
"Recent Advances in Corpus Annotation"

Brigitte Krenn, Thorsten Brants,
Wojciech Skut, Hans Uszkoreit

Workshop

Language and Computation

Construction and Annotation of Test-Items in DiET
Judith Klein^, Sabine Lehmann*, Klaus Netter^, and Tillmann Wegst^

DFKI^ GmbH
Stuhlsatzenhausweg 3
D-66123 Saarbrücken
(Germany)
Firstname.Lastname@dfki.de

ISSCO*, University of Geneva
54, route des Acacias
CH-1227 Geneva
(Switzerland)
Sabine.Lehmann@issco.unige.ch

1 Motivation
As industrial use of language technology is flourish-
ing and the market for competing software systems is
expanding, there is an increasing need for the assess-
ment of NLP components on the level of adequacy
evaluation and quality assurance. However, effec-
tive and efficient assessment is often restricted by
the lack of suitable test material and tools. One ap-
proach traditionally used for testing and evaluating
NLP systems comprises test-suites, i.e. systematic
collections of constructed language data associated
with annotations describing their properties.

2 Project Aims
The objective of the DiET1 - Diagnostic and Eval-
uation Tools for NLP Applications - project is to
develop a tool-box which will allow the user to con-
struct test-suites, and to adapt and employ these
resources for the evaluation of NLP components.
The project builds on the results of the tsnlp (Test
Suites for Natural Language Processing) project
(Lehmann et al. 1996) where a test-suite database
tsdb2 was built which contains substantial English,
French and German test-suites covering a wide range
of syntactic phenomena.
DiET aims at extending and developing the tsnlp
test-suites with annotated test-items for syntax,
morphology and discours phenomena, but DiET is
not a mere continuation of tsnlp . It goes beyond
the tsnlp approach and tries to overcome the data-
related and technological shortcomings of tsdb (as
summarized e.g. in (Klein 1996)). The main focus
of DiET is no longer the building of a large amount
of test material but the development of more sophis-
ticated diagnostic and evaluation tools - efficiently
working under/behind* a user-friendly graphical in-
terface - for the creation, retrieval and employment

1The project started in April 1997 and lasts until April
1999. More information on DiET can be obtained through
the world-wide web under http://dylan.ucd.ie/DiET/.
The DiET project is supported by the European Commission
and the Swiss government under the Telematics Application
Programme (Language Engineering LE 4204).

2The test-suite database tsdb can be directly accessed via
http://tsnlp.dfki.uni-sb.de/tsnlp/tsdb/tsdb.cgi

of such data. The DiET system provides a flexible
annotation schema which comprises a number of al-
ready existing annotation-types and allows the user
to easily modify these types or define a completely
different set of annotation-types according to his/her
specific needs. In contrast to tsnlp where the adapta-
tion of the (conceputally) flexible annotation schema
is possible - as for example, (Flickinger and Oepen
1997) show - but only for people familiar with rela-
tional database systems3 in DiET these extensions
and modifications can easily be one by means of
graphical interface tools.
While the first set of tools is hence devoted to the
construction of annotated test-items, the second set
concerns the customisation of test and reference data
to specific applications and domains, i.e. the user
is given the means to construct, modify and extend
data as well as the list of annotations for his/her spe-
cific requirements. Customisation efforts focus on
three different types of applications, namely Gram-
mar and Controlled Language Checkers, Parsers as
components of Machine Translation Systems and
Translation Memories. Under the heading of cus-
tomisation a whole range of different processes and
operations are subsumed: (i) functions to perform
adaptation to new domains on the basis of lexical
replacement, (ii) the development of document pro-
files, establishing a relation between test-suites and
domain specific corpora and (iii) the support for the
process of adapting and customising the test mate-
rial for concrete evaluation procedures.
This paper focuses on the annotations, i.e. customi-
sation processes are only addressed inasmuch as they
are reflected in the annotation schema. Also, only
the tools immediately relevant for the annotation
task are discussed.

3 Annotation Schema
As already mentioned, within the scope of DiET a
set of annotation-types will be specified. For this

3The modification of the annotation schema, realised as
conceptual database schema, requires basic knowledge on re-
lational database design in order to re-arrange the internal
database relations.

purpose the annotation-types defined in tsnlp were
revised. Most of the attributes relevant for syntac-
tic analyses (i.e. structural and functional infor-
mation, wellformedness), phenomenon descriptions
(e.g. phenomenon supertypes) and formal proper-
ties (e.g. origin) will be kept for DiET, changing
only the representation format. Some of the salient
characteristics of the syntactic phenomena (the so-
called parameters) remain unchanged (e.g. agree-
ment and verbal subcategorisation), others need to
be consistently defined and labelled for the three
languages (e.g. coordination attributes). A few
annotation-types (which were already problematic
in tsnlp , e.g. phenomenon interaction) remain to
be defined. In general, some new annotation-types
describing formal and linguistic properties need to
be specified. Furthermore, the whole complex of
application-specific annotations will be worked out
for the three applications chosen for DiET since tsnlp
made only a general proposal on user & application
profile annotations. Finally, DiET will provide two
completely new sets of annotations: one comprises
annotation-types describing corpus-related informa-
tion, the other one consists of annotation-types de-
scribing evaluation-specific aspects.4

Since it is impossible to foresee all information
needed by a user, the annotation schema is open to
customisation and extension. It is therefore designed
to be flexible and can be tailored to the user require-
ments: the system will not only provide the means to
annotate data on the basis of a given set of different
annotation-types, but will allow the user to define
his/her own specific types. Many of the annotations
consist of simple features attributing certain values
to the test-items, but there are also structural anno-
tations, for example to describe the internal phrasal
and relational structure of the items.
The objects that an annotation may be attached to,
are (i) test-items (strings), (ii) (ordered) groups of
test-items, and (iii) segments of test-items. The
test data are assigned a broad range of differ-
ent annotations describing (i) linguistic proper-
ties, (ii) application-specific features, (iii) corpus-
related information based on text profiling, and (iv)
evaluation-specific attributes.

3.1 Formal and Linguistic Annotations
In principle the annotations interpret and classify
a test-item as a whole, including language, format
variations, information about well-formedness and
the test-item level (i.e. phrasal, sentence or text
level).
The linguistic annotations of the test-items com-
prise morphological, syntactic and discourse anal-

4It is important to note, that within the DiET project,
these annotation-types will just be specified. The DiET group
does not aim at annotating all test-items according to these
annotation-types.

ysis. The morphological annotations provide infor-
mation on lexical category and attaches the lexical
items to the respective ambiguity class. At the syn-
tax level - following the example of the NEGRA an-
notation tool (Skut et al. 1997) - graphical tree and
dependency representations will provide information
on the structural analysis of the test-items where the
non-terminal nodes are assigned phrasal categories
and the arcs some grammatical functions (subject,
object, modifier, etc.). It is possible to assign a syn-
tactic well-formedness to the overall structure. The
discourse analysis provides information on direction
(e.g. antecedent) and type (e.g. co-reference) of se-
mantic relations between test-item-segments.
All test-items can be classified according to the lin-
guistic phenomenon illustrated. In order to charac-
terise test-items for the salient properties of a specific
phenomenon - which are language-specific - addi-
tional annotation-types will be defined. In German,
for example, the annotation-types case, number and
gender need to be specified for the syntactic phe-
nomenon NP agreement.

3.2 Application-specific Annotations
The annotation schema also provides information
about application-specific properties of the test-
items such that the users can formulate specific
search statements retrieving suitable test material.
But these annotations also serve as reference mate-
rial which can be used within the comparison phase
of the evaluation procedure. For grammar and con-
trolled language checker, for example, annotation-
types can be defined, which specify the error type of
ill-formed test-items and connect the ungrammtical
test-items to their grammatical pendants. The test
material for parsers can be annotated with the num-
ber of alternative readings for ambiguous test-items.
For translation memories the test-items of the source
language can be connected to adequate translation
units from the translation system.
In addition to these pre-defined application-specific
annotation-types, the users can easily extend the an-
notation schema for their specific needs.

3.3 Corpus-related Annotations
Systematically constructed data are useful for diag-
nosis but should not be deemed sufficient for ade-
quacy evaluation. What is needed are test-suites re-
lated to test corpora to provide weighted test data,
since for evaluation purposes it is very important
how representative a test-item is of a certain (text
or application) domain, whether it occurs very fre-
quently, whether it is of crucial relevance, etc. Es-
tablishing a relation between the isolated, artificially
constructed test-items and real-life corpora presup-
poses the identification of the typical and salient
characteristics of the examined text domain. This
process is called text profiling.

DiET will integrate the NEGRA tagging and parsing
tools to semi-automatically annotate corpus texts
for part-of-speech and possibly also structural and
dependency information. Analysis tools will be em-
ployed to establish a text profile containing infor-
mation on frequency and distribution of text ele-
ments. The information in the profile will include
non-linguistic information such as use of punctua-
tion marks as well as a description of linguistic char-
acteristics such as sequences of lexical categories,
patterns of specific lexical items and lexical cate-
gories or even structural descriptions. Manual in-
spection and interpretation of the resulting profile
will reveal which linguistic constructions are salient
in the examined text and hence relevant for the en-
visaged application domain.
Once the corpus-relevant linguistic characteristics
are identified they will be used to (i) elaborate a
relevance measure, i.e. decide to what extent cer-
tain criteria are significant to establish the rele-
vance values and to (ii) select test-items and clas-
sify them for relevance (extending the annotation
schema for this new annotation-type). If, for ex-
ample, the text profile records a high percentage
of co-ordinating conjunctions between two nominal
phrases, the user will select test-items exemplifying
simple NP co-ordination and give them a high rele-
vance value. This is a simplified example since very
often, the relevance value will be some kind of a com-
position of the values given to several annotation-
types, e.g. sentence-length, number-of-conjunctions,
number-of-coordinated-elements, NP-type, number-
of-NP-elements, etc.
Currently, the responsible DiET group works on the
conceptual design to realise text profiling and allow
for the linkage between test-items and text corpora,
i.e. the concrete mechanisms for this customisation
process can not be provided yet.

3.4 Evaluation-specific Annotations
The annotation schema will comprise annotation-
types describing the evaluation scenario, including
the user-type (developer, user, customer), type and
name of the system under evaluation, goal of the
evaluation (diagnosis, progress, adequacy), condi-
tions (black box, glass box), evaluated objects (e.g.
parse tree, error correction, etc.), evaluation criteria
(e.g. correct syntactic analysis, correct error flag,
etc.), evaluation measure (the analysis of the system
results, for example in terms of recall and precision),
and the quality predicates (e.g. the interpretation of
the results as excellent, good, bad, etc.).
Since the DiET database is also meant to accom-
modate evaluation results, the annotation schema
will comprise annotation-types to annotate the ac-
tual output of the examined NLP system to indi-
vidual items. This information may allow for the
(at least manual) comparison of the actual to the

expected output (the reference annotation specified
within the application-specific annotation-types).
Clearly, not all annotations can be gathered au-
tomatically but the DiET system will support the
users to organise evaluation runs and keep track of
the results.

3.5 Meta-information on the Annotations

The database also provides information about the
test-suite as a whole, such as listings of the vocab-
ulary occurring in the test-items, part-of-speech tag
sets or the terminology used for the specification of
annotation-types. Additionally, (declarative) infor-
mation will be assigned to the linguistic phenomena,
comprising the (traditional) phenomenon name, its
relation to other phenomena displayed in a hierarchi-
cal phenomenon classification and a (informal) de-
scription of the linguistic constructions belonging to
the phenomenon in question.

4 Annotation Tool
The objective of DiET is to offer a flexible tool pack-
age which is open enough to cover the requirements
of different types of users who wish to employ the
system for a range of applications. A tool package
accessible from a graphical user interface portably
implemented in Java is being built. DiET has a
client/server architecture, with a central database
system, lexical replacement, tagging and syntactic
analysis working as servers and a client integrating
construction, display and editing facilities. The cen-
tral construction and annotation tool serves to en-
ter new data and to annotate these items on differ-
ent levels of linguistic abstraction, such as phrasal
constituency or anaphoric relations and for various
application- and corpus-specific information. The
process of annotation is supported among others by
part-of-speech tagging and parsers with bootstrap-
ping facilities learning from existing annotations.

Figure 1 gives an impression on how the main win-
dow of the tool will look like. In principle, the in-
terface aims at simplicity in design and offers clearly
arranged operation fields to provide an easy to use
annotation tool. The left window contains the test-
items. The right one is split up into two parts:
the upper window shows the hierarchically arranged
annotation-types together with the values attributed
to the selected test-item, the lower part presents
more information on the value (s) of the annotation-
type marked in the window above.
How to annotate a test-item? First, the user selects
a test-item. From the pool of annotation-types (in
the upper right window), s/he choses an annotation-
type, e.g. syntactic analysis, NP.coordination, etc.
In the lower right window, fields, appropriate for
the given annotation-type, will appear allowing the

Figure 1: DIET GUI

value(s) to be enters. In the case of syntactic anal-
ysis for example, this will be a tree window.
It is often the case that the construction of test-
items can be based on already existing test-items
since only minor changes in the test-items or in the
annotations need to be done. DiET gives therefore
the possibility to duplicate and adapt a similar entry
rather than producing the test-item string and its
annotations from scratch.
The user can also easily specify new annotation-
types. For the definition of annotation-types a
dialog-window will open (see figure 2). To define a
new annotation-type, the user choses a name for the
new type, attributes it to the respective data type,
(if necessary) defines the range of allowed values,
and positions it within the hierarchically ordered
list of annotation-types. Annotation types can be
applied to different types of linguistic objects (i.e.,
test-items, groups of test-items, etc.) and their val-
ues (if any) can be configured to be entered manually
or are alternatively provided through some server,
i.e. the user selects a service (e.g. a tagger) which
will provide the values. Instances of such annota-
tion types could be, for example, phrasal or rela-
tional structures over strings building on the data
type tree, anaphoric relations making use of a sim-
ple data type arc, well-formedness judgements with
a boolean value, etc.
While most of the described functions of declaration,
selection, and data entry will be carried out in the
central client module, there will also be a number

of specialised and potentially decentralised servers
supporting the tasks of data construction and an-
notation. (Semi-)automatic annotation of data by
servers is forseen for standard annotation types such
as part of speech tagging. These will be available for
the three languages, as will be a morphology compo-
nent to assign standardised morpho-syntactic classi-
fications.

5 Concluding remarks
DiET supports NLP evaluation by the development
of tools which allow to construct and customise an-
notated test material which can consist of a system-
atic collection of constructed language data or be
real life corpora. In contrast to the Penn Treebank
(Marcus et al. 1994) and the NEGRA annotation tool
(Skut et al. 1997) DiET provides the means to at-
tach richer annotations to the data which go be-
yond part-of-speech tagging and syntactic analysis,
namely the possibility to assign salient phenomenon-
specific characteristics, the so-called parameters to
the test-items. Furthermore, semantic information
can be associated with test-item-segments above
sentence level.
The project focuses on the flexibility of the an-
notation schema which - with the given tool-box
- can easily be tailored according to the require-
ments of the user: the test-items can be annotated
with respect to formal and linguistic properties,
application-specific features, corpus-related informa-
tion based on document profiling and evaluation-

Figure 2: Configuration of annotation-types

specific attributes.
The project also develops a set of tools which sup-
port the customisation of test-suites by adapting
them to new domains on the basis of lexical replace-
ment, the development of text profiles and the sup-
port for evaluation purposes.

Acknowledgement

We thank all our DIET colleges, Susan Armstrong
(ISSCO), Jochen Bedersdorfer (DFKI), Tibor Kiss
(IBM Germany), Bernice McDonagh (LRC), David
Milward (SRI Cambridge), Dominique Petitpierre
(ISSCO), Steve Pulman (SRI Cambridge), Sylvie
Regnier-Prost (Aerospatiale), Reinhard Schaler
(LRC), and Hans Uszkoreit (DFKI) for their con-
tributions.

References
Dan Flickinger and Stephan Oepen: Towards Sys-
tematic HPSG Grammar Profiling. Test Suite Tech-
nology Ten Years After In: Proceedings of DGfS-
CL, Heidelberg 1997
Judith Klein: TSDB - Em Informationssystem
zur Unterstützung der syntaktischen Evaluierung
natürlichsprachhcher Systeme. Master's Thesis,
Saarbrücken 1996

Sabine Lehmann, Stephan Oepen, Sylvie Regnier-
Prost, Klaus Netter, Veronika Lux, Judith Klein,
Kirsten Falkedal, Frederik Fouvry, Dominique Esti-
va!, Eva Dauphin, Herve Compagnion, Judith Baur,
Lorna Balkan, and Doug Arnold: tsnlp — Test
Suites for Natural Language Processing In: Proceed-
ings of COLING, Kopenhagen 1996 pp.711-716
Marcus, M. P. et al.: The Penn Treebank:
Annotating Predicate Argument Structure. ARPA
Human Language Technology Workshop 1994
(http://www.ldc.upenn.edu/doc/treebank2/arpa94.html)
Klaus Netter, Susan Armstrong, Tibor Kiss, Ju-
dith Klein, Sabine Lehmann, David Milward, Sylvie
Regnier-Prost, Reinhard Schaler, Tillmann Wegst:
DiET - Diagnostic and Evaluation Tools for Natural
Language Processing Applications In: Proceedings
of the first international Conference on Language
Resources and Evaluation, Granada 1998 pp.573-579
Stephan Oepen, Klaus Netter and Judith Klein:
tsnlp — Test Suites for Natural Language Process-
ing. In: Nerbonne, J. (Ed.): Linguistic Databases.
CSLI Lecture Notes. Standford 1997 pp.13-37
Wojciech Skut, Brigitte Krenn, Thorsten Brants,
and Hans Uszkoreit An Annotation Scheme for Free
Word Order Languages In: Proceedings of ANLP
1997, Washington 1997 pp.88-96

GLOSS: A Visual Interactive Tool for
Discourse Annotation

Dan Cristea Ovidiu Craciun Cristian Ursu

University "AI.Cuza" Iasi
Faculty of Computer Science

16, Berthelot St.
6600 - Iasi, Romania

{dcristea, noel, cursu}@thor.infoiasi.ro

Abstract

We present an annotation tool, called GLOSS, that manifests the following features: accepts as inputs SGML source documents
and/or their database images and produces as output source SGML documents as well as the associated database images; allows
for simultaneous opening of more documents; can collapse independent annotation views of the same original document, which
also allows for a layer-by-layer annotation process in different annotation sessions and by different annotators, including
automatic; offers an attractive interface to the user; permits discourse structure annotation by offering a pair of building operations
(adjoining and substitution) and remaking operations (undo, delete parent-child link and tree dismember). Finally we display an
example that shows how GLOSS is employed to validate, using a corpus, a theory on global discourse.

