Thus, we
partition data in two dimensions — points and features — instead of
one dimension. Whereas partitioning data points has no influence
on the working set, partitioning data by its features also partitions
the working set. In effect, the working set becomes smaller, which
prevents cache thrashing when running hundreds of GPU threads.

Single-Pass GPU k-Means. Fusing our Centroid Update algo-
rithm for GPUs with Point Assignment involves synchronizing mul-
tiple threads. In contrast, fusing their CPU counterparts involves
a single thread [23], and thus is straightforward. In Point Assign-
ment, we assign each point to a cluster. In this step, we compute
point-to-centroid distances, for which we access all the point’s and
centroid’s features. Thus, we partition in only one dimension (i.e.,
points), because we are unable to partition in two dimensions. The
intermediate results are passed on to Centroid Update, in which we
access columns of data and partition data two-way. This mismatch in
how we access and partition data on GPUs incurs a global synchro-
nization. In contrast, in the CPU-optimized strategy, both algorithm
phases partition data in the same way, thus directly fuse together.

Our second key insight is that thread warps make parallel, on-
the-fly data transpose fast. A warp consists of multiple threads that
execute processor instructions in lock-step, and is a fundamental trait
of GPU architecture. Due to executing in lock-step, synchronizing
GPU threads with a thread barrier is much cheaper than on a CPU.
Thus, each thread writes its partition of data and intermediate results
into shared memory. After all threads have executed the thread
barrier, each thread reads its now-transposed partition. Using this
technique, we are able to fuse Point Assignment and our GPU-
optimized Centroid Update into the Single-Pass k-means strategy.

3 RESULTS & DISCUSSION
In Figure 2, we compare our Single-Pass execution strategy to the
Multi-Pass and Cross-Processing execution strategies. As points of
reference, we also include two open-source baselines, Armadillo [28]
on CPU and Rodinia [9] on GPU. We execute all strategies on an
Intel Core i7-6700K (“Skylake”) CPU with 32 GB memory and an
Nvidia GeForce GTX 1080 (“Pascal”) GPU with 8 GB memory on
a 2 GB generated data set [3] with 4 features. We set k = 4 to show
a data-intensive scenario unbounded by computation.

1224

222

615

156

289

608

GPU CPU + GPU CPU

Multi Single Cross Rodinia Multi Single Armadillo
0

200

400

600

Strategy

E
xe

cu
tio

n
Ti

m
e

It
er

at
io

n
(m

s)

Single

Labels Transfer

Point Asgmnt. (GPU)

Point Asgmnt. (CPU)

Mass Sum

Feature Sum

Figure 2: Execution time breakdowns for different k-Means
strategies on CPU and GPU for 4 features and 4 clusters.

On GPU, we observe that our Single-Pass strategy runs 2× faster
than the Multi-Pass strategy and 18.5× faster than the Cross-Processing
strategy. As Single-Pass reads half as much data as Multi-Pass, its
execution time is halved. Further, the Multi-Pass strategy is 9.3×
faster than the Cross-Processing strategy. We deduce that updating
centroids on the CPU and transferring intermediate results on every
iteration slows down the Cross-Processing strategy compared to the
Single-Pass and Multi-Pass strategies.

In contrast, on CPU, our Single-Pass strategy has 1.8× and 1.4×
higher throughput than the Multi-Pass and Cross-Processing strate-
gies, respectively. The Cross-Processing strategy outperforms the
Multi-Pass strategy by 1.3×.

We also observe a factor 2.7× difference between our implementa-
tion of the Cross-Processing strategy and Rodinia’s implementation
of the same strategy. Likewise, there is a factor 2.1× difference be-
tween our Multi-Pass strategy and Armadillo’s implementation. We
attribute these differences to the hand-tuning of our implementations
for these specific processors.

We summarize that our Single-Pass strategy for GPUs shows
promising results that merit further investigation.