1. Introduction

It is generally accepted that annotation increases
the value of a corpus. The added value resides in
the human expertise that is so contributed. A
fully automatic annotation, although perhaps not
foreseeable, would make the very idea of
annotating a corpus completely useless, as, in
that hypothetical moment of the future, all human
expertise would be totally reproducible. If such a
picture is not realistic, still there will always exist
the need for low level automatic annotation tasks,
that could speed up tedious phases of the
annotation work done by humans. There is also a
tremendous need for advanced tools able to help
this process, acting in an interactive manner.

On the other hand, recent progress on corpus
driven methods for studying natural language
phenomena puts more and more accent on the
reusability of linguistic resources. It becomes
natural to think that annotated corpora created for
a certain goal could further be used on a different
purpose by another research team that finds in
the existing annotation a partial fulfilment of its
needs and would like to add the missing parts by
its own efforts. In order to speed up an
annotation task it is also plausible that the
workload be distributed to independent
annotators, each responsible for just one set of
markups. In such a case it is desirable that the
annotators work in parallel, on different copies of

the same base document, and an integrating
device exists able to combine the contributing
markups in a single document.

Such a need is described in Cristea, Ide and
Romary (1998a), where a marking procedure is
proposed in order to deal with the goal of
annotating corpora from two different
perspectives: discourse structure and reference.
This scheme yielded by the necessity to validate
a theory on discourse structure in correlation
with anaphora (Cristea, Ide and Romary, 1998b).

This paper presents an annotation tool, called
GLOSS, that implements the ideas presented in
(Cristea, Ide and Romary, 1998a) regarding
multiple annotation views on the same original
document, while also providing a powerful visual
interactive interface for annotation of discourse
structure. The result of the annotation process is
a pair of files: an ASCII SGML document, and
its database mirror, which can be SQL-accessed.

2. The annotator's features

SGML compatibility

The annotator accepts in input original un-
annotated texts as well as SGML documents
which must be paired with their DTD files1. At
any moment of the annotation process the

1 The current implementation allows for a simplified
DTD syntax.

document under annotation can be saved in the
SGML format.

Database image copy
During the annotation process, an internal
representation of the markups is kept in an
associated database. The database records
markers to text as pairs of beginning and end
indices in the bare text document. When an
annotation session is finished, the associated
database can be saved for interrogation purposes.

GLOSS supports simple queries to be addressed
to the database, in the SQL language,
interactively during an annotation session.

Once a database image of a document exists, it
can act as input for a subsequent annotation
session with GLOSS. This allows for enriching
certain types of tags by an automatic procedure,
as sketched in figure 1. In this way manual
annotation can be combined with automatic
annotation in an easy way.

Multiple parentage /multiple views feature

The annotator allows for simultaneous opening
of more than one document, the same way an
editor behaves. Within the same session the user
can commute from one document to another,
each having an associated workspace window (as
shown below)

The multi-document feature is justified by the
multiple-views philosophy that it implements
(Cristea, Ide and Romary, 1998a). According to
this philosophy, a document can inherit from
multiple documents, considered as its parents in a
hierarchical structure. The overall architecture is
that of a directed acyclic graph (DAG) with a
base document as root. All documents in the
hierarchy represent annotations made from
different perspectives of the same original hub
document. If a document is defined to inherit
from one or more parents, then any or all of the
contributing markups can be displayed
simultaneously on the screen.

The multiple views behaviour is obtained by a
process of intelligent unifying of the database
representations of the parent documents. So,
when a document is declared to inherit from two
or more parent documents, another database is
generated that copies once from the parents the
common parts and than adds the markups that are
specific to each of them. Ulterior to the moment

the declaration of parentage is made, which must
occur when a new view is created, the current
document looses any connection with the parent
documents, such that any modification can be
made to this version without affecting in any way
the original markups.

Dynamic versus static inheritance in the
views architecture

Following current approaches on inheritance
systems (Daelemans, De Smedt & Gazdar, 1992)
for instance), two styles of recording data can be
used in a hierarchy of views. In a dynamic
manner only new information is recorded, while
old information is referred to by pointers in one
of the hierarchically upper views (in fact - their
associated database images). This mimics a kind
of monotonic inheritance. This decision is one
that yields maximum of parsimony in recording
data. On the other hand still, it obliges that all
hierarchically upper views be simultaneously
open and active during an annotation or
interrogation session. Also it blocks performing
any modification in the original text in any of the
documents in the hierarchy. This is because
alignments would be lost down the hierarchy, as
text indexes could be changed.

On the contrary, in the static manner a new copy
of the database is created for each new view.
Although recording anew the inherited data, this

style permits independence from the original
parents during annotation and interrogation. As
such, different views on the hierarchy are
isolated and can diverge significantly. The only
restriction is that all parents of a child view be
based on the same text document.

GLOSS implements the static inheritance
philosophy.

The main interactive workspace

Each opened document under annotation has a
main window where the original text is displayed
(see figure 2). The SGML tags do not appear on
this screen. Instead, the tagged segments of text
are highlighted in colours. The user can assign a

different colour to each type of tag. Highlights
are sensible to the mouse click and can open for
visualisation and/or modification the
corresponding attribute-value structures.

Text-empty tags, as for instance co-reference
links (Brunesseaux and Romary, 1997) or, in a
certain representation, discourse relations, can
also be displayed. Since there is no text that they
could be anchored to by highlighting, only their
IDs are displayed. This happens in a child
window where the text-empty tags are grouped
by their types. As in the case of tags that
surround text, the text-empty tags can be opened
for inspection and/or modification with the
mouse click.

Figure 2: A GLOSS session with two documents opened

Figure 3: Floating window with adjoining and substitution structures

The discourse structure annotation
workspace

Annotating the discourse structure in GLOSS is
an interactive visual process that aims at creating
a binary tree (Marcu, 1996) (Cristea & Webber,
1997), where intermediate nodes are relations
and terminal nodes are units. The discourse
structure window appears near the main
document window, as shown in figure 2.

An incremental, unit by unit elaboration, that
would precisely mimic an automatic expectation-
driven incremental tree development, as
described in Cristea & Webber (1997), is not
compulsory during a manual process. Manual
annotation resembles more a trial and error,
islands driven process. To facilitate the tree
structure building, GLOSS allows development
of partial trees that could subsequently be
integrated into existing structures. Each unit or
partial structure is incorporated within one of the
already existing trees either by an adjoining
operation (adding to a developing structure an
auxiliary tree - one that has a foot node, marked
by a *, on the left extreme of the terminal
frontier) or a substitution operation (replacement
of a substitution node, marked by a , belonging
to the developing structure, with a whole tree)
(Cristea & Webber, 1997). Adjoining of a partial
tree (minimum a unit) into an already existing,
developing tree is allowed only on the nodes of
the outer or inner right frontier2, as defined in
Cristea & Webber (1997). The approach in
Cristea & Webber (1997) that restricts
substitution only into the most inner substitution
node is also preserved.

Both build operations (adjoining and
substitution) require two arguments: the inserted
structure and the node of the final structure
where the insertion takes place. The adjoining
operation is a drag-and-drop one from root of the
inserted partial structure to the node of an
existing structure where the insertion must take
place. In the same manner, a substitution
operation is performed between an elementary
tree structure and a destination substitution node
belonging to the partial developed structure. If
instead of dragging, the source node is right

2 An outer right frontier is the right frontier (the nodes
on the path from the root to the most right terminal
node) - in a tree without substitution sides. An inner
right frontier is the right frontier of the tree rooted at
the left sister of the most inner substitution site - in a
tree with substitution sites.

clicked, a float appears displaying a family of
structures (auxiliary or elementary trees) that
could be created using as material the selected
node. These structures are shown in figure 3.

After completion of any adjoining or substitution
operation the obtained tree obeys the Principle of
Sequentiality3 (Cristea & Webber, 1997).

Remaking the discourse tree

As discourse annotation is an ever-refining
process, we have implemented a number of
remaking operations that would allow for
undoing the work already done when building
trees: cuts of father-child links and complete
dismembering of parts of the developing tree.

These operations are:
• deleteUpper: deletes the upper link of a

node. As a result the tree under the node
becomes unbound and the corresponding link
from the parent remains pending and is
marked by a <i because its further behaviour
will be that of a substitution node;

• dismemberTree: forgets all the relations and
the parent-child links of the structure under
the selected node.

3. Applying GLOSS for validating the
Veins Theory

In (Cristea, Ide, Romary, 1998b), a theory of
global discourse called Veins Theory (VT) was
proposed. VT identifies hidden structures in the
discourse tree, called veins, that enable, on one
hand, to define referential accessibility domains
for each discourse unit and, on the other, to
apply Centering Theory (CT) of Grosz, Joshi &
Weinstein (1995), globally, to the whole
discourse. Veins are defined as sub-sequences of
the sequence of units making up the discourse.
From the point of view of discourse cohesion,
VT claims that referential strings belonging to a
unit are allowed to refer only discourse
antecedents placed on the same vein as the unit
itself, or if this is not the case, then the referents
can be inferred from the general or contextual
knowledge. The point on coherence defended by
VT is that if a different metric than the surface
order of the units is used, than the inference load
the discourse obliges to is less. The new metric

3 A left-to-right reading of the terminal frontier of the
tree corresponds to the span of text scanned in the
same left-to-right order.

being along veins, the comparison criteria is a
"smoothness" index computed on the base of CT
transitions (continuation is smoother than
retaining, which is smoother than smooth shift,
which is smoother than abrupt shift, which itself
is smoother than no transition at all).
Accordingly, values from 4 - continuation, down
to 0 - no transition, are summed up for all
discourse units and the result is divided by the
number of transitions. The research aims at
proving that in all cases the VT smoothness score
is at least as good as the one computed following
CT, if not better.

The specific scheme proposed is a multi-level
(hierarchical) parallel annotation architecture
described in detail in Cristea, Ide & Romary
(1998a). The overall hierarchical architecture of
this schema is a DAG of views as in figure 4.

Figure 4: The hierarchy of views for the
validation of VT

Following is a short description of each of these
views:

• BD: the base document, contains the raw text
or, possibly, markup for basic document
structure down to the level of paragraph;

• RS-VIEW: includes markup for isolated
reference strings. The basic elements are
<RS>'S (reference strings);

• RL-VIEW: the reference links view,
imposed over the RS-VIEW, includes
reference links between an anaphor, or
source, and a referee, or target. Links
configure co-reference chains, but can also
indicate bridge references (Strube & Hahn,
1996; Passoneau, 1994, 1996). They are
coded as <LINK> elements with TYPE=CO-
REFERENCE or TYPE=BRIDGE;

U-VIEW: marks discourse units (sentences,
and possibly clauses). Units are marked as
<SEG> elements with TYPE=UNTT;
REL-V1EW: reflects the discourse structure
in terms of a tree-like representation. To
build the REL-VIEW, full usage of the
interactive tree building facilities is made.
The parent-child relations are marked as
<LINK TYPE=RELATION> with the attributes
TARGET 1 (left child) and TARGET2 (right
child);
VEINS-VIEW: includes markup for vein
expressions. VEIN attributes (with values
comprising lists) are added to all <SEG
TYPE=UNIT> elements; ;„
RS-IN-U-VIEW: inherits <RS> and <SEG
TYPE=UNIT> elements from U-VIEW and
RS-VIEW. It also includes markup that
identifies the discourse unit to which a
referring string belongs;
CF-VIEW: inherits all markup from RS-IN-
U-VIEW, and adds a list of forward looking
centers (the CF attribute) to each unit in the
discourse;
CT-VIEW (Centering Theory view):
inherits the CF attribute from the CF-VIEW
and backward references from the RL-
VIEW. Using the markup in this view, first
backward-looking centers4 (the CB-C5

attribute of the <SEG TYPE=UNIT> elements)
and then transitions can be computed
following classical CT, therefore between
sequential units. A global smoothness score
following CT is finally added;
VT-VIEW (Veins Theory view): inherits
forward-looking lists from the CF-VIEW,
back-references from the RL-VIEW, and
vein expressions from the VEINS-VIEW.
The VT-VIEW also includes markup for
backward-looking centers computed along
the veins of the discourse structure. As, for
each unit these centers depend on the vein
the current unit is actually placed, they are
recorded as CB-H6 attribute of the <LINK>
elements. Transitions are computed
following VT and then, a global VT
smoothness score, thus providing support for
the validation of the claim on coherence
uttered by VT. Also the simultaneous

4 CT defines a backward-looking center as the first element
of the forward-looking list of the previous unit that is
realised also in the current unit.
5 From "classical".
6 From "hierarchical".

existence of reference links, inherited from
RL-VTEW and of vein expressions, inherited
from VEINS-VIEW allows for the validation
of the claim on cohesion of VT (references
are possible only in their domains of
accessibility).

Conclusions
We present an annotation tool, called GLOSS,
that manifests the following features: accepts as
input SGML source documents and/or their
database images and produces as output source
SGML documents as well as their associated
database images; allows for simultaneous
opening of more documents; can mix
independent annotation views of the same
original document, which also allows for a layer-
by-layer annotation process in different
annotation sessions and by different annotators,
including automatic; offers an attractive interface
to the user; permits discourse structure
annotation by offering a pair of building
operations (adjoining and substitution) and
remaking operations (delete parent-child link and
tree dismember). Finally we display an example
that shows how GLOSS is used to validate, by
partial manual, partial automatic corpus
annotation, a theory of global discourse. The
system currently runs on a PC under
Windows'95orNT.

Although designed in the idea of assisting
annotation tasks in discourse, GLOSS could also
be used for other types of annotation. The use of
SGML with an associated DTD file allows easy
definition of any annotation standard with
specific markings and their families of attributes.
To assist discourse structure coding, the current
version implements binary trees with a range of
operations that permit interactive building of
trees in an add/modify/delete manner. This
module could be extended to allow for
interactive annotation of any kind of trees. As
such, syntactic structures become possible to be
marked in a GLOSS session.

As further extensions to GLOSS, we plan to add
an interface that will allow easy definition and
incorporation of other structures, different from
trees.

References
L. Bruneseaux & L. Romary (1997). Codage des

references et conferences dans les dialogues
homme-machine. Proceedings of ACH/ALLC,
Kingston (Ontario).

D. Cristea, N. Ide & L. Romary. (1998a).
Marking-up multiple views of a Text:
Discourse and Reference. Proceedings of the
First International Conference on Language
Resources Evaluation, Granada, 28-30 May.

D. Cristea, N. Ide & L. Romary. (1998b). Veins
theory: A Model of Global Discourse Cohesion
and Coherence. Proceedings of
ACL/COLING'98.

D. Cristea & B. L. Webber. (1997). Expectations
in Incremental Discourse Processing.
Proceedings of ACL-EACL'97.

W. Daelemans; K. De Smedt & G. Gazdar
(1992). Inheritence in Natural Language
Processing. Computational Linguistics, vol. 18,
no. 2.

N. Ide & G. Priest-Dorman.
Encoding
http://www.cs.vassar.edu/CES/.

(1996). Corpus
Specification.

B. J. Grosz, A. K. Joshi & S. Weinstein. (1995).
Centering: A framework for modelling the local
coherence of discourse. Computational
Linguistics, 12(2), June.

D. Marcu (1996). Bulling up rhetorical structure
trees, Proceedings of the 13th National
Conference on Al (AAAI-96), vol.2, Portland,
Ore., 1069-1074.

C. M. Sperberg-McQueen & L. Burnard. (1994).
Guidelines For Electronic Text Encoding and
Interchange. ACH-ACL-ALLC Text Encoding
Initiative, Chicago and Oxford.

Linguistic Annotation of Two Prosodic Databases

Maria Wolters
Institut fur Kommunikationsforschung und Phonetik

Poppelsdorfer Allee 47, D-53115 Bonn
wolters@ikp.uni-bonn.de

Abstract
Two prosodic databases were annotated with
linguistic information using SGML (Standard
General Markup Language), one database of
American English and one of Modern Stan-
dard German. Only information that might
have prosodic correlates was annotated. Pho-
netic and morphological information was sup-
plied by automatic tools and then hand cor-
rected. Semantic and pragmatic information
was inserted by hand. The SGML tagset is
essentially the same for both languages. Tags
delimit structural units, all other information
is supplied by attributes. The databases them-
selves, which combine linguistic and phonetic
information, are stored as SPSS files.

1 Introduction
The prosody of an utterance is closely related
to its linguistic form. Therefore, a prosodic
database for a language should contain both
phonetic/prosodic and linguistic information.
This paper describes how linguistic information
is encoded in the Bonn prosodic databases of
German (Heuft et al., 1995), henceforth G, and
American English (Eisner et al., 1998), hence-
forth AE. The databases were read by 2-3 na-
tive speakers under laboratory conditions. Each
speaker read the complete text. AE consists
of 443 question/answer dialogues, while G con-
tains 110 question/answer dialogues, 3 short
texts and 116 single sentences. Most of the ma-
terial was written specifically for these corpora.
The phonetic information in these corpora is
rather detailed for a speech corpus of that size,
which permits very fine-grained analyses.

The databases are used to study how infor-
mation such as dialogue act, sentence type or
focus can be signalled prosodically in content-
to-speech synthesis (CTS). In CTS, the input is

enriched with information about semantic units
and pragmatic functions. For our analyses, we
mainly use the statistics package SPSS. Since
each segment and each word is stored as a sep-
arate case in the SPSS file, word-level linguis-
tic annotations are difficult to maintain in this
format. Therefore, they are stored in a SGML-
based markup of the text. SGML (Standard
General Markup Language, (Goldfarb, 1990))
was chosen because it is a standard language
for corpus annotation. In an SGML annotation,
the text is partitioned into elements E, which
are organized hierarchically. The boundaries of
these elements are marked by start (<E>) and
end (</E>) tags. Each tag can have an arbi-
trary number of attributes (<E attr=value>).
The main disadvantage of SGML is the strict
hierarchical structure it imposes - annotating
units that partly overlap in a single document
is impossible.

Combining the two annotations is straightfor-
ward. The parsed SGML file with full attribute
specifications for each tag is converted into a
tab-delimited database of words where each tag
and each attribute has its own column. Tag
columns have two values, 0 for closed tag and 1
for open tag. Attribute columns have the value
-1 if the tag for which the attribute is defined is
closed, and the correct value if that tag is open.
In a last step, the information for each word is
added to its entry in the SPSS file.