4 CONCLUSION & OUTLOOK
In this paper, we introduce a GPU-optimized strategy for k-means.
We highlight two fundamental problems of previous approaches:
cross-processing and multi-pass execution. Our proposed solutions
center around an efficient algorithm for updating centroids on GPUs.
In our presented results, we show that our Single-Pass strategy for
GPUs achieves up to 2× and 18.5× higher throughput than the Multi-
Pass and Cross-Processing strategies, respectively. We will extend
our work to present our solutions in more detail. In particular, we
will show both data- and compute-intensive parameters (i.e., small
and large k). Furthermore, we will explore data sets with different
numbers of features. Finally, we will demonstrate that our Single-
Pass strategy is feasible for data sets larger than GPU memory.

Acknowledgments
This work was funded by the EU projects SAGE (671500) and
E2Data (780245), DFG Priority Program “Scalable Data Manage-
ment for Future Hardware” (MA4662-5), and the German Ministry
for Education and Research as BBDC (01IS14013A).

Efficient k-Means on GPUs DaMoN’18, June 11, 2018, Houston, TX, USA

REFERENCES
[1] 2018. Amazon EC2 Pricing. (May 8 2018). https://aws.amazon.com/ec2/pricing/

on-demand
[2] 2018. Microsoft Azure Pricing. (May 8 2018). https://azure.microsoft.com/en-us/

pricing/details/virtual-machines/linux/
[3] David Arthur and Sergei Vassilvitskii. 2007. k-Means++: The advantages of

careful seeding. In ACM-SIAM. 1027–1035.
[4] Hong-tao Bai, Li-li He, Dan-tong Ouyang, Zhan-shan Li, and He Li. 2009. k-

Means on commodity GPUs with CUDA. In WRI CSIE. 651–655.
[5] Sebastian Breß et al. 2017. Generating custom code for efficient query execution

on heterogeneous processors. CoRR abs/1709.00700 (2017).
[6] Sebastian Breß, Henning Funke, and Jens Teubner. 2016. Robust query processing

in co-processor-accelerated databases. In SIGMOD. 1891–1906.
[7] Feng Cao, Anthony K. H. Tung, and Aoying Zhou. 2006. Scalable clustering

using graphics processors. In WAIM. 372–384.
[8] Christophe Cassou. 2008. Intraseasonal interaction between the Madden–Julian

Oscillation and the North Atlantic Oscillation. Nature 455, 7212 (Sept. 2008),
523–527.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In IISWC. 44–54.

[10] M Dall, DCS Beddows, Peter Tunved, Radovan Krejci, Johan Ström, H-C Hansson,
YJ Yoon, Ki-Tae Park, S Becagli, R Udisti, et al. 2017. Arctic sea ice melt leads
to atmospheric new particle formation. Scientific reports 7, 1 (2017), 3318.

[11] Reza Farivar, Daniel Rebolledo, Ellick Chan, and Roy H. Campbell. 2008. A
parallel implementation of k-means clustering on GPUs. In PDPTA. 340–345.

[12] Henning Funke, Sebastian Breß, Stefan Noll, Volker Markl, and Jens Teubner.
2018. Pipelined query processing in coprocessor environments. In SIGMOD.
ACM.

[13] Jesse Hall and John Hart. 2004. GPU acceleration of iterative clustering. In
GPGPU. 45–52.

[14] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo,
and Pedro V. Sander. 2009. Relational query coprocessing on graphics processors.
TODS 34, 4 (2009).

[15] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker Markl.
2013. Hardware-oblivious parallelism for in-memory column-stores. PVLDB 6, 9
(2013), 709–720.

[16] Nathaniel D Heintzman, Rhona K Stuart, Gary Hon, Yutao Fu, Christina W
Ching, R David Hawkins, Leah O Barrera, Sara Van Calcar, Chunxu Qu, Keith A
Ching, et al. 2007. Distinct and predictive chromatin signatures of transcriptional
promoters and enhancers in the human genome. Nature Genetics 39, 3 (2007),
311.

[17] Joseph Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang, Eu-
gene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADlib analytics library or MAD skills, the
SQL. PVLDB 5, 12 (2012), 1700–1711.