In the next sections, we present the hierar-
chical structure of the SGML tagset and give
an outline of its four layers. It is beyond the
scope of this paper to list all tags and their
attributes; this information can be found in
(Wolters, 1998). To conclude, we will discuss
extension and evaluation of the coding scheme.

2 Overview of the Tagset
Both corpora share a basic tagset. The at-
tributes for identifying sound files, part-of-
speech labels, and phrase-level tags differ. All
phonemic, morphological and syntactic infor-
mation which was inserted automatically was
subsequently corrected by hand.

The tags specify units on four different lay-
ers, structural layer, word layer, phrase layer
and semantic/pragmatic layer. The properties
of these units are encoded in attributes. The
first layer specifices the overall structure of the
database. Information annotated in the second
and third layer such as part of speech (POS)
and syntactic phrase boundaries is relevant for
text-to-speech (TTS) as well as for CTS sys-
tems, because it can be provided automatically.
In contrast, the annotations on the fourth layer
contain the information that is only exploited
in CTS systems.

The third and the fourth layer are largely
orthogonal: semantic and pragmatic units are
both parts of larger syntactic phrases and con-
tain smaller syntactic phrases. If a seman-
tic/pragmatic unit is coextensive with a syntac-
tic phrase, the phrase boundaries are contained
within the unit boundaries.

3 The Structural Layer
There are four main elements on this layer. The
tag <dialbase> indicates that the text is a
prosodic database. Its units are dialogues (tag:
<dialog>), stories (tag: <story>), and sen-
tences (tag: <sent>).1 Each unit has a unique
identifier.

Stories and dialogues consist in turn of sen-
tences. Sentences are sequences of words ended
by a dot, a question mark or an exclamation
mark. Sentences are marked for sentence type
(attribute typ) and, in dialogues, for the cur-
rent speaker (attribute sp). Table 1 lists the six
types covered.

4 The Word Layer
The main unit on this layer is the word
(<w>). The attribute pos supplies part-
of-speech (POS) information, while the tags
<phon> and <orth> delimit the canonical

C command ST
DEQ decision ques- SEQ

tion
EQ echo question WQ

statement
selection ques-
tion
WH-question

Table 1: Sentence types. The answers to questions
are labelled with the label of the question + a for
answer. Echo questions are defined as declarative
sentences with a question intonation, the definitions
of the other types are straightforward.

phonemic and orthographic transcription of a
word. Example:2

(1) <w pos=VB> <phon> g II v <orth>
give

Since POS tags are comparatively easy to
supply in a text-to-speech synthesis system,
they provide valuable information for a first set
of prosodic rules (Widera et al., 1997). Includ-
ing canonical transcriptions allows to check for
reductions, elisions and insertions which cooc-
cur with prosodic parameters such as stress and
speaking rate.

The canonical transcriptions for AE were
retrieved from cmudict3 and converted to
SAMPA for American English (Wolters, 1997);
G was transcribed by a rule set implemented in
the language P-TRA (Stock, 1992). Each vowel
symbol is followed by an indication of stress
type, primary (1), secondary (2) or none (0).
The AE POS tags were provided by the Brill
tagger (Brill, 1993), which uses the Penn Tree-
bank tagset (Santorini, 1990). The POS tags for
G were derived from the Bonner Wortdatenbank
(Brustkern, 1992).

5 The Phrase Layer
There are two types of units, syntactic phrases
and lists (tag:). Lists are frequently
used in applications of text-to-speech synthesis.
They consist of items (tag: <1>) and coordi-
nators (tag: <cc>). Example:4

(2) <sent typ=deq>
Sind <1> Peter </!> <1> Tina
</!> <1> Petra </!> <cc> und
</cc> <1> Klaus </!> wirklich

'Turns are not indicated by separate tags, as they
would have to be for spontaneous speech, because turn
taking is almost impossible to study using read speech.

2 If not stated otherwise, all examples come from one
of the databases.

3compiled by Bob Weide, available at ftp://svr-
ftp.eng.cam.ac.uk/pub/comp-speech/dictionaries

4 All examples only show the relevant tags.

Figure 1- Hierarchy and layering of SGML elements CAPS: name of layer. Only the most important tags
are shown.

miteinander verwandt?
trans Are Peter, Tina, Petra and Klaus
really relatives?

Syntactic phrase boundaries were provided
by the Apple Pie Parser (Sekine, 1995) for
AE and the SVOX (Traber, 1995) parser for
G. These tags are used for examining if and
how syntactic boundaries are marked prosodi-
cally. There are four phrase types, noun phrases
(tag: <np>), verb phrases (tag: <vp>), adverb
phrases (tag: <advp>), and adjective phrases
(tag: <adjp>). An example from the German
database:

(3) <sent typ=c>
<advp st=k f=u>
<w pos=QPN> <phon> 1 aUl t 60
<orth> lauter
<w pos=INJ> <phon> b II t ©0
<orth> bitte
</advp>
trans.. "Speak up, please".
Attributes of the adverbial phrase: st=k -
comparative, f=u - not inflected

When a parser provides more detailed infor-
mation about a phrase than just the type of
its head, this is stored in attributes. These at-
tributes mostly refer to features of the phrase
head. Their default value is "unspecified", in
case the parser does not yield this information.

6 Semantic/Pragmatic Level

This level differs from the others in that most of
the concepts to be annotated are difficult both
to define clearly and and to detect automati-
cally. Therefore, all annotations have to be in-
serted by hand.
Date, time, numbers. These units are
used for current research in the VERBMOBIL
project. Dates (<d>) must consist at least of

day and month, and times (<t>) at least of
hours. Numbers (<nr>) are sequences of dig-
its which refer to e.g. a telephone number. All
three units consist of noun phrases at the syn-
tactic level. Some examples:

(4) <sent typ=deq> War seine Telefon-
nummer nicht <nr> eins vier drei drei
zwo </nr>
trans.: Wasn't his phone number one four
three three two?

(5) <sent typ=deq> <d> Am siebe-
nundzwanzigsten Mai </d> <t> um
siebzehn Uhr fünfunddreißig </t> ,
kann ich das eintragen?
trans.: The 27th of May at 17.35, can I note
that down?

Coreference. It is well known that old infor-
mation is less likely to be accented than new
information. But how can this dimension of fa-
miliarity be quantized for annotation? To avoid
semantic complications, we only code the famil-
iarity of discourse referents. First, all referring
expressions are marked with the tag <coref >
following (MUC, 1996). Referring expressions
can consist of syntactic noun phrases and of
other referring expressions. Each expression is
assigned an integer number id unique within
a dialogue or story. The attribute ref speci-
fies the entity an expression refers to. A refer-
ent is identified by the cardinal number of the
referring expression which introduces it. The
attribute ground specifies how the referent is
linked to the preceding discourse. The links,
summarized in Tab. 2, are a subset of those
proposed in (Passonneau, 1997). A constructed
example:

(6) Does <coref id=l ref=l ground=no>
Mimi </coref> like <coref id=2 ref=2
ground=no> detective stories </coref>

no no link, first extensional mention in the
discourse

id referential identity
isa member of a previously mentioned set
subs subset of a previously mentioned set
part part of a previously mentioned whole

Table 2: Types of links between referring expres-
sions.

Yes, <coref id=3 ref=l ground=yes>
she </coref> especially likes <coref
id=4 Tef—2 ground=subs> old-
fashioned whodunits </coref> .

Focus. Five types of foci are annotated, ad-
verbial, answer, contrast, correction, and infor-
mation foci. The first four types are common,
rather descriptive categories, while the last type
relies on the focus theory of (Vallduvi, 1992). It
was included in order to account for foci which
are not covered by the other categories. Al-
though they could have been annotated in terms
of Vallduvi's theory, more theory-independent
definitions were used in order to facilitate a re-
analysis in an arbitrary framework.

The definitions of all five types is purely se-
mantic. What our tags identify is potential fo-
cus positions, which allows us to examine in a
second step which of these foci were realized
prosodically. Thereby, we avoid circularity. The
first four focus types are tagged using f, with
the attribute typ for focus type. Focus "an-
chors" are specified by the tag (<fa>). An an-
chor is a constituent in the preceding discourse
which the focus refers to. For example, the po-
sition of the answer focus in wh-questions de-
pends on the information which is requested,
and the position of the adverbial focus depends
on the focus adverb, more precisely on the scope
of the focus adverb. Although anchors are not
likely to be accented, it might be interesting to
examine in which conditions they do receive an
accent. Furthermore, specifying the anchor also
facilitates constructing a semantic representa-
tion for the focussed consituent. The attribute
ref links foci and their anchors as well as the
elements of contrast and correction foci. Tab. 3
gives short definitions of these focus types and
their anchors. Some constructed examples:

(7) Does Anne prefer <fa typ=a ref=l>

tea </fa> or <fa typ=a ref=l> coffee
</fa> ? She prefers <f typ=a ref=l>
tea. </f> (answer focus)

(8) <f typ=cn ref=2> Anne </f> likes <f
typ=cn ref=3> tea </f>, <f typ=cn
ref=2> Ben </f> likes <f typ=cn
ref=3> coffee </f> . (contrast focus)

(9) Ben doesn't like <fa typ=cr ref=4> tea
</fa>, he prefers <f typ=cr ref=4>
coffee </f>. (correction focus)

(10) But sometimes, <fa typ=v ref=5> even
</fa> <f typ=v ref=5> Ben </f>
drinks tea. (adverb focus)

The fifth type of focus is intended to cover
foci which do not belong to one of the first four
types. We assume with (Heim, 1983) that there
is a file card for each discourse referent which
serves as a repository of information about that
referent. The constituents of an utterance which
are in focus specify information which is to be
added to a referent's file card. This concept of
focus is based on (Vallduvi, 1992). To distin-
guish this general type of focus from the other,
more specific ones, which it can be extended
to include, it is labelled information focus, tag:
<if>. There are no anchors for information
foci, since they are defined in relation to ab-
stract file cards. The attribute update specifies
how the file card to be updated is retrieved. To
avoid a proliferation of tags, information focus
is only annotated when none of the other focus
types is present.

(11) Ben doesn't like chocolate.
He <if update=p> doesn't drink milk,
</if> either, (information focus, up-
date via pronominal reference).

Dialogue Act. Dialogue acts are difficult to
elicit in read speech, because they depend on
the aim a speaker has in mind when producing a
certain utterance. When labelling dialogue, this
aim has to be reconstructed from the context.
For example, the utterance "that won't work"
can be assigned three different dialogue acts:

(12) A: Turn the screw now. B: That won't
work, negative feedback

(13) A: Can we meet on Saturday. B: That
won't work, rejection of suggestion

L

Type Focus Anchor
adverb scope of adverb adverb

correction correction consitutent to be corrected
contrast constituents to be contrasted not applicable

answer wh-question:
constituent corresponding to wh-phrase wh-constituent
selection question:
member of alternative set alternative set from question

Table 3. Focus types and their anchors.

Table 4: Types of dialogue acts, bold type: main type, underlined: subtype, italics: subsubtype. CAPS:
value of attribute typ

editors, Meaning, use, and interpretation of
language, pages 164-189. de Gruyter, Berlin.

B. Heuft, T. Portele, J. Kramer, H. Meyer,
M. Rauth, and G. Sonntag. 1995. Paramet-
ric description of FO contours in a prosodic
database. In Proc. Int. Congress of Phon.
Sci. Stockholm, pages 378-381.

MUC. 1996. Conference task definition V. 3.0.
Message Understanding Conference.

R. Passonneau. 1997. Summary of the coref-
erence group. In J. Carletta, N. Dahlback,
N. Reithinger, and M.A. Walter, edi-
tors, Standards for Dialoge Coding in Nat-
ural Language Processing, pages 12-21.
http://www.dag.uni-sb.de/ENG.

B. Santorini. 1990. Part-of-speech tagging
guidelines for the Penn Treebank Project.
Technical report, University of Pennsylvania.

S. Sekine. 1995. Apple Pie Parser. Tech-
nical report, Department of Com-
puter Science, New York University,
http://cs.nyu.edu/cs/projects/proteus/app/. .

D. Stock. 1992. P-TRA - eine Program- ''
miersprache zur phonetischen Transkription.
In W. Hess and W.F. Sendlmeier, edi-
tors, Beiträge zur angewandten und experi-
mentellen Phonetik, pages 222-231. Steiner,
Stuttgart.

C. Traber. 1995. SVOX: The Implementation
of a Text-to-Speech Sytem for German. Ph.D.
thesis, Institut für Technische Informatik und
Kommunikationsnetze, ETH Zurich.

E. Vallduvi'. 1992. The Informational Compo-
nent. Garland, New York.

C. Widera, T. Portele, and M. Wolters. 1997.
Prediction of word prominence. In Proc. Eu-

rospeech, pages 999-1002. Rhodes.
M. Wolters. 1997. A multiphone unit inventory

for the concatenative synthesis of American
English. VERBMOBIL Memo 120.

M. Wolters. 1998. Konventionen für linguis-
tisches Tagging. Technical report, Institut
für Kommunikationsforschung und Phonetik,
Universitat Bonn, ftp://asll.ikp.uni-
bonn.de/pub/mwo/dbaseanno.ps.gz.

feedback positive positive answer to question; previous utterance not
accepted/understood, FP

accept accept suggestion, ACC
negative negative answer to question, previous utterance not

accepted/understood, FN
reject reject suggestion, REJ

inform give information (default), INF
give reason give reason for sth. recently mentioned, GIR

request information ask for information, REQI
action request action, REQA
suggest request suggestion, REQS

suggest suggest

A Linguistically Interpreted Corpus of German Newspaper Text

Wojciech Skut, Thorsten Brants, Brigitte Krenn, Hans Uszkoreit
Universität des Saarlandes, Computational Linguistics

D-66041 Saarbrücken, Germany
{skut,brants,krenn,Uszkoreit}@coli.uni-sb.de

Abstract
In this paper, we report on the development of an anno-
tation scheme an annotation tools for unrestricted Ger-
man text. Our representation format is based on argu-
ment structure, but also permits the extraction of other
kinds of representations. We discuss several methodolog-
ical issues and the analysis of some phenomena. Addi-
tional focus is on the tools developed in our project and
their applications.

1 Introduction
Parts of a German newspaper corpus, the Frank-
furter Rundschau, have been annotated with syn-
tactic structure. The raw text has been taken from
the multilingual CD-ROM which has been produced
by the European Coding Initiative ECI, and is dis-
tributed by the Linguistic Data Consortium LDC.

The aim is to create a linguistically interpreted
text corpus, thus setting up a basis for corpus lin-
guistic research and statistics-based approaches for
German. We developed tools to facilitate annota-
tions. These tools are easily adaptable to other an-
notation schemes.

2 Corpora for Data-Driven NLP
An important pardigm shift is currently taking place
in linguistics and language technology. Purely in-
trospective research focussing on a limited number
of isolated phenomena is being replaced by a more
data-driven view of language. The growing impor-
tance of stochastic methods opens new avenues for
dealing with the wealth of phenomena found in real
texts, especially phenomena requiring a model of
preferences or degrees of grammaticality.

This new research paradigm requires very large
corpora annotated with different kinds of linguistic
information. Since the main objective here is rich,
transparent and consistent annotation rather than
putting forward hypotheses or explanatory claims,
the following requirements are often stressed:

'This is a revised version of the paper (Skut et al., 1997a).
tThe work has been carried out in the project NEGRA of

the Sonderforschungsbereich 378 'Kognitive ressourcenadap-
tive Prozesse' (resource adaptive cognitive processes) funded
by the Deutsche Forschungsgemeinschaft.

descriptivity: phenomena should be described
rather than explained as explanatory mecha-
nisms can be derived (induced) from the data.

data-drivenuess: the formalism should provide
means for representing all types of grammati-
cal constructions occurring in the corpus1.

theory-neutrality: the annotation format should
not be influenced by theory-internal consider-
ations. However, annotations should contain
enough information to permit the extraction of
theory-specific representations.

In addition, the architecture of the annotation
scheme should make it easy to refine the informa-
tion encoded, both in width (adding new description
levels) and depth (refining existing representations).
Thus a structured, multi-stratal organisation of the
representation formalism is desirable.

The representations themselves have to be easy
to determine on the basis of simple empirical tests,
which is crucial for the consistency and a reasonable
speed of annotation.

3 Why Tectogrammatical Structure?
In the data-driven approach, the choice of a par-
ticular representation formalism is an engineering
problem rather than a matter of 'adequacy'. More
important is the theory-independence and reusabil-
ity of linguistic knowledge, i.e., the recoverability of
theory/application specific representations, which in
the area of NL syntax fall into two classes:

Phenogrammatical structure: the structure re-
flecting surface order, e.g. constituent struc-
ture or topological models of surface syntax, cf.
(Ahrenberg, 1990), (Reape, 1994).

Tectogrammatical representations: predicate-
argument structures reflecting lexical argument
structure and providing a guide for assembling

1This is what distinguishes corpora used for grammar in-
duction from other collections of language data. For instance,
so-called test suites (cf. (Lehmann et al., 1996)) consist of
typical instances of selected phenomena and thus focus on a
subset of real-world language.

meanings. This level is present in almost every
theory: D-structure (GB), f-structure (LFG) or
argument structure (HPSG). A theory based
mainly on tectogrammatical notions is depen-
dency grammar, cf. (Tesniere, 1959).

As annotating both structures separately presents
substantial effort, it is better to recover constituent
structure automatically from an argument structure
treebank, or vice versa. Both alternatives are dis-
cussed in the following sections.

3.1 Annotating Constituent Structure
Phenogrammatical annotations require an addi-
tional mechanism encoding tectogrammatical struc-
ture, e.g., trace-filler dependencies representing
discontinuous constituents in a context-free con-
stituent structure (cf. (Marcus, Santorini, and
Marcinkiewicz, 1994), (Sampson, 1995)). A major
drawback for annotation is that such a hybrid for-
malism renders the structure less transparent, as is
the phrase-structure representation of sentence (1):

(1) daran wird ihn Anna erkennen, dass er weint
at-it will him Anna recognise that he cries
'Anna will recognise him at his cry'

Furthermore, the descriptivity requirement could
be difficult to meet since constituency has been
used as an explanatory device for several phenomena
(binding, quantifier scope, focus projection).

The above remarks carry over to other models of
phenogrammatical structure, e.g. topological fields,
cf. (Bech, 1955). A sample structure is given below2

Here, as well, topological information is insuffi-
cient to express the underlying tectogrammatical
structure (e.g., the attachment of the extraposed
that-clause)3. Thus the field model can be viewed

2LSB, RSB stand for left and right sentence bracket.
3Even annotating grammatical functions is not enough as

long as we do not explicitly encode their tectogrammatical
attachment of such functions.

as a non-standard phrase-structure grammar which
needs additional tectogrammatical annotations.

3.2 Argument Structure Annotations

An alternative to annotating surface structure is to
directly specify the tectogrammatical structure, as
shown in the following figure:

This encoding has several advantages. Local and
non-local dependencies are represented in a uniform
way. Discontinuity does not influence the hierarchi-
cal structure, so the latter can be determined on
the basis of lexical subcategorisation requirements,
agreement and some semantic information.

An important advantage of tectogrammatical
structure is its proximity to semantics. This kind
of representations is also more theory-neutral since
most differences between syntactic theories occur at
the phenogrammatical level, the tectogrammatical
structures being fairly similar.

Furthermore, a constituent tree can be recov-
ered from a tectogrammatical structure. Thus tec-
togrammatical representations provide a uniform en-
coding of information for which otherwise both con-
stituent trees and trace-filler annotations are needed.

Apart from the work reported in this paper, tec-
togrammatical annotations have been successfully
used in the TSNLP project to construct a language
competence database, cf. (Lehmann et al., 1996).

3.3 Suitability for German

Further advantages of tectogrammatical annotations
have to do with the fairly weak constraints on Ger-
man word order, resulting in a good deal of discon-
tinuous constituency. This feature makes it diffi-
cult to come up with a precise notion of constituent
structure. In the effect, different kinds of structures
are proposed for German, the criteria being often
theory-internal4.

In addition, phrase-structure annotations aug-
mented with the many trace-filler co-references
would lack the transparency desirable for ensuring
the consistency of annotation.

4Flat or binary right-recursive structures, not to mention
the status of the head in verb-initial, verb-second and verb-
final clauses, cf. (Netter, 1992), (Kasper, 1994), (Nerbonne,
1994), (Pollard, 1996).

4 Methodology
The standard methodology of determining con-
stituent structure (e.g., the Vorfeld test) does not
carry over to tectogrammatical representations, at
least not in all its aspects. The following sections
are thus concerned with methodological issues.

4.1 Structures vs. Labels
The first question to be answered here is how much
information has to be encoded structurally. Rich
structures usually introduce high spurious ambigu-
ity potential, while flat representations (e.g., cate-
gory or function labels) are significantly easier to
manipulate (alteration, refinement, etc.).

Thus it is a good strategy to use rather simple
structures and express more information by labels.

4.2 Structural Representations
As already mentioned, tectogrammatical structures
are often thought of in terms of dependency grammar
(DG, cf. (Hudson, 1984), (Hellwig, 1988)), which
might suggest using conventional dependency trees
(stemmas) as our representation format. However,
this would impose a number of restrictions that fol-
low from the theoretical assumptions of DG. It is
mainly the DG notion of heads that creates prob-
lems for a flexible and maximally theory-neutral ap-
proach. In a conventional dependency tree, heads
have to be unique, present and of lexical status, re-
quirements other theories might not agree with.

That is why we prefer a representation format in
which heads are distinguished outside the structural
component, as shown in the figure below, sentence
(2)5:

(2) Bäcker wollte er nie werden
baker wanted he never become
'he never wanted to become a baker'

The tree encodes three kinds of information:

tectogrammatical structure: trees with possibly
crossing branches (no non-tangling condition);

syntactic category: node labels and part-of-
speech tags (Stuttgart-Tubingen Tagset, cf.
(Thielen and Schiller, 1995)).

functional annotations: edge labels.

4.3 Classification of Labels

Compared to the fairly simple structures employed
by our annotation scheme, the functional annota-
tions encode a great deal of linguistic information.
We have already stressed that the notion head is dis-
tinguished at this level. Accordingly, it seems to be
the appropriate stratum to encode the differences
between different classes of dependencies.

For instance, most linguistic theories distinguish
between complements and adjuncts. Unfortunately,
the theories do not agree on the criteria for drawing
the line between the two classes of dependents. To
this date there is no single combination of criteria
such as category, morphological marking, optional-
ity, uniqueness of role filling, thematic role or seman-
tic properties that can be turned into a transparent
operational distinction linguists of different schools
would subscribe to.

In our scheme, we try to stay away from a theo-
retical commitment concerning borderline decisions.
The distinction between functional labels such as SB
and DA - standing for traditional grammatical func-
tions - on the one hand and phrases labelled MO on
the other should not be interpreted as a classification
into complements and adjuncts. For the time being,
functional labels different from MO are assigned only
if the grammatical function of the phrase can easily
be detected on the basis of the linguistic data. MO
is used, e.g., to label adjuncts as well as preposi-
tional objects. Likewise the label OC is used for
easily recognisable clausal complements. Other em-
bedded sentences depending on the verb are labelled
as MO6. This is consistent with our philosophy of
stepwise refinement. We are in the process of design-
ing a more fine-grained classification of functional
labels together with testable criteria for assigning
them. This classification will not contain a distinc-
tion between complements and adjuncts. Thus the
locative phrase m Berlin in the sentence Peter wohnt
in Berlin (Peter lives in Berlin) will just be marked
as a locative MO with the category PP. As linguis-
tic theories disagree on the question, we will not ask
the annotators to decide whether this phrase is a
complement of the verb.

This strategy differs from the one pursued by the
creators of the Penn Treebank. There the difference
between complements and adjuncts is encoded in the

*•"!

5Edge labels- HD head, SB subject, OC clausal comple-
ment, PD predicative, MO modifier. Note that crossing edges
indicate discontinuous constituency.

6MO is inspired by the usage of the term 'modifier' in tra-
ditional structuralist linguistics where some authors (Bloom-
field, 1933) use it for adjuncts and others also for complements
(Trubetzkoy, 1939).

hierarchical structure. Verbal complements are en-
coded as siblings of the verb whereas adjuncts are
adjoined at a higher level. In a case of doubt, the
annotators are asked to select adjunction. We con-
sider this structural encoding less suitable for refine-
ment than a hierarchy of functional labels in which
MO can be further specified by sublabels.

5 Annotation Tools
The development of linguistically interpreted cor-
pora presents a laborious and time-consuming task.
In order to make the annotation process more effi-
cient, extra effort has been put into the development
of the annotation software.

5.1 Structural Annotation

The annotation tools are an integrated software
package that communicates with the user via a com-
fortable graphical interface (Plaehn, 1998). Both
keyboard and mouse input are supported, the struc-
ture being annotated is shown on the screen as a
tree. The tools can be employed for the annotation
of different kinds of structures, ranging from our
rudimentary predicate-argument trees to standard
phrase structure annotations with trace-filler depen-
decies, cf. (Marcus, Santorini, and Marcinkiewicz,
1994). A screen dump of the annotation tool is
shown in figure 1.

The kernel part of the annotation tool supports
purely manual annotation. Further modules permit
interaction with an external stochastic or symbolic
parser. Thus, the tools are not dependent on a par-
ticular automation method. Also the degree of au-
tomation can vary from part-of-speech tagging and
recognition of grammatical functions to full parsing.

In our project, we rely on an interactive anno-
tation mode in which the annotator specifies rather
small annotation increments that are then processed
by a stochastic parser. The output of the parser is
immediately displayed and the annotator edits it if
necessary. Currently, the annotator's task is to spec-
ify substructures containing up to 20 — 30 words;
their internal structure as well as the labels for gram-
matical functions and categories are assigned by the
parser. The precision of the parser is about 96%
for the assignment of labels and 90% for partial
structures (Brants and Skut, 1998; Skut and Brants,
1998a; Skut and Brants, 1998b).

Another part of our software package is the corpus
search tool. It is very helpful for both linguistic in-
vestigations and detecting annotation errors. As for
this latter application, we have also developed pro-
grams that compare annotations. Each sentence is
annotated independently by two annotators. During
the comparison, inconsistencies are highlighted, and
the annotators have to correct errors and/or agree
on one reading.

In addition to the treebank project, the tools are
currently used in the Verbmobil project to annotate
transliterated spoken dialogues in English and Ger-
man (Stegmann and Hinrichs, 1998), in the FLAG
project to annotate spelling errors in German news-
group texts, and it is planned to employ them in
the DIET project to build a linguistic competence
database (Netter et al., 1998).

5.2 Automation
The graphical surface communicates with several
separate programs to perform the task of semi-
automatic annotation. Currently, these separate
programs are a part-of-speech tagger, a tagger for
grammatical functions and phrasal categories and
an NP/PP chunker.

The part-of-speech tagger is a trigram part-of-
speech tagger that is trainable for a wide variety of
languages and tagsets (Brants, 1996). We trained it
on all previously annotated material in our corpus,
using the Stuttgart-Tbingen tagset, and it currently
achieves an accuracy of 96% on new, unseen text.

In our project, annotation is an interactive task.
After the annotator has specified a partial structure,
the tool automatically inserts all the labels into the
structure, i.e. the grammatical functions (edge la-
bels) and phrasal categories (node labels). This task
is performed by a tagger for grammatical functions
and phrasal categories (Brants, Skut, and Krenn,
1997). The underlying mechanism is very similar to
part of speech tagging. There, states of a Markov
model represent tags, and outputs represent words.
For tagging grammatical functions, states represent
grammatical functions, and outputs represent termi-
nal and non-terminal tags. Thus, tagging is applied
to the next higher level.

Grammatical functions have a different distribu-
tion within each type of phrase, so each type of
phrase is modeled by a different Markov model.
If the type of phrase is known, the corresponding
model is used to assign grammatical functions. If
the type is not known, all models run in parallel
and the model assigning the highest probability is
used. This determines at the same time the phrasal
category. The tagger is also trained on all previous
material of the corpus and achieves 97% accuracy
for assigning phrasal categories, and 96% accuracy
for assigning grammatical functions.

When tagging for part-of-speech, grammatical
functions, and phrasal categories, we additionally
calculate the second best assignment and its proba-
bility. This is used to estimate the reliability of the
first assignment. If the probability of the alterna-
tive is close to that of the best assignment, the first
choice is regarded as unreliable, wheres it is reliable
if the alternative has a much lower probability. Reli-
able and unreliable are distinguished by a threshold
on the distance of the best and second best assing-

Figure 1: Screen dump of the annotation tool

ment. The annotation tool simply inserts all reliable
labels and asks the human annotator for confirma-
tion in the unreliable cases.

The next level of automation is concerned with
the structure of NPs and PPs which can be fairly
complex in German (see figure 2). As shown in
(Brants and Skut, 1998), recognition of complete
NP/PP structures can also efficiently performed with
Markov models, encoding relative structures, i.e.
stating that a word is attached lower, higher or at
the same level as its predecessor. The annotator no
longer has to build the structure level by level, but
marks the boundaries of NPs and PPs, and the in-
ternal structures is generated automatically. This
approach has an accuracy of 85 - 90%, depending
on the exact task.

6 Applications of the Corpus
The corpus provides training and test material for
stochastic approaches to natural language process-
ing. It is also a valuable source of data for theoretical
linguistic investigations, especially into the relation

of competence grammar and language usage.

6.1 Statistical NLP

As described in section 5, statistical annotation
methods have been developed and implemented. In
our bootstrapping approach, the accuracy of the
models is improved and functionality increases as the
annotated corpus grows, thus leading to completely
automatic NLP methods. For instance, the chunk
tagger initially designed to support the annotator
is used for the recognition of major phrases in un-
restricted text pre-tagged with part-of-speech infor-
mation (Skut and Brants, 1998a; Skut and Brants,
1998b).

Apart from these applications, the corpus is al-
ready used in other projects to train rule-based and
statistical taggers and parsers.

6.2 Corpus Linguistic Investigations

The treebank has been successfully used for corpus-
linguistic investigations. In this regard, two major
classes of applications have arisen so far. Firstly,

Figure 2: Example of a complex N P.

a search program enables the user to find examples
of interesting linguistic constructions, which is espe-
cially useful for testing predictions made by linguis-
tic theories. It has also proved to be a great help in
teaching linguistics.

The second, more ambitious class of applications
consists in statistical evaluation of the corpus data.
In a study on relative clause extrapostion in Ger-
man (Uszkoreit et al., 98), we were able to verify
the predictions made by the performance theory of
language formulated by Hawkins (1994). The cor-
pus data made it possible to measure the influence
of the factors heaviness and distance on the extra-
position of relative clauses. The results of these in-
vestigations are also supported by psycholinguistic
experiments.

For investigations on statistics-based collocation
extraction, various portions of the Frankfurter
Rundschau Corpus have been automatically anno-
tated with parts-of-speech and phrase chunks like
NP, PP, AP. The part-of-speech tagger (Brants,
1996) and the chunker (Skut and Brants, 1998b)
have been trained on the annotated and hand-
corrected corpus. Although error rates of 10 to
15 % occur at the stage of chunking, collocation
extraction benefits from structurally annotated cor-
pora because of the accessibility of syntactic infor-
mation (1) accuracy of frequency counts increases,
i.e. more syntactically plausible collocation candi-
dates are found, and (2) grammatical restrictions
on collocations can mostly be automatically derived
from the corpus, cf. (Krenn, 1998b).

Syntactically preprocessed corpora are also a valu-
able source for insights into actual realisations of col-
locations. This is particularly important in the case
of partially flexible collocations. In order to pro-
vide material for investigations into collocations as

on the one hand grammatically flexible and on the
other hand lexically fixed constructions, collocation
examples found in syntactically annotated corpora
are stored in a database together with competence-
based analyses, cf. (Krenn, 1998a).

7 Conclusions
The increasing importance of data-oriented NLP re-
quires the development of a specific methodology,
partly different from the generative paradigm which
has dominated linguistics for nearly 40 years. The
importance of consistent and efficient encoding of
linguistic knowledge has absolute priority in this new
approach, and thus we have argued for easing the
burden of explanatory claims, which has proved to
be a severe constraint on linguistic formalism.

We have presented a number of linguistic anal-
yses used in our treebank and examples of the in-
teraction of different syntactic phenomena. We also
have shown how the particular representation cho-
sen enables the derivation of other, theory specific
representations. Finally we have given examples for
applications of the corpus in statistics-based NLP
and corpus linguistics. Our claims are backed by
an annotated corpus of currently about 12,000 sen-
tences, all of which have been annotated twice in
order to ensure consistency.

References
Ahrenberg, L. 1990. A grammar combining phrase

structure and field structure. In Proceedings of COL-
ING '90.

Bech, G. 1955. Studien über das deutsche Verbum in-
finitum. Max Niemeyer Verlag, Tubingen.

Bloomfield, L. 1933. Language. New York.
Brants, Thorsten. 1996. Tnt - a statistical part-of-

speech tagger. Technical report, Universität des Saar-
landes, Computational Linguistics.

Brants, Thorsten and Wojciech Skut. 1998. Automation
of treebank annotation. In Proceedings of NeMLaP-3,
Sydney, Australia.

Brants, Thorsten, Wojciech Skut, and Brigitte Krenn.
1997. Tagging grammatical functions. In Proceedings
of EMNLP-97, Providence, HI, USA.

Hawkins, John A. 1994. A performance theory of order
and constituency. Cambridge Univ. Press, Cambridge
Studies in Linguistics 73.

Hellwig, P. 1988. Chart parsing according to the slot
and filler principle. In COLING 88, pages 242-244.

Hudson, Richard. 1984. Word Grammar. Basil Black-
well Ltd.

Kasper, R. 1994. Adjuncts in the mittelfeld. In J. Ner-
bonne, K. Netter, and C. Pollard, editors, German in
HPSG. CSLI, Stanford.

Krenn, Brigitte. 1998a. A Representation Scheme and
Database for German Support-Verb Constructions. In
Proceedings of KONVENS '98, Bonn, Germany.

Krenn, Brigitte. 1998b. Acquisition of Phraseological
Units from Linguistically Interpreted Corpora. A Case
Study on German PP-Verb Collocations. In Proceed-
ings of the 3rd International Symposium on Phraseol-
ogy, Stuttgart, Germany.

Lehmann, Sabine, Stephan Oepen, Sylvie Regnier-Prost,
Klaus Netter, Veronika Lux, Judith Klein, Kirsten
Falkedal, Frederik Fouvry, Dominique Estival, Eva
Dauphin, Herve Compagnion, Judith Baur, Lorna
Balkan, and Doug Arnold. 1996. TSNLP — Test Suites
for Natural Language Processing. In Proceedings of
COLING 1996, Kopenhagen.

Marcus, Mitchell, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated cor-
pus of English: the Penn Treebank. In Susan Arm-
strong, editor, Using Large Corpora. MIT Press.

Nerbonne, John. 1994. Partial verb phrases and spu-
rious ambiguities. In John Nerbonne, Klaus Netter,
and Carl Pollard, editors, German in Head-Driven
Phrase Structure Grammar, number 46 in Lecture
Notes. CSLI Publications, Stanford University, pages
109-150.

Netter, Klaus. 1992. On Non-Head Non-Movement. In
Giinter Gorz, editor, KONVENS '92, Reihe Infor-
matik aktuell. Springer-Verlag, Berlin, pages 218-227.

Netter et al., Klaus. 1998. DiET - diagnostic and eval-
uation tools for natural language processi ng applica-
tions. In Proceedings of LERC-98, Granada, Spain.

Plaehn, Oliver. 1998. Annotate — benutzerhandbuch.
Technical report, Universitat des Saarlandes, Com-
puterlinguistik, Saarbriicken.

Pollard, Carl. 1996. On head nonmovement. In Arthur
Horck and Wietske Sijtsma, editors, Discontinuous
Constituency. Mouton de Gruyter.

Reape, Mike. 1994. Domain union and word order vari-
ation in German. In John Nerbonne, Klaus Netter,
and Carl Pollard, editors, German in Head-Driven
Phrase Structure Grammar, number 46 in Lecture
Notes. CSLI Publications, Stanford University, pages
151-197.

Sampson, Geoffrey. 1995. English for the Computer.
Oxford University Press, Oxford.

Skut, Wojciech and Thorsten Brants. 1998a. A Max-
imum Entropy Partial Parser for Unrestricted Text.
In 6th Workshop on Very Large Corpora, Montreal,
Canada, August.

Skut, Wojciech and Thorsten Brants. 1998b. Chunk tag-
ger, stochastic recognition of noun phrases. In ESSLI
Workshop on Automated Acquisition of Syntax and
Parsing, Saarbriicken, Germany, August.

Skut, Wojciech, Thorsten Brants, Brigitte Krenn, and
Hans Uszkoreit. 1997a. Annotating unrestricted ger-
man text. In DGFS-97.