[18] Tomas Karnagel, René Müller, and Guy M. Lohman. 2015. Optimizing GPU-
accelerated group-by and aggregation. In ADMS. 13–24.

[19] Kristin M. Kleisner, Michael J. Fogarty, Sally McGee, Analie Barnett, Paula
Fratantoni, Jennifer Greene, Jonathan A. Hare, Sean M. Lucey, Christopher
McGuire, Jay Odell, Vincent S. Saba, Laurel Smith, Katherine J. Weaver, and
Malin L. Pinsky. 2016. The effects of sub-regional climate velocity on the dis-
tribution and spatial extent of marine species assemblages. PLOS ONE 11 (02
2016), 1–21.

[20] You Li, Kaiyong Zhao, Xiaowen Chu, and Jiming Liu. 2010. Speeding up k-means
algorithm by GPUs. In IEEE CIT. 115–122.

[21] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory
28, 2 (1982), 129–136.

[22] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proc. Fifth Berkeley Symp. on Math. Statist. and
Prob., Vol. 1. 281–297.

[23] Disa Mhembere, Da Zheng, Carey E. Priebe, Joshua T, Vogelstein, and Randal
Burns. 2017. knor: A NUMA-optimized in-memory, distributed and semi-external-
memory k-means library. In HPDC.

[24] Carlos Ordonez. 2004. Programming the k-means clustering algorithm in SQL. In
SIGKDD. 823–828.

[25] Linnea Passing, Manuel Then, Nina Hubig, Harald Lang, Michael Schreier,
Stephan Günnemann, Alfons Kemper, and Thomas Neumann. 2017. SQL- and
operator-centric data analytics in relational main-memory databases. In EDBT.
84–95.

[26] Holger Pirk, Stefan Manegold, and Martin L. Kersten. 2014. Waste not. . . Efficient
co-processing of relational data. In ICDE. 508–519.

[27] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo - A
vector algebra for portable database performance on modern hardware. PVLDB 9,
14 (2016), 1707–1718.

[28] Conrad Sanderson and Ryan Curtin. 2016. Armadillo: a template-based C++
library for linear algebra. Journal of Open Source Software (2016).

[29] Arul Shalom, Manoranjan Dash, and Minh Tue. 2008. Efficient k-means clustering
using accelerated graphics processors. In DaWaK. 166–175.

[30] Michael Shindler, Alex Wong, and Adam W. Meyerson. 2011. Fast and accurate
k-means for large datasets. In NIPS. 2375–2383.

[31] Sarah A Vitak, Kristof A Torkenczy, Jimi L Rosenkrantz, Andrew J Fields, Lena
Christiansen, Melissa H Wong, Lucia Carbone, Frank J Steemers, and Andrew
Adey. 2017. Sequencing thousands of single-cell genomes with combinatorial
indexing. Nature Methods 14, 3 (2017), 302.

[32] Fuhui Wu, Qingbo Wu, Yusong Tan, Lifeng Wei, Lisong Shao, and Long Gao.
2013. A vectorized k-means algorithm for Intel Many Integrated Core architecture.
In APPT. 277–294.

[33] Chongzhi Zang, Tao Wang, Ke Deng, Bo Li, Sheng’en Hu, Qian Qin, Tengfei
Xiao, Shihua Zhang, Clifford A. Meyer, Housheng Hansen He, Myles Brown,
Jun S. Liu, Yang Xie, and X. Shirley Liu. 2016. High-dimensional genomic data
bias correction and data integration using MANCIE. Nature Communications 7
(April 2016), 11305.

[34] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1996. BIRCH: An efficient
data clustering method for very large databases. In SIGMOD. 103–114.

https://aws.amazon.com/ec2/pricing/on-demand
https://aws.amazon.com/ec2/pricing/on-demand
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

	Abstract
	1 Introduction
	2 Approach
	3 Results & Discussion
	4 Conclusion & Outlook
	References