Skut, Wojciech, Brigitte Krenn, Thorsten Brants, and
Hans Uszkoreit. 1997b. An annotation scheme for
free word order languages. In Proceedings of ANLP-
97, Washington, DC.

Stegmann, Rosymary and Erhard Hinrichs. 1998. Style-
book for the german treebank in verbmobil. Verbmo-
bil report, Seminar für Sprachwissenschaft, Univer-
sität Tubingen, Germany.

Tesniere, L. 1959. Elements de Syntaxe Structurale.
Klincksieck, Paris.

Thielen, Christine and Anne Schiller. 1995. Ein kleines
und erweitertes Tagset furs Deutsche. In Tagungs-
berichte des Arbeitstreffens Lexikon + Text 17./18.
Februar 1994, Schlofl Hohentubingen. Lexicographica
Series Maior, Tubingen. Niemeyer.

Trubetzkoy, N. 1939. Le rapport entre le determine, le
determinant et ledefmi. In Melanges de linguistique,
offers a Charles Bally. Geneva.

Uszkoreit, Hans, Thorsten Brants, Denys Duchier,
Brigitte Krenn, Lars Konieczny, Stephan Oepen, and
Wojciech Skut. 98. Studien zur performanzorien-
tierten Linguisitk. Aspekte der Relativsa tzextrapo-
sition im Deutschen. Kognitionswissenschaft.

Large Scale Dialogue Annotation in VERBMOBIL

Norbert Reithinger and Michael Kipp (or vice versa)
DFKI GmbH, Stuhlsatzenhausweg 3, D-66123 Saarbrücken

e-mail: {reithinger, kipp}@dfki.de

Abstract
In this paper we present an overview of the
approach to dialogue related annotations in
VERBMOBIL. We introduce the information
annotated in dialogues of the VERBMOBIL
corpus and present the rationale behind the
use of the open partitur format for annota-
tions. A tool to facilitate the task of the
annotators was developed that supports two
dialogue related annotation levels. Finally,
we show our approach to measure the inter-
coder reliability.

1 Introduction to the
Environment and Tasks

Large scale language processing systems like
VERBMOBIL, a speech-to-speech translation
system in the domain of time-scheduling
(Bub et al., 1997), heavily rely on cor-
pus data that can be used for the train-
ing and test of knowledge sources and algo-
rithms. For VERBMOBIL, currently about
20 CDROMs with German, English, and
Japanese dialogues are available1, contain-
ing both speech signals and translitera-
tions. The transliterations of the signal are
more than mere orthographic transcriptions.
They also cover phenomena like dialectal pe-
culiarities, a symbolic transliteration of all
sorts of noises contained in the audio signal,
and word breaks.

One of the most important units of pro-
cessing for the dialogue module are so-called
dialogue acts like ACCEPT, REJECT, or
SUGGEST that characterise the core inten-

tion of an utterance.2 Currently, we use 30
acts that are structured hierarchically. Early
during the development of the dialogue mod-
ule of VERBMOBIL (Alexandersson et al.,
1997b), we noticed that the determination
and processing of acts has to be based on
real data. Therefore, we started to tag the
transliterated dialogues of the corpus with
dialogue acts.

In this paper, we first describe the format
of the dialogues and the annotation level.
We then present the tool we developed for
annotation and finally show how we take
care of the coder's reliability. We close with
a look into the future.

2 Annotations and the
Partitur Format

When we started annotating the dialogues,
we edited the original transliteration files.
We added dialogue act tags directly af-
ter the utterance using an ad-hoc annota-
tion markup, supported by some EMACS
macros. The transliterations looked like this:

ja , guten <!1 gu'n> Tag , Herr
Metze . <Ger"ausch> <#Klopfen>
®(GREET AB) <"ahm> <#> <Ger"ausch>
wir sollen hier- einen <!1 ein'>
Terrain vereinbaren . <Ger"ausch>
<A> 8 UNIT AB)

where annotation consisted of a special char-
acter, the dialogue act and the speaker direc-
tion in brackets. This format was OK as long
as there was just one level of markup (i.e.

1http://www.phonetik.uni-muenchen.de/
Bas/BasKorporadeu.html

2 We currently use the third version of the di-
alogue acts as presented in (Alexandersson et al.,
1997a).

dialogue acts) and one annotator involved.
However, as soon as we added another level
of markup3, a pandora's box of problems was
opened. E.g. version problems appeared be-
tween different files annotated by different
people. Version control tools alone cannot
cope with this problems easily, because both
the transliterations and the annotations can
be changed by different persons and at dif-
ferent institutions and the tools available tell
you where there are changes, but not how to
integrate these changes.

As a remedy, we first considered the
use of available markup-tools like ALEM-
BIC (Day, 1996) which provides for a struc-
tured markup and supports annotation. But
it couldn't solve one of the major prob-
lems: the data collection agency, Bavarian
Archive for Speech Signals (BAS), updates
the transliterations in the master files reg-
ularly to correct errors, and these changes
couldn't be merged easily with our anno-
tated files since we changed the original text
with the markup text.

The solution was to move to an extensible
format BAS provides, the so-called Partitur
format. In this format all levels of descrip-
tion are independent but time aligned like
the single parts of a score.

It is an open format that contains inde-
pendent descriptions of as many different
levels of the speech signal as necessary, for
instance orthography, canonical transcript,
phonology, phonetics, prosody, dialog acts,
or POS-tags. Symbolic links between the
independent levels allow logical assignments
related to the linear flow of language. These
links are based on the word units of the ut-
terance and are realized as numbers.4

A part of the partitur for the above men-
tioned sentence is show in figure 1. At the
beginning it contains some bookkeeping in-
formation, followed by the transliteration,
the orthographic transcription, the canonic
phoneme representation, and finally by the

dialogue act.

LHD:
REP:
SNB:
SAM:
SBF:
SSB:
NCH:
SPN:
LED:
TR2:
TR2:
TR2:
TR2:
TR2:
TR2:
TR2:
TR2:
TR2:
TR2:
TR2:
TR2:
ORT:
ORT:
ORT:
ORT:
ORT:
ORT:
ORT:
ORT:
ORT:
ORT:
ORT:
ORT:
KAN:
KAN:
KAN:
KAN:
KAN:
KAN:
KAN:
KAN:
KAN:
KAN:
KAN:
KAN:
DAS:
DAS:

Partitur 1.2.3
Muenchen
2
16000
01
16
1
AAJ

0 ja ,
1 guten <! 1 gu'n>
2 Tag ,
3 Herr
4 'Metze . <Ger"ausch> <#Klopfen>
5 <"ahm> <#> <Ger"ausch>
6 wir
7 sollen
8 hier
9 einen <!1 ein'>
10 Terrain
11 vereinbaren . <Ger"ausch> <A>
0 ja
1 guten
2 Tag
3 Herr
4 Metze
5 <"ahm>
6 wir
7 sollen
8 hier
9 einen
10 Termin
11 vereinbaren
0 j'a:
1 g'u:tSn
2 t'a:k
3 h'E6
4 m"EtsQ
5 QE:m
6 vi:6+
7 z01Qn+
8 h'i:6
9 QaInQn+
10 tE6m'i:n
11 f6Q'aInba:r@n
0,1,2,3,4 @(GREET AB)
5,6,7,8,9,10,11 @(INIT AB)

3 We needed to mark whole turns with a special
turn-related set of tags

4See http://www.phonetik.uni-muenchen.de/
Bas/BasFormatseng.html#Partitur for a detailed
description.

Figure 1: The partitur-file for the example

As can be seen, each level of description
is marked by a key, e.g. TR2 for transliter-
ation, ORT for orthographic transcription or
DAS for dialogue acts, followed by the infor-
mation for this level. The DAS level shows

the link between the dialogue act with the
basic unit indices, that are the canonic KAN
units.

Since the KAN track is guaranteed to al-
ways stay the same and our own annotations
do refer to the KAN layer, changes in the TR2
or ORT layer (by BAS) do not affect our an-
notation. On the other hand, our annotation
never in any way modifies other layers (like
TR2 or ORT) so that partitur files annotated
at different institutes with other layers of in-
formation can be compared and merged with
other files easily and consistently. Further-
more, new levels needed, e.g. for turn infor-
mation, could be added swiftly due to the
open specification.

In contrast to the human readable textual
transliterations, the partitur is not intended
to be worked on with text editors. Since the
annotators are only moderately computer
literate, we developed a tool to ease the pain
of these poor guys.

3 Colourful Tools for
Annotation

Human annotation of the training data is a
tedious task. Since human annotators have
to read and tag thousands of utterances, mis-
takes of syntactical and semantic nature are
commonplace. Syntactic errors occur even
when using tools, since annotators tend to
sidestep the tools sometimes, e.g. they use
other means to just quickly correct or add a
tag with their favourite editor, even if they
are told not to do so. Semantic mistakes
stem from documentation of the current dia-
logue act definitions that cover most, but not
all phenomena, due to the fact that language
is - as we all know - very flexible. Also,
over the time of the annotation the guide-
lines dynamically change through the feed-
back of annotators. This source of problems
can only be reduced by reliability checks on a
regular basis where disagreement in annota-
tion is analysed in detail (see next section).
The other important source of mistakes is
the lack of technical support which should
provide the annotator with sufficient means
to concentrate on the semantic aspect of the

annotation task.
What we learnt from these errors is that

an annotation tool should draw a clear line
between annotator and data. In one direc-
tion data should visualised in a way that
suits the annotator. In the other direction
manipulation of data must only be allowed
within very limited bounds. The original
base document should not be accessible to
the annotators directly.

The obvious way of doing this is by visual-
ising only task-relevant parts of the tool's in-
ternal dialogue representation and open one
level to manipulation. Writing back to the
original partitur file then changes not the
transliteration but only the level under con-
sideration, e.g. the DAS level when annotat-
ing dialogue acts.

Our tool, named ANNOTAG, reads par-
titur files of one dialogue, visualises the
transliteration of the turns and presents the
annotator buttons for the various dialogue
acts (see fig. 2). Human annotators are now
to partition these turns into utterances by
labelling a part of the text with one or more
dialogue act(s). There maybe more than one
illocutionary act performed in one utterance
which forces us to either define a new di-
alogue act whose definition covers the phe-
nomenon or to label two or more of the old
ones (in the latter case we speak of a multiple
dialogue act). The definition of our domain-
specific dialogue acts should keep the num-
ber of multiple dialogue acts low.

Segmentation and annotation are done in
a single step. We are convinced that a sep-
aration of these two steps is both unnec-
essary and impractical. The decision that
there is a dialogue act boundary and the de-
cision which dialogue act to annotate can be
made in parallel (and should be made in par-
allel since our manual actually makes use of
the dialogue act definition for segmentation
(Alexandersson et al., 1997a)). Splitting it
simply requires the annotator to look at the
same data twice and artificially split the rea-
soning. Also, currently some people (most
of them do not annotate large corpora) ar-
gue that you must listen to the speech data
in order to be able to segment properly. We

Figure 2: ANNOTAG annotation tool in dialogue act mode

also think this might help in some rare cases,
but in general it is not necessary. For exam-
ple, pauses are transliterated, so the anno-
tators have access to this information, too.
But pauses are no criterion for segmentation,
since in spoken language pauses do not tell
you that much about proper segmentation.
Personal communication with other annota-
tion project like Switchboard-DAMSL and
MAPTASK shows that all other large scale
annotation projects also do not separate the
two steps of segmentation and annotation.

Annotation with ANNOTAG works like
this: Mark the text by clicking on a word
of a turn. ANNOTAG then highlights all the
text beginning at the preceding segment bor-
der and ending in this word. A click on one
of the dialogue act buttons inserts the cor-
responding tag into the text. Furthermore,
we can remove tags (the segments left and
right of the tag are merged to one segment),
undo the last action and add more tags to an
existing tag (making it a multiple dialogue
act). To improve readability, the text can
be filtered before being displayed. Further-

more, dialogue act buttons are colour-coded
according to their position in the hierarchy
and unknown dialogue acts in the text are
marked red.

So far we have made true our twofold
wishes: first, to provide the annotator with
a comfortable, easy to use surface that fil-
ters out all technical details and discomforts;
second, to keep the human user in safe dis-
tance from the valuable original data. What
remains are questions of extendibility. The
tool is wholly written in Tcl/Tk (plus the
Tix5 extension) and can easily be manipu-
lated. E.g. to change the set of dialogue acts
we only need to change a list of strings. Re-
cently, we added a feature enabling the user
to annotate turns with turn classes which are
written to a particular level in the partitur
file format.

Additionally, we developed tools that were
integrated to serve our special needs. For
example, when we revised the set of dia-
logue acts we used a facility which maps all
dialogue acts from one one version to an-

5http://www.xpi.com/tix/

other. There is also a conversion tool that
allows to use annotated files in old plain
text transliteration format and maps them
to the partitur format. The fact that both
formats do not match perfectly (there are
words omitted, different turn segmentation
etc.) called for a semi-automatic mecha-
nism, showing conversion suggestions for ap-
proval/dismissal. We successfully converted
more than 400 dialogues this way. Further
tools allow inspection of original files, extrac-
tion of special information, or conversion of
dialogues to format.

4 or not: Comparing
Annotators

To be useful for training and test purposes
in a speech processing system our hand-
annotated dialogues have to fulfil very high
quality standards.

In order to assess this we carried out a
number of reliability studies for the segmen-
tation and annotation of the data.

To measure the agreement between
feature-attributed data sets the coefficient
is of outstanding importance (for details see
(Carletta, 1996)). In the field of content
analysis a K value > 0.8 is considered good
reliability for the correlation between two
variables, while a K of 0.67< K <0.8 still
allows tentative conclusions to be drawn.

For measuring inter-coder replicability of
dialogue act coding we used 10 dialogues
which altogether consist of 170 utterances
and had two human coders annotate this
data. The utterance labels for the two coders
coincide in as many as 85.30 % of the cases.
The K value of 0.8261 shows that dialogue
acts can be coded quite reliably.

For testing the stability of dialogue acts
we asked one coder to relabel five dia-
logues which altogether contain 191 utter-
ances. The K coefficient for this study is
0.8430 with an overall agreement of 85.86%.

Currently, we annotate German,
Japanese, and English dialogues. The
annotators are mostly students of these
nationalities, with or without linguistic
background. They are trained on a set

of training dialogues, where the training
consist, amongst others, in annotating a set
of test dialogues that are compared to the
annotation of the other annotators who also
annotated this set. Proceeding this way, we
can identify the overall agreement of the
annotators and can identify classes where
an annotator seems to misunderstand the
definitions of the manual.

One major use of the dialogue act anno-
tation is to train a statistical dialogue act
recogniser (Reithinger and Klesen, 1997). To
test the quality of the system, we also mea-
sure the K coefficient between the annota-
tions from humans and the program. For a
test set of 51 German dialogues, we achieved
agreement in 63.48% of the cases, and a K
value of 0.58, using 215 dialogues for train-
ing, which of course did not contain the
tested dialogues. For 18 Japanese dialogues
the agreement was 71.65% with a K value of
0.68, using 81 dialogues for training.

5 Future Work

At the time we write these lines, and using
the approach and the tools presented above,
we have about 830 German, English, and
Japanese dialogues annotated with dialogue
acts, and some 100 with turn classes. The
partitur format demonstrates its power in
daily use, since it can easily be processed for
different purposes with common UNIX tools
like sed or perl.

In the future, besides annotating more
dialogues with dialogue act and turn class
information, we will extend our reliability
studies to detect and repair possible weak-
nesses in the definition and description of
the tags. Also, we will annotate the preposi-
tional content of the utterances using a do-
main description language.

As we now have a pool of annotated di-
alogues we will use them to bootstrap an
automatic annotator which will propose the
human annotator the most likely tag for a
unit to be annotated. We hope that we fi-
nally will get a (semi-)automatic annotator.

References
Jan Alexandersson, Bianka Buschbeck-Wolf,

Tsutomu Fujinami, Elisabeth Maier, Nor-
bert Reithinger, Birte Schmitz, and
Melanie Siegel. 1997a. Dialogue Acts in
VERBMOBIL-2. Technical Report 204,
DFKI SaarbrückenUniversitat Stuttgart,
Technische Universität Berlin, Universität
des Saarlandes.

Jan Alexandersson, Norbert Reithinger, and
Elisabeth Maier. 1997b. Insights into
the Dialogue Processing of VERBMOBIL.
In Proceedings of the Fifth Conference
on Applied Natural Language Processing,
ANLP '97, pages 33-40, Washington, DC.

Thomas Bub, Wolfgang Wahlster, and Alex
Waibel. 1997. Verbmobil: The combina-
tion of deep and shallow processing for
spontaneous speech translation. In Pro-
ceedings of ICASSP-97, pages 71-74, Mu-
nich.

Jean Carletta. 1996. Assessing Agree-
ment on Classification Tasks: The
Kappa Statistics. Computational Linguis-
tics, 22(2):249-254, June.

David S. Day, 1996. Alembic Workbench
User's Guide. The MITRE Corporation,
Bedford, MA, December.

Norbert Reithinger and Martin Klesen.
1997. Dialogue act classification us-
ing language models. In Proceedings of
EuroSpeech-97, pages 2235-2238, Rhodes.

Annotating German Language Data
for Shallow Processing

Judith Klein and Thierry Declerck
German Research Center for Artificial Intelligence (DFKI GmbH)

Stuhlsatzenhausweg 3, 66123 Saarbrücken (Germany)
<Firstname. Lastname>@dfki.de

1 Motivation
Evaluation of natural language processing (NLP)
systems is necessary, both to extend the linguistic
coverage of the NLP components independently of
their integration in a broader application system
but also to assess and improve the quality of the
NLP functionalities with respect to an application-
specific task. For NLP-based information extraction
(IE) applications, for example, the reliable analysis
of natural language input is a necessary prerequi-
site to ensure high quality results of the IE task.
Profound evaluation cycles during system develop-
ment and adequacy evaluations on prototypes must
be carried out on suitable reference data in order
to provide information on the performance of the
NLP functionalities and direct application-oriented
improvements.
Even though the importance of annotated text cor-
pora as a means for quality assessment is widely rec-
ognized within the NLP community, the realization
of evaluation studies is often hampered due to the
lack of suitable language material - especially for
languages other than English.

2 Evaluation Scenario for smes
This paper reports on the building of reference data
for the evaluation of the smes system (Saarbrücker
Message Extraction System), developed at DFKI
(Neumann et al. 1997). An annotated German ref-
erence corpus is being constructed for the diagnostic
and adequacy evaluation of the NLP functionalities
of smes carried out within the PARADIME (Parame-
terizable Domain-adaptive Information and Message
Extraction1) project.
For shallow text analysis smes employs a tokenizer, a
morphological analyzer, a part of speech (PoS) tag-
ger and a shallow parsing component. Each compo-
nent needs a reference basis of different size and for-
mat according to its task within the system. While
morpho-syntactic processing as basic processing step
requires reference data which aims at a very gen-
eral linguistic coverage, the parsing component is

designed mainly for fragment analysis and hence its
reference material will consist of selected text units,
especially various types of noun phrases and verb
groups.

Evaluation experiments on the morphology and the
PoS component have already been carried out with
the help of manually validated reference corpora.
For the parsing module, a part of the PARADIME cor-
pus has been annotated for noun phrases and first
evaluation cycles have started on the NP grammar
of smes.

Since the building of annotated language resources is
a costly and time-consuming task, automatic anno-
tation and re-usability are key issues in the context
of NLP evaluation. In order to speed-up the an-
notation task a bootstrapping approach is followed
where the processing modules themselves will be em-
ployed to support future annotation tasks. This ap-
proach is also followed by many other groups, c.f.
(Skut et al. 1998), (Oesterle and Maier-Meyer 1998),
(Kuroashi and Nagao 1998). But, before such semi-
automatic annotation is possible the results of the
evaluation studies on the smes components must be
integrated in order to improve their performance and
guarantee that the analysis results are reliable and
need only minor manual post-editing.

Several aspects will ensure re-usability: Firstly, for
the used tag set a mapping has been defined to the
Stuttgart-Tubingen tag set (stts)2, which is widely
used in the German NLP community. Secondly,
the annotation work at PoS and phrasal level will
be documented providing guidelines for general and
specific linguistic cases. Thirdly, even though the
annotation format corresponds to the output of the
respective components it will be as transparent as
possible. Additionally, it is envisaged to develop an
xml (extensible markup language) interface to easily
exchange the annotated reference data.3

1 Information on PARADIME is available through the www
under http://www.dfki.de/lt/projects/paradime-e.html.

Information on the stts tag set is available under:
http://www.sfs.nphil.uni-tuebingen.de/Elwis/stts/stts.html.

3Information on xml can be found under Henry Thomp-
son's homepage: http-//www.ltg.ed.ac uk/ ht/.

3 Short Sketch of SMES
Information extraction systems aim at identifying
and classifying parts of texts which carry informa-
tion units relevant for an application-specific task.
Since a deep and complete understanding of the text
may not be necessary for IE, partial representations
as provided by shallow processing methods proved
very useful for this task.
The core engine of the text processing part of smes
consists of a tokenizer, an efficient and robust Ger-
man morphology, a PoS tagger, a shallow parsing
module, a linguistic knowledge base and an output
construction component (c.f. Neumann 1997).

Tokenizer The tokenizer, implemented in LEX, is
based on regular expressions, against which the tex-
tual input is matched for identifying some text struc-
tures (e.g. words, date expressions, etc.). Number,
date and time expressions are normalized and rep-
resented as attribute value structures.

Morphix++ The morphological analysis is per-
formed by MORPHIX++, an efficient and robust Ger-
man morphological analyzer which performs mor-
phological inflection and compound processing4.
With its core lexicon containing more than 120,000
stem entries MORPHIX++ achieves a very broad
coverage. The output of MORPHIX++ consists of
a list of all possible readings, where each reading
is uniformly represented as a triple of the form
<STEM,INFLECTION,POS>.

Brill Tagger Ambiguous readings delivered by
MORPHIX+-|- are disambiguated wrt. PoS using
an adapted version of Brill's unsupervised tagger
(Brill 1995) for German, which has been inte-
grated into the smes architecture for experimental
purposes5. The integrated BRILL tagger consists
of a learning component and an application com-
ponent. Within smes the learning material for the
tagger consists of the lexical mark-up of texts pro-
vided by MORPHIX++. In the learning phase the
tagger induces disambiguation rules on the basis of
the morpho-syntactic annotated texts. In a second
phase those rules are applied to the morphologically
analysed input texts. In PARADIME the integration
of Brill's unsupervised tagging strategy is also in-
vestigated in order to see to what extent it can be
used for the semi-automatic annotation of corpora
for new application domains6.

4MORPHix++ is based on MORPHIX (Finkler and Neu-
mann 1988).

5First experiments done with the Brill's unsupervised
tagger within smes were very promising and (Neumann et
al. 1997) reported already a tagging accuracy as high as
91.4%.

6In the future we might investigate the combination of the
supervised and the unsupervised strategy. The supervised
Brill tagger is currently being trained for German at the Uni-
versity of Zurich, c.f. http://www.ifi.unizh.ch/CL/tagger.

Shallow Parsing The shallow parsing component
consists of a declarative specification tool for ex-
pressing finite state grammars. Shallow parsing
is performed in two steps: Firstly, specified finite
state transducers (FST) perform fragment recogni-
tion and extraction on the basis of the output of
the scanner and of MORPHIX++ - i.e. the Brill out-
put is not yet taken into account. Fragments to be
identified are user-defined and typically consist of
phrasal entities (e.g. NPs, PPs) and application-
specific units (e.g. complex time and date expres-
sions). In a second phase, user-defined automata
representing sentence patterns operate on extracted
fragments to combine them into predicate-argument
structures.

The linguistic knowledge base The knowledge
base includes a lexicon of about 120,000 root en-
tries. The design of the lexicon allows for struc-
tured extensions. So for example, information
about sub-categorization frames - extracted from
the Sardic lexical data base (see Buchholz 1996)
developed at the DFKI - has been recently inte-
grated into the verb lexicon. The smes system has
now about 12,000 verbs with a total of 30,042 sub-
categorization frames at its disposal.

The output construction component An out-
put construction component is using fragment com-
bination patterns to define linguistically head-
modifier constructions. The distinction between this
component and the automata allows a modular I/O
of the grammars. The fragment combiner is also
used for the instantiation of templates, providing one
of the possible visualization of the results of the IE
task.

4 Reference Corpus for smes
Within the PARADIME project smes is being devel-
oped as a parameterizable core machinery for a va-
riety of commercially viable applications in the area
of information extraction (IE). The planned employ-
ment of smes in other projects (e.g. in the domain of
tourist information) stimulates both diagnostic eval-
uation to improve the NLP functionalities of smes
and adequacy evaluation to show what the system's
performance currently is.

Corpus Selection An important aspect of the
improvement of smes is the evaluation of the per-
formance of its components applied to large texts.
For this purpose a corpus from the German business
magazine "Wirtschaftswoche" from 1992 with about
180,000 tokens was selected. It consists of 366 texts,
on different topics written in distinct styles.

Annotation Schema From an earlier evaluation
experiment on smes (Klein et al. 1997) we draw the
following conclusions on the design of the annotation
schema: (i) for easy result comparison the reference

annotations and the system output must cover the
same information and (ii) for automatic comparison
the format of the annotations and the system output
must be identical or at least allow an easy mapping.
In order to provide suitable reference material for
the different shallow processing modules the anno-
tation schema must comprise information on various
linguistic levels. The BRILL tagger needs morpho-
syntactically annotated lexical items as reference
basis while the grammars require annotations at
phrasal level, possibly including syntactic category
and grammatical function. Three main aspects char-
acterize the new annotation approach for smes:

• the annotations are directly attached to the lan-
guage data and not stored separately from the
corpus texts;

• the format of the annotations and the system
output will allow automatic comparisons;

• the improved NLP modules will be employed
for semi-automatic annotation.

4.1 Morphological Annotation
Since MORPHIX+-1- should be employed to provide
the morphological annotation for the reference cor-
pus, several cycles of diagnostic evaluation were car-
ried out in order to extend the linguistic coverage
and improve the morphological analysis. No refer-
ence material was available for this evaluation pro-
cess. All corpus texts were given as input, the
morphological output was inspected manually and
the necessary modifications and extensions - includ-
ing the integration of the German SARDIC (Buch-
holz 1996, Neis 1997) lexicon comprising 600,000
word forms plus morphosyntactic information -
were done accordingly. The current version of MOR-
PHIX+-I- has reached about 94% lexical coverage for
the applied text corpus, where most of the words
not analyzed are in fact proper nouns or misspelled
words.
In order to obtain a morphologically analysed corpus
all 366 texts were run through the improved morpho-
logical module which provides as output the word
form (full form plus stem) together with all possible
morphological readings. Using the recently imple-
mented parameterizable interface of MORPHIX++,
the cardinality of possible tag sets ranges from 23,
considering only lexical category (PoS), to 780, con-
sidering all possible morpho-syntactic information.
For the first annotation step, the morphological
analysis was restricted to PoS information only,
where ambiguous words are associated with the al-
ternative lexical categories (see figure 1). Items
marked as unknown words are tagged as being possi-
bly a noun, an adjective or a verb. In a second round,
the tag set was extended, adding a further specifica-
tion to the lexical category, e.g. V-psp (past partici-

ple), A-pred-used (adjective in predicative construc-
tion, i.e. without inflection).

(" Fuer" ("filer" :S "VPREF") ("fuer" :S "PREP"))
("die" ("d-det" :S "DBF"))
("Angaben" ("angeb" :S "V") ("angabe" :S "N"))
("in" ("in" :S "PREP"))
("unseren" ("unser" :S "POSSPRON"))
("Listen" ("list" :S "N") ("list" :S "V") ("liste" :S "N"))
("wurde" ("werd" :S "V"))
("grundsaetzlich" ("grundsaetzlich" :S "A") ("grundsaet-
zlich" :S "ADV"))
("die" ("d-det" :S "DEF"))
("weitestgehende" ("weitestgehend" :S "A"))
("Bilanz" ("bilanz" :S "N"))
("zugrunde" ("zugrunde" :S "VPREF"))
("gelegt" ("leg" :S "V"))
("." ("." :S "INTP"))

Figure 1: Morphix++ output for PoS only

The entire smes reference corpus is now morpholog-
ically annotated with both tag set versions.

4.2 Part-of-Speech Annotation
In order to obtain reliable PoS tagged reference ma-
terial about 22,000 tokens of the first version of
the morphologically annotated corpus were indepen-
dently validated and disambiguated by two annota-
tors. The manual annotation proved once more to be
too time-consuming. Looking for a more economical
solution, it was decided to support the annotation
task by the un-supervised BRILL tagger, which has
recently been integrated in the smes system.
The tagger consists of a learning component, which
induces disambiguation rules on the basis of the
PoS information resulting from MORPHIX++, and
an application component, which applies the rules
to the morpho-syntactically ambiguous input texts.
Instead of the manual disambiguation of the MOR-
PHIX++ output BRILL should provide automatically
disambiguated annotated texts. But before the tag-
ger can be employed for automatic annotation thor-
ough evaluation must prove that BRILL'S perfor-
mance is sufficient for this task.
First evaluation cycles have already been carried
out using the validated PoS-tagged reference cor-
pus. BRILL was run over the morpho-syntactically
analyzed test corpus using a first version of a sim-
ple rule application strategy. A set of tools were
implemented to support the automatic comparison
and calculation of the results. The evaluation of the
BRILL tagger is based on quantitative and qualita-
tive measures. The quantitative result is calculated
as the ratio between the number of disambiguations
performed and the number of all word ambiguities
provided by MORPHIX++. The accuracy of the dis-
ambiguation step is measured as the ratio between
the number of correct disambiguations and all dis-
ambiguations performed by the BRILL tagger. The
results were very promising: 62% of the ambigui-

((:HEAD "fuer")
(•COMP (:QUANTIFIER "d-det") (:HEAD "angabe")

(:END . 3) (:START . 1) (:TYPE . :NP))
(:END . 3) (:START 0) (:TYPE . :PP))

((:HEAD "in")
(:COMP (QUANTIFIER "unser") (:HEAD "list")

(:END . 6) (:START . 4) (:TYPE . :NP))
(:END . 6) (:START . 3) (:TYPE . :PP))

((:HEAD "bilanz") (:MODS "weitestgehend")
(:QUANTIFIER "d-det") (:END . 11) (:START . 8)
(:TYPE . :NP))

Figure 2: Simplified output of the NP grammar (ex-
cluding AGR information) for the sentence "Für die
Angaben in unseren Listen wurde grundsätzlich die
weitestgehende Bilanz zugrunde gelegt".

ties in the input text were disambiguated showing
an accuracy of 95%. During further development
and test phases the tagger will be improved until a
performance is reached which proves suitable for au-
tomatic annotation. We will take advantage of the
rule-based approach implemented in the BRILL tag-
ger, which allows the editing of the set of the learned
disambiguation rules, and thus to add some linguis-
tically motivated rules. Nevertheless, the BRILL out-
put must be manually checked but we expect that
with the help of the tagger the annotation of lan-
guage data will be sped-up considerably.

4.3 Phrasal Annotation

For shallow parsing smes makes use of various fi-
nite state automata defining sub-grammars, like NP
grammar, verb group grammar, etc. To improve the
coverage of the parsing module the grammars will
in turn be evaluated. We have started with the NP
automata since the recognition, i.e the identification
and correct analysis of the NPs, including also PPs
as post-modifiers and APs as pre-modifiers, is very
important for information extraction.
The task of the NP automata is to identify the
noun phrases and provide their internal structures
in terms of head-modifier dependencies. The output
of the grammar is a bracketed feature value struc-
ture, including the syntactic category and the cor-
responding start and end positions of the spanned
input expressions (see figure 2).
The first part of the smes reference corpus, about
12,500 tokens, has been manually annotated and
validated for noun phrase information7, resulting in
4,050 NPs annotated with phrasal boundaries and
agreement information attached at the mother node,
as can be seen in figure 3. The used annotation
format is easily convertible into the output format
of the NP automata. The annotated NPs comprise

7 One annotator has done the manual bracketing and the
assignment of agreement information and another one has
checked the annotation.

about 3,100 noun phrases without post modification
- but showing sometimes very complex prenominal
part - and about 950 NPs with different kinds of
post modifiers.

("Fuer" ("fuer" :S "PREP"))
<NP<NP ("die" ("d-det" :S "DBF"))
("Angaben" ("angabe" :S"N"))
[AGR a,p,f] NP>
("in" ("in" :S "PREP"))
< NP ("unseren" ("unser" :S "POSSPRON"))
("Listen" ("liste" :S "N"))
[AGR d,p,f] NP> [AGR a,p,f] NP>
("wurde" ("werd" :S "AUX"))
("grundsaetzlich" (" grundsaetzlich" :S"A"))
<NP ("die" ("d-det" :S"DEF"))
("weitestgehende" ("weitestgehend" :S "ATTR-A"))
("Bilanz" ("bilanz" :S "N"))
[AGR n,s,f] NP>
("zugrunde" ("zugrunde" :S "VPREF"))
("gelegt" ("leg" :S "MODV"))
("." ("." :S"INTP"))

Figure 3: NP annotation including agreement infor-
mation (case, number, gender)

First evaluation experiments on the performance of
the NP grammar are being carried out with the help
of the NP reference corpus. In order to provide a
fine-grained performance profile it is envisaged to
examine the output of the NP automata at two lev-
els:

• phrasal level: it is checked, if the identification
of the NP, i.e. the external bracketing, is cor-
rect.

• internal structure: it is checked if the head-
modifier dependencies are assigned correctly.

The first measurement provides quantitative infor-
mation on the performance of the identification part
of the NP grammar while the second one measures
the accuracy of the attributed dependency struc-
tures.
In order to direct the modification and extension of
the existing NP automata it is very important how
representative a specific NP phenomena is of a cer-
tain application domain. This information will be
provided by text profiling where the typical charac-
teristics of the corpus are identified. On the basis
of one portion of the NP reference corpus (about
700 tokens) a text profile was established. The re-
sulting NP classification contains prototypical struc-
tures ranging from bare plurals over simply modi-
fied NPs including adjectives and genitive NPs up
to complex NPs containing various pre- and post-
modifications. This first classification of the distinct
NP types indicates the internal structure of the nom-
inal constructions occuring in the corpus texts.8 A

8The extraction and grouping of a second part of the cor-

-^

4

more detailed subdivision will be worked out in order
to provide the necessary representation format for
the annotation of the NP intern dependency struc-
tures. The next step in text profiling will be to as-
sign relevance values to the NP structures according
to their frequency and importance in the validated
part of the NP reference corpus.
In the next annotation step - which will be done
with the help of the NP grammar - the NPs will
additionally be annotated with their head-modifier
dependencies. The grammar output will be manu-
ally checked and corrected to establish a reference
corpus annotated with phrasal NP boundaries and
the internal NP structure. This reference corpus will
be used for further evaluations in order to check the
accuracy of the NP sub-grammar.

5 Conclusion and Future Work
Annotated reference corpora are a necessary pre-
requisite to carry out profound evaluation on NLP
systems. The time-consuming manual annotation
forced us to look for a more economical solution
namely the employment of the NLP modules for
semi-automatic annotation. Even though the use
of validated NLP modules for the building of anno-
tated reference material can not dispense with man-
ual work first results indicate that this approach pro-
vides substantial support for the annotation where
the manual part might be reduced to the control of
the automatically attached annotations. Ideally, the
tools will provide highly reliable annotations - with
only minimal manual checking necessary - thus al-
lowing efficient annotation of large amounts of text
material. Especially when smes will be employed for
further application domains it will be a great advan-
tage when application-specific reference data can be
easily provided by the shallow text processing part.
We will also investigate if the (syntactic) annota-
tion tools, as for example those currently developed
within DiET9 and Negra10, could smoothly be in-
tegrated into the smes environment. The graphical
interfaces of those tools could facilitate the manual
inspection of the automatically built reference data.
In order to make the annotation schema re-usable
for other systems and applications it is planned to
provide an interface to the xml representation for-
mat.

Acknowledgment
The research underlying this paper was supported
by grants from the German Bundesministerium für

pus NPs made only slight changes in the classification schema
necessary.

9 More information on DiET is available under
http://dylan.ucd.ie/DiET/.

10For information on the Negra project see
http://www.coll.uni-sb.de/cl/projects/negra.html.

Bildung, Wissenschaft, Forschung und Technolo-
gic (BMB+F) for the DFKI project PARADIME
(FKZ ITW 9704). We are grateful to Günter Neu-
mann for his fruitful comments on the annotation
work within PARADIME. We thank Milena Valkova
and Birgit Will for their careful annotation work.

References
Brill, E. (1995). Unsupervised learning of dis-

mabiguation rules for part of speech tagging. Pro-
ceedings of the Second Workshop on Very Large
Corpora, WVLC-95 Boston, 1995

Buchholz, S. (1996). Entwicklung einer lexiko-
graphischen Datenbank für die Verben des
Deutschen. Master Thesis, Universitat des Saar-
landes, 1996

Finkler, W.; Neumann, G. (1988). Morphix: A fast
Realization of a Classification-based Approach to
Morphology. Proceedings der 4- Österreichischen
Artificial Intelligence Tagung, Wiener Work-
shop Wissensbasierte Sprachverarbeitung, pp. 11-
19, Berlin, 1988

Klein, J.; Busemann, S.; Declerck, T. (1997). Diag-
nostic Evaluation of Shallow Parsing Through an
Annotated Reference Corpus. Proceedings of the
Speech and Language Technology Club Workshop,
SALT-97, pp.121-128, Sheffield, 1997

Kuroashi, S.; Nagao, M. (1998) Building a Japanese
Parsed Corpus while Improving the Parsing Sys-
tem. Proceedings of the first international Con-
ference on Language Resources and Evaluation,
LREC-98, Granada, 1998, pp.719-724

Neis, I. (1997) SarDic - das Saarbrücker Dictionary:
eine morphologische Workbench und em morphol-
ogischer Server. Master's Thesis, Saarbriicken,
1997

Neumann, G.; Backofen, R.; Baur, J.; Becker, M.;
Braun, C. (1997). An Information Extraction
Core System for Real World German Text Pro-
cessing. Proceedings of the 5th Conference on
Applied Natural Language Processing, ANLP-97,
pp.209-216, Washington DC, 1997

Oesterle, J.; Maier-Meyer, P. (1998) The GNoP
(German Noun Phrase) Treebank. Proceedings
of the first international Conference on Language
Resources and Evaluation, LREC-98, Granada,
1998, pp.699-703

Skut, W.; Brants, T.; Krenn, B.; Uszkoreit,
H. (1998) A Linguistically Interpreted Corpus
of German Newspaper Text. Proceedings of
the first international Conference on Language
Resources and Evaluation, LREC-98, Granada,
1998, pp.705-711

Adding Manual Constraints and Lexical Look-up to a Brill-Tagger
for German

Gerold Schneider and Martin Volk
University of Zurich

Department of Computer Science
Computational Linguistics Group

Winterthurerstr. 190, CH-8057 Zurich
gschneid volk@ifi.unizh.ch

Abstract
We have trained the rule-based Brill-Tagger for
German. In this paper we show how the tag-
ging performance improves with increasing cor-
pus size. Training over a corpus of only 28'500
words results in an error rate of around 5% for
unseen text. In addition we demonstrate that
the error rate can be reduced by looking up
unknown words in an external lexicon, and by
manually adding rules to the rule set that has
been learned by the tagger. We thus obtain an
error rate of 2.79% for the reference corpus to
which the manual rules were tuned. For a sec-
ond general reference corpus lexical-lookup and
manual rules lead to an error rate of 4.13%.

1 Introduction
There already exist a number of taggers for
German (Lezius et al., 1996). We have no-
ticed, however, that none of them is rule-based.
But as Samuelsson and Voutilainen (1997) have
demonstrated rule-based taggers can be supe-
rior to statistical taggers. We have therefore
adapted and trained the supervised version of
the rule-based Brill-Tagger to German. To this
end we have been building up a German training
corpus, which currently consists of about 38'000
tagged words, where all tags have been manu-
ally checked.1 In this paper we show how the
tagging performance improves with increasing
corpus size. In addition we demonstrate that
the error rate can be further reduced by look-
ing up unknown words in an external lexicon,
and by manually adding rules to the rule set

1 We would like to acknowledge the help of Gero Bas-
senge, Alexander Glintschert, Sven Hartrumpf, Sebas-
tian Hubner, Sandra Kubler, Andreas Mertens and Elke
Teich in checking part of our training corpus.

that has been learned by the tagger.2

1.1 Rule-Based Tagging
We have chosen the Brill-Tagger for the follow-
ing reasons:

Practical Performance The rule-based Brill-
Tagger (Brill, 1992, Brill, 1994) has shown
good results for English. Samuelsson and
Voutilainen (1997) show that a rule-based
tagger for English can achieve better re-
sults than a stochastic one. Chanod and
Tapanainen (1995) prove the same for
French.

Theoretical Advantages While the con-
straints for French by Chanod and
Tapanainen (1995) and for English
by Samuelsson and Voutilainen (1997)
are hand-written, the Brill-Tagger is
self-learning. It employs a transformation-
based error-driven learning method.
Ramshaw and Marcus (1996) describe
this as a compromise method, which
means that it involves both a statistical
and a symbolic component. Instead of
pure n-grams the Brill-Tagger uses rule
templates to restrict the search space.

Linguistic Accessibility and Extensibility
Another advantage of rule-based tagging
over statistical approaches is the linguistic
control, as Ramshaw and Marcus (1996)
point out. Linguistic knowledge first
defines the linguistic principles to be
statistically investigated, i.e. the Brill-
Tagger set of rule templates. Second, they
allow to tune an automatically abstracted

2 The web version of our tagger and infor-
mation about its availability can be found at
http://www.ifi.unizh.ch/CL/tagger.

description of the training corpus, i.e. the
rule files. Third, they help in analysing the
results and in pin-pointing the remaining
errors.

1.2 The Brill-Tagger for German
The Brill-Tagger was originally developped for
English.3 For German, we had to start from
scratch, first finding a suitable tag-set, adapt-
ing the tagger code slightly, and then manually
tagging a German corpus. The changes in the
tagger code needed for German are well docu-
mented in the tagger manuals. It is necessary
to adapt the initial guess for capitalized words,
which for English is a tag for proper noun in the
original code. This had to be changed to the
tag for common noun in our tag-set, because in
German all nouns are capitalized.

1.2.1 Training Phase
The Brill-Tagger is trained in two steps. In the
first step, each word is assigned its most likely
tag, based on the training corpus. In the second
step, the errors made in step one are recorded,
and the tagger finds rules for the biggest pos-
sible error elimination based on the context or
internal build-up of words. The tagger formu-
lates these rules on the basis of the rule tem-
plates. Every rule is then tested against the
training corpus, the number of corrected er-
rors are weighed against the number of errors
newly introduced by this rule. The rule with
the greatest net improvement is included in the
rule set. This learning procedure continues iter-
atively, until a certain threshold is reached. Due
to its iterative character, newly acquired rules
are already respected for the elimination of the
next error.

Using this procedure, the Brill-Tagger gener-
ates a lexicon and two rule files, one for context
rules and one for lexical rules.

1.2.2 Application Phase
For the application of the tagger to a text, the
tagger uses the files generated during the train-
ing. The lexicon contains each word with all
its tags as they occurred in the training corpus.
The tag at the first position is the most likely
tag, which will be assigned to a word as a first

3 The Brill-Tagger is available from its author at
http://WWB.cs.jhu.edu/~brill.

guess. These guesses are then corrected accord-
ing to the learned context rules.

Context rules take the context of a word into
consideration. The Brill-Tagger has an observa-
tion window of size 4: the furthest reaching rule
template allows for the consideration of three
words to the left or to the right. This is bigger
than in most statistical taggers. We will give
examples of context rules in section 4.1.

The other rule file contains lexical rules. Lex-
ical rules are solely used for tagging unknown
words. The following is an example of a simpli-
fied lexical rule

lich hassuf 4 ADV

This lexical rule will have the effect that un-
known words with a four-letter suffix -lich are
transformed into adverbs from whatever their
first guessed tag was.

Brill rules are transformation rules, which
means that a tag is transformed into another
tag if a rule applies. But at any stage a word
will have exactly one tag. In this sense, trans-
formation rules (Ramshaw and Marcus, 1996)
are different from constraint rules (Samuelsson
and Voutilainen, 1997).

1.3 Tag-set and Corpora
We use a tag-set widely acknowledged for Ger-
man, the so-called Stuttgart-Tubingen Tag-Set
(STTS) (Schiller et al., 1995), which contains 51
part-of-speech tags plus some punctuation tags.
Our corpus consists of texts from the University
of Zurich annual report and currently contains
about 38'000 words.

2 Performance of the Brill-Tagger
for German

In this chapter we show how the tagging accu-
racy increases with increasing corpus size, un-
til the progress flattens out, partly due to the
tagging difficulties for German, which we will
describe below. In separate experiments, which
are documented in (Volk and Schneider, 1998),
we show that the Brill-Tagger and the statistical
tagger by Schmid (1995) achieve similar results
for German.

2.1 Training the Brill-Tagger with our
Corpus

We used a utility provided by Brill to split the
38'000 word corpus into two halves, say A and

B. This utility repeatedly takes the next two
sentences from the corpus and randomly puts
one sentence to file A and the other one to file
B. We divide these halves again by the same
method to get four parts. We use the first three
parts as the training corpus, which we call TC.
The remaining quarter is reference material. We
divide this reference material again in the same
way. We call the reference corpora we thus get
RC1 and RC2.

2.1.1 Training Progress
In order to illustrate the training progress, we
first train the tagger with only 12.5% of the cor-
pus and tag RC1 with the data obtained from
the training. Then, we move on to 25%, 50%
and 75% of the corpus and tag RC1 again. Ta-
ble 1 illustrates the training progress. The 75%
corpus is TC, i.e. the training corpus we will
use for the rest of this paper. After training the
Brill-Tagger with the training corpus TC, the
training module has learnt 186 lexical rules and
176 context rules. When applying these rules
to RC1 the error rate is at 5.04%. This means
that 94.96% of all the tokens in RC1 receive the
same tag as manually prespecified.

For illustration purposes, we also add RC2
to TC and tag RC1 again, reducing the error
rate to 4.81%. As expected, the error rate in
table 1 flattens out, suggesting that the increase
in tagging accuracy from using bigger training
corpora will become increasingly smaller.

Table 1: Error Rates on RC 1

Of course, we may also tag RC2 with TC.
Coincidentally, the error rate is a little higher
than with reference corpus RC1, at 5.59%.

When we add the reference material to the
training corpus, the error rate drops signifi-
cantly, as table 2 illustrates. Of course this error
rate of 1.49% has no "real world" significance,
because no matter how big a training corpus
there will always be new words and new syntac-

Table 2: Drastic Error Rate Reduction on In-
cluding Reference Material into Training Mate-
rial

tic constructions in a new text to be tagged.

2.1.2 Unknown Words
But we found this increase so striking that
we wanted to know if it is rather due to the
known vocabulary or due to the larger num-
ber of transformation rules. When tagging
RCl with the rule files learned from TC, but
the lexicon learned from the entire corpus (i.e.
TC+RC1+RC2) the error rate was only 1.86%,
almost as good as when tagging with the rule
files learned from the entire corpus. On the con-
trary, when tagging with the rule files learned
from the entire corpus but using only the lexi-
con learned from TC, the error rate was 4.86%
(even a little worse than when using the TC
rules). This indicates that the Brill part-of-
speech guesser for unknown words is still un-
satisfactory (Brill, 1994). Section 3 describes
one way to increase the tagging accuracy for
unknown words.

2.1.3 Average Ambiguity per Token
Success and error rates alone are not enough as
a measure for the efficiency of a tagger. If few
words in the text to be tagged are ambiguous
in the tagger lexicon, it is easy for the tagger
to achieve good results. We therefore provide
a figure on every training step for the average
ambiguity per token. This figure is calculated
for all tokens in a text (RCl in our case) that
are contained in the tagger lexicon. Unknown
words are not used in this calculation. Enlarg-
ing the training corpus has two effects on the
tagger lexicon. First, there will be more tokens
in the lexicon and second, many tokens are as-
signed multiple tags. This accounts for the in-
crease in the average ambiguity of tokens listed
in the third column of table 1.

2.2 Tagging Difficulties for German

Adjective vs. Past Participle: In German
the distinction between predicative adjec-

tives and past particles is difficult for lin-
guistic experts and therefore also for the
tagger. E.g. in the following corpus sen-
tence

(1) ... während die technikbezogenen
Disziplinen an der ETH Zurich
vertreten sind.

it is difficult to judge whether vertreten is
a past participle or an independent adjec-
tive. The sentence can be transformed into
a similar active sentence, but it is debatable
whether this involves a semantic change.
In quantitative terms, however, only 3% of
the errors from tagging RC1 are mistakes
of this type.

Verb-Forms: The STTS tag set calls for a dis-
tinction of finite verb form, infinitive form
and past participle form. But in German
the finite verb form for the first and third
person plural, present tense, is identical
with the infinitive form. In addition there
are many verbs where the past participle
is identical with the infinitive or with a fi-
nite verb form. That means that one can
decide on the verb form only by looking at
the complete verb group in a clause.
But in German matrix clauses the verb
group is a discontinuous constituent with
the finite verb in second and the rest of the
verb group in clause final position. This
means that the distance between a finite
auxiliary verb and the rest of the verb
group can easily become too big for the
window of a tri-gram tagger, as (Schmid,
1995) notes. Unfortunately, the Brill-
Tagger window in many cases is not big
enough either. In the following examples,
our tagger mis-tagged beantragt as finite
verb, while verlangt is mis-tagged as past
participle.

(2) Hier hat der Ausschuss ... fur die
ersten beiden Punkte der
Erziehungsdirektion beantragt, ...

(3) Die Theologische Fakultät verlangt
Kenntnisse in Latein, Griechisch und
Hebräisch.

When analysing the remaining 5.04% er-
rors from tagging RC1 with our TC we

find that indeed 25% of the errors involve
a wrong verb form.

Capitalisation: Unlike in English, all nouns
are capitalised in German. This means
that the tagger mis-tags many unknown
proper names as common names, and that
sentence-initial unknown words are also of-
ten mis-tagged as common nouns. When
analysing the errors in RCl we find that
17% of the errors involve capitalisation.

3 The Impact of Lexical Lookup
As shown in 2.1.2, unknown words account for a
large portion of the errors. We therefore exper-
imented with sending the words not present in
the tagger lexicon to the wide-coverage morpho-
logical analyser Gertwol (Oy, 1994). An auto-
mated mapping procedure over the Gertwol out-
put extracts all possible STTS tags for a given
word and temporarily appends these new words
with their tags to the tagger lexicon. There is
an obvious increase in the tagging accuracy, as
table 3 shows.

Table 3: The impact of lexical lookup

But the impact of this lexicon-lookup is
smaller than expected. The problem is that
Gertwol delivers an unordered list of tags for a
given word-form, which includes even rare read-
ings. The Brill-Tagger, on the other hand, needs
the most likely part-of-speech at the first posi-
tion in the lexicon. We have not yet found out
a method to weigh the Gertwol output appro-
priately.

4 The Impact of Manual Constraints
As stated in 1.1 the Brill-Tagger has the advan-
tage that it finds linguistic rules from the train-
ing corpus which can be inspected, assessed and
extended.

The net of automatically learned and partly
interdependent rules might be a fragile system
however, lenient to decrease in efficiency after
manual editing. Since the rules depend on each
other, their position within the rule file is rele-
vant. How can a linguist know at which place

he or she should insert rules? And to what an
extent are the rules interdependent?

Ramshaw and Marcus (1996) have investi-
gated this question. They state [p. 151-2]:

The trees for a run on 50K words of
the Brown Corpus bear out that rule
dependencies, at least in the part-of-
speech tagging application, are lim-
ited. ... [T]he great majority of the
learning in this case came from tem-
plates that applied in one step di-
rectly to the baseline tags, with lever-
aging being involved in only about
12% of the changes. The relatively
small amount of interaction found be-
tween the rules also suggests that the
order in which the rules are applied
may not be a major factor in the suc-
cess of the method for this particu-
lar application, and initial experiments
tend to bear this out.

Given this reassurance, we added rules man-
ually to the end of the contextual rule file.

4.1 Examples of Context Rules
As the Brill-Tagger has only little built-in lin-
guistic knowledge it is on the one hand almost
language-independent, on the other hand it has
to rely on statistical data for learning linguistic
rules.

It is striking to see that the learning algo-
rithm automatically learns many well-known
and linguistically sound context rules like:

APPR PTKVZ NEXTTAG $.

This rule means that what is initially tagged
as a preposition (APPR) should be transformed
into a separated verb prefix tag (PTKVZ) if found
at the end of a sentence (NEXTTAG $.) - if the
word in question can be found as PTKVZ in the
tagger lexicon. Prepositions never occur at the
end of a sentence indeed.4 In the sentence

(4) Ich gebe nie auf.

auf/APPR is thus correctly transformed into
auf/PTKVZ. More surprisingly, the learning al-
gorithm even detects rules one is hardly aware
of:

VAINF VAFIN NEXTTAG ADV

This rule transforms the infinite auxiliary
verb tag into a finite auxiliary verb if followed by
an adverb. Indeed, German word order seems
to forbid sentences in which infinite auxiliaries
are post-modified by an adverb:

(5) * Wir werden haben sehr schemes Wetter.

(6) * ... um zu sein ganz sicher.

The learning algorithm also detects a number
of linguistically more questionable context rules
which, however, correctly work in the majority
of language uses, but which may also lead to
mistakes:

VVFIN WPP NEXT10R2TAG $.

This rule means that sentence-final finite verb
tags should be transformed into verb participles.
While this rule is correct for e.g.

(7) Der Arzt hat seine Patienten behandelt.

it will produce wrong results for - in our cor-
pus apparently less frequent - sentences like

(8) Der Arzt ist aufmerksam, wenn er seine
Patienten behandelt.

Moreover, the learning algorithm misses some
basic linguistic facts. In a reference corpus, we
find e.g.

(9) unseres/PPOSS Reformvorhabens/NN

PPOSS stands for substituting possessive pro-
noun. The tag-set distinguishes between substi-
tuting and attributive pronouns. Without any
linguistic knowledge, the tagger cannot know
that a substituting pronoun will hardly be fol-
lowed by a common noun (NN). A transforma-
tion to attributive personal pronoun seems plau-
sible. This is where our manual rules come in.
We add the following rule the contextual rule
file:

PPOSS PPOSAT NEXTTAG NN

4 Our tagset
postpositions.

distinguishes prepositions and

After training our tagger with TC we tag RC1
with lexical look-up (cf. section 3). The error
rate is 4.33%. We manually checked the 189
errors and wrote and individually tested man-
ual rules where we believe rules are linguisti-
cally plausible and expressable in the formalism
- like the one for attributive personal pronouns
above. We added the manual rules to the auto-
matically learned rules. With 97 manual rules
the error rate drops to 2.79%. Coming up with
and testing new rules is a time-consuming pro-
cess. Determining these 97 manual rules took
us around 4 hours.

4.2 Results with Manual Constraints

The fact that rule interdependence is low
(cf.section 4) suggests that we can safely add
rules. On the other hand this may also indicate
that rules are so independent because each of
them only has a limited effect. In order to an-
swer this question, we tag RC2, first only with
lexical look-up (as described in 3) and with the
automatically learned context rules from TC -
we get an error rate of 4.74% -, then together
with the above 97 manual context rules, for
which we get an error rate of 4.13%.

Because of the small interaction, we may
freely add manual rules written at other occa-
sions. At an earlier stage of our research, when
our training corpus comprised of 28'000 words,
we wrote 141 manual rules for test purposes (cf.
4.3). We now add these manual rules to the file
containing the automatically learned rules and
the manual rules tuned for RCl. If we use this
rule file for RC2 (again with lexical look-up), we
get another increase in accuracy to 4.09%.

One may fear that manual rules are corpus-
specific and bear no general linguistic siginifi-
cance, which would entail that they lead to an
error increase in other corpora. In order to test
this, we used the above rule file (i.e. automati-
cally learned rules plus manual rules tuned for
RCl plus manual rules from earlier stage) to
tag RCl (with lexical look-up). We get only a
slight error increase from 2.79% to 2.86%. This
indicates that only a small fraction of the tuned
rules are indeed corpus-specific, while the ma-
jority are linguistically accurate, at least in the
sense of linguistic performance.

We conclude that because the context rules
of the Brill-Tagger are independent and each
has only a limited effect, the knowledge can be

freely accumulated and will lead to better re-
sults in most cases. Adding manual rules is thus
a feasible and useful practice for Brill tagging.

4.3 The Limits of Tagging Performance

As mentioned above, at an earlier stage of our
research, when the entire corpus comprised of
about 28'000 words, we wrote context rules
based on the results of tagging the training cor-
pus itself.

When a tagger tags its training corpus the er-
ror rate is naturally much lower than in tagging
a new text. In the case of our 28'000 word cor-
pus the error rate was at 1.81%. Based on these
errors we wrote 141 manual context rules and
added them to the 121 automatically learned
context rules. The resulting error rate was just
below 1%, at 0.95%. For the remaining 266 er-
rors, no context rule could be found that re-
sulted in any improvements. We therefore sug-
gest that, given the window of the context rules
in the Brill formalism and the restricted expres-
sivity of the rules, and given the relatively free
word order of the German language and the
STTS tag set, an error rate of just slightly be-
low 1% is about the best possible rate that can
be achieved by a Brill-Tagger for German.

5 Conclusions
We have shown that the rule-based Brill-Tagger
can be trained successfully over a relatively
small annotated corpus. Tagging performance
then suffers from unknown words but this can
be alleviated by looking-up these words in an
external lexicon. This lexicon should not only
provide all possible tags but also identify the
most likely tag. Current wide-coverage lexical
resources like Gertwol do not contain this infor-
mation. Perhaps a statistical analysis of online
dictionaries, as proposed by Coughlin (1996),
could help to compute this missing information.

Tagging performance can also be improved
by adding manual rules to the automatically
learned rule set. In our experiments a set of
about 100 manual rules sufficed to increase the
tagging accuracy from 95% to around 96%. We
also demonstrated that the Brill-Tagger is rela-
tively robust as to the order in which the man-
ual rules are added. Unfortunately many of
the remaining errors (e.g. verb form problems)
lie outside the scope of the tagger's observation

window. Therefore we need to add a more pow-
erful component to the tagger or build a shallow
parsing post-processor for error correction.

References
Eric Brill. 1992. A simple rule-based part-of-

speech tagger. In Proceedings of A NLP, pages
152-155, Trento/Italy. ACL.

Eric Brill. 1994. A report of recent progress
in transformation-based error-driven learn-
ing. In Proceedings of A A Al.

Jean-Pierre Chanod and Pasi Tapanainen.
1995. Tagging French - comparing a statis-
tical and a constraint-based method. In Pro-
ceedings of EACL-95, Dublin.

Deborah A. Coughlin. 1996. Deriving part of
speech probabilities from a machine-readable
dictionary. In Proceedings of the Second In-
ternational Conference on New Methods in
Natural Language Processing, pages 37-44,
Ankara, Turkey.

W. Lezius, R. Rapp, and M. Wettler. 1996.
A morphology-system and part-of-speech tag-
ger for German. In D. Gibbon, editor, Natu-
ral Language Processing and Speech Technol-
ogy. Results of the 3rd KONVENS Confer-
ence (Bielefeld), pages 369-378, Berlin. Mou-
ton de Gruyter.

Lingsoft Oy. 1994. Gertwol. Questionnaire for
Morpholympics 1994. LDV-Forum, 11(1):17-
29.

L.A. Ramshaw and M.P. Marcus. 1996. Explor-
ing the nature of transformation-based learn-
ing. In J. Klavans and P. Resnik, editors, The
balancing act. Combining symbolic and sta-
tistical approaches to language. MIT Press,
Cambridge,MA.

C. Samuelsson and A. Voutilainen. 1997. Com-
paring a linguistic and a stochastic tagger. In
Proc. of ACL/EACL Joint Conference, pages
246-253, Madrid.

A. Schiller, S. Teufel, and C. Thielen.
1995. Guidelines fur das Tagging deutscher
Textcorpora mit STTS (Draft). Technical
report, Universitat Stuttgart. Institut fiir
maschinelle Sprachverarbeitung.

Helmut Schmid. 1995. Improvements in part-
of-speech tagging with an application to Ger-
man. Technical report, Universitat Stuttgart.
Institut fiir maschinelle Sprachverarbeitung.

(Revised version of a paper presented at
EACL SIGDAT, Dublin 1995).

Martin Volk and Gerold Schneider. 1998. Com-
paring a statistical and a rule-based tagger for
German. Manuscript.

Annotation Management for Large-Scale NLP

Remi Zajac
Computing Research Laboratory, New Mexico State University

zajac@crl.nmsu.edu

We describe a new flexible annotation scheme used in CRL's Document Manager which extends the
Tipster Document Architecture in several innovative directions. Annotation types are defined using
typed feature structure definitions; the annotations themselves are instances of these types.
Annotations are stored in an object-oriented database system; the corpora files can be stored on a file
system (local or remote) or in the database itself; the Document Manager maintains the relations
between annotations and the documents

1 Introduction

The development of modern natural language
processing system relies on the exploitation of
corpora for either extracting linguistic information
or testing the NLP systems. Although the extraction
of information is certainly of primary importance,
the use of large corpora for testing and evaluating
NLP systems is an important feature in the
development of large scale NLP tools. Part of the
US Tipster program (Grishman 95, Caid et al. 96) is
devoted in the development of a so-called
Document Architecture aimed at facilitating the
integration, the reuse and the evaluation of NLP
components on very large collections of documents,
as the one used in the Tipster and MUC programs.
Although the Tipster architecture is primarily
aimed at information retrieval and extraction, it has
also been used at CRL for machine translation and
machine-aided human-translation. Our previous
extensive experience with the Tipster-conformant
implementation of a Tipster Document Manager
developed at CRL (Sharpies & Bernick 96)' lead us
to a new generic implementation which can be used
for NLP at large (see e.g., Zajac et al. 97). This new
Document Manager, developed within the Corelli
project at CRL, can be viewed as a specialized
object-oriented database system for managing large
collections of documents annotated with complex
data structures. This implementation extends the
basic concepts of the Tipster Document
Architecture in the following directions:

• The structure of the set of annotations is
designed to facilitate the implementation of

1. Initially prototyped by Ted Dunning.

an NLP system by reusing existing NLP
components and minimizing the interaction
between these components.

• The annotations objects themselves are
typed feature structures. They extend the
Tipster annotations, which are simple sets of
attribute-value pairs; they are also used as
the representation device for many modem
NLP systems.

• The types of the annotations used in the
Document Manager must be declared. The
Document Manager uses the type definitions
(see e.g., Zajac 92) to check that document
annotations created by a component
conform to the declared types.

The remainder of the paper gives an overview of the
Corelli Document Management Architecture, and
of the extensions which are currently being
implemented; presents the new annotation scheme
based on feature structures and how the Document
Manager makes use of this scheme to provide better
integration and testing facilities; gives an overview
of the implementation.

2 Document Management

In the Corelli Document Architecture, components
do not talk directly to each other but communicate
through annotations attached to the document being
processed. Each component of an NLP system
reads and writes annotations using the Document
Manager interface. This model reduces inter-
dependencies between components, promoting the
design of modular applications (Figure) and

enabling the development of blackboard-type
applications such as the one described in (Boitet &
Seligman 94). The Corelli Document Architecture
provides solutions for

• Representing information about a document,

• Storing and retrieving this information in an
efficient way,

• Exchanging this information among all
components of an application.

If a system reuses components that were not
designed to work with each other, there will still be
an impedance mismatch to be resolved: the
architecture does not provide ready-made solutions
for translating linguistic structures (e.g., mapping
two different tagsets or mapping a dependency tree
to a constituent structure), since these problems are
application-dependent and need to be resolved on a
case-by-case basis; such integration is however
feasible, as demonstrated by the various Tipster
demonstration systems, and use of the architecture
reduces significantly the load of integrating a
component into an application.

Figure 1: Centralizing document annotations enables
a modular architecture and reduces the number of

interfaces from the order of n2 to the order of n.

2.1 Document Architecture

The basic data object of the architecture is the
document: documents can have properties (a set of
attribute-value pairs) and annotations, and can be
grouped into collections. Annotations are used to
store information about a particular segment of the
document (identified by a span, i.e., start-end byte
offsets in the document content) while the
document itself remains unchanged. This contrasts
with the SGML solution used in the Multext project
where information about a piece of text is stored as
additional SGML mark-up in the document itself
(Ballim95, Thompson95). The Corelli architecture
supports writable data as well as read-only data

(e.g., data stored in a CD-ROM or on a remote file
system); no copy or modification of the original
documents is needed. This solution enables the
processing of very large corpora such as the ones
used in TREC with reasonable performances.
Documents are accessible via a Document Manager
which maintains persistent collections, documents
and their attributes and annotations, using a
commercial database management system to
support persistency. The implementation of the
architecture takes advantage of the client-server
architecture of the database (which uses TCP/IP)
and allows local as well as remote clients to connect
to a Document Manager.

The Document Manager Graphical User Interface
provides a set of tools for manipulating and
browsing the documents and collections of
documents; specialized viewers allows the display
of document annotations.

2.1.1 Document Annotations

The original Tipster Document Architecture
provides a relatively low-level structure for
annotations: annotations are sets of attribute-value
pairs; values can be either strings or numbers or
recursively annotations; all annotations are stored
as a set (actually, a bag). This imposes complex
transformations between the data structure
produced by a component and the Tipster
annotation structures; if annotations are related to
each other (as for example as edges of a chart parser
or as nodes of a parse tree), an additional data
structure is required to represent relations between
annotations.

The Corelli Document Architecture partitions the
set of annotations into labeled sub-sets, where each
sub-set is the input and/or the output of a
component. Each annotation sub-set relevant to a
given component is structured as a lattice, which
enables a direct representation of for example a
word-lattice as produced by a speech-recognition
system or as an ambiguous output of a
morphological analyzer (Boitet & Seligman 94,
Amtrup et al. 97). Each annotation is a (typed)
feature structure. The annotation structure
facilitates the integration of NLP components such
as unification-based parsers or morphological
analyzers since the input of such component is a
word or a sentence and the data structures read and/
or produced are feature structures or graphs of

feature structures. F3 shows that annotations can be
structured in graphs where each graph represent the
linguistic structure of a sentence as computed by a
given component. An annotation is an edge in a
graph of annotations and also contains a pair of
pointers (byte offsets) to the span of text covered by
the annotation.

The specification of a component includes the
specification of the pre- and post-conditions of the
component. A pre- or post-conditions specifies
which annotation sub-sets are accessed by the
components (using the sub-sets' labels) and for
each sub-set, the required features and values
(specified as a typed feature structure).

2.1.2 Annotation Management

The Corelli Document Architecture provides a way
to declare annotation types and to check that any
annotation added to a document at runtime
conforms to the declared types. Annotations are
typed feature structures, and allowed feature
structures are defined using type definitions (Zajac
92). The Tango language developed at CRL
provides the facilities for defining the types of
feature structures. This language supports the
notion of module (package) and includes a set of
pre-defined types (integers, strings, lists and regular
expressions). The runtime system provides a set of
methods to type-check feature structures as well as
a set of unification methods. This runtime engine is
used in the implementation of several unification-
based formalisms at CRL.

Tango modules are stored in a database, and the
Tango development environment supports
functionalities to define modules and types, and
compile modules. The runtime modules can then be
used in a variety of applications including the
document manager: instances of these types are
document annotations. The Graphical
Programming Environment of the Document

Manager gives access to the Tango toolset and an
application programmer can import Tango modules
and use the type definitions, but also modify and
recompile Tango modules.

The Tango runtime system supports several levels
of type checking and this set of functionalities is
used by the Document Manager to check at runtime
annotations which are created by a component
before actually storing the annotations persistently
in the Document Manager persistent store (this
type-checking can be turned-off by the
programmer). The Document Manager uses the
declaration of pre- and post-conditions declared for
a given component to perform runtime type
checking (see below).

Figure 3: Integration of NLP components in the
Corelli Document Architecture.

2.2 Application Framework

The Corelli Document Architecture includes an
Application Framework which supports the
construction of NLP applications by integration of
NLP components through a high-level Graphical
Programming Environment. The Application Editor
supports a drag-and-drop graphical interface for
integrating components in a single application in a
way similar to the GATE GDE (Cunningham et al.
94, 96). The components themselves may be
distributed and communicate with the application
using a commercial agent-based architecture (from
ObjectSpace). The Application Framework
interpreter allows a step-wise execution of the
application and stores all intermediary results

(output of each component) in the Document
Manager where they can be displayed using the
Document Manager viewers.

2.2.1 Component Architecture

The data layer of the Corelli Document
Architecture, as described above, provides a static
model for component integration through a
common data framework. This data model does not
provide any support for communication between
components, i.e., for executing and controlling the
interaction of a set of components, nor for rapid
tool integration. The Corelli Component
Architecture fills this gap by providing a dynamic
model for component integration: this framework
provides a high-level of plug-and-play, allowing for
component interchangeability without modification
of the application code, thus facilitating the
evolution and upgrade of individual components.

An NLP component is integrated in the architecture
by implementing the Corelli Component interface
which defines a standardized set of methods to
execute a component's functionalities and provides
high-level communications capabilities allowing
distribution of components. This interface acts as a
wrapper for the component's code and several
integration solutions are possible:

• If the component has a Java API,1 it can be
encapsulated directly in the wrapper's code.

• If the component has an API written in one
of the languages supported by the Java
Native Interface (currently C and C++), it
can be dynamically loaded into the wrapper
at runtime and accessed via the Java front

. end.

• If the component is an executable, the
wrapper must issue a system call for running
the program and data communication
usually occurs through files.

2.2.2 Component Management

In a way which is similar to the GATE component
architecture (GATE), a Corelli Component has pre-
and post-conditions. These conditions are defined
as (typed) feature structures and the Document
Manager can dynamically check the validity of

1. The Document Manager is implemented in Java.

annotations created by a component by checking
that each input annotation is subsumed by the pre-
condition and that each annotation produced by the
component is subsumed by the post-condition.

The programmer building an application using the
Application Framework defines for each component
pre- and post-conditions. A component imports one
or more Tango modules, and pre- and post-
conditions are defined as expressions of typed
feature structures which are instances of types
declared in the imported modules. The Graphical
Programming Environment type-checks the
declarations or pre- and post-conditions using the
Tango runtime facilities.

When the programmer defines an application as a
graph of components (where the graph is used
express the control flow between components), the
Graphical Programming Environment also type-
check the entire application by checking the
compatibility of pre- and post-conditions for all
possible execution paths in the application.

3 Conclusions

We described a new annotation scheme that:

• allows to annotate read-only documents;

• supports efficient annotation of very large
document collections;

• allows to control the validity of annotations
as they are added to a document;

• interfaces readily with modern unification-
based NLP components.

An alpha version of the Corelli Document Manager
has been released and is being tested at several
research institutes. The Document Manager is
implemented in Java and uses a Java OODBMS
back-end from ObjectDesign. The Component
Architecture has been prototyped using RMI and
we are still exploring other options to implement
the distributed Application Framework, including
ObjectSpace's Voyager and CORBA. The
Graphical Programming Environment and the
Application structure will be derived from the
GATE model (REF). The Tango package is also
implemented in Java and supports a few unification
and type-checking methods, but new optimized
unification algorithms will be developed in the
future.

Acknowledgments Research reported in this paper
is supported by the DoD, contract MDA904-96-C-
1040.

4 References

Jan Amtrup. Henrik Heine, Uwe lost. 1997.
"What's in a Word Graph - Evaluation and
Enhancement of Word Lattices". Eurospeech'97 —
Proceedings of the 5th European Conference on
Speech Communication and Technology. Rhodes,
Greece.

A. Ballim. 1995. "Abstract Data Types for Multext
Tool I/O". LRE 62-05 Deliverable 1.2.1.

Christian Boitet and Mark Seligman. 1994. "The
Whiteboard Architecture: a Way to Integrate
Heterogeneous Components of NLP Systems".
Proceedings of the 15th International Conference
on Computational Linguistics - COLING'94,
August 5-9 1994, Kyoto, Japan. pp426-430.

Bill Caid, Jamie Callan, Jim Conley, Harold Robin,
Jim Cowie, Kathy DiBella, Ted Dunning, Joe
Dzikiewicz, Louise Guthrie, Jerry Hobbs, Clint
Hyde, Mark Ilgen, Paul Jacobs, Matt Mettler, Bill
Ogden, Peggy Otsubo, Bev Schwartz, Ira Sider,
Ralph Weischedel and Remi Zajac. "Tipster Text
Phase II Architecture Design and Requirements,
Version 2.1". Proceedings of the Tipster-H 24-
month Workshop, Tysons Corner, VA, 7-10 May,
1996. pp249-305.

H. Cunningham, M. Freeman, W.J. Black. 1994.
"Software Reuse, Object-Oriented Frameworks and
Natural Language Processing". Proceedings of the
1st Conference on New Methods in Natural
Language Processing - NEMLAP-1, Manchester.

H. Cunningham, Y. Wilks, R. Gaizauskas. 1996.
"New Methods, Current Trends and Software
Infrastructure for NLP". Proceedings of the 2nd
Conference on New Methods in Natural Language
Processing - NEMLAP-2, Ankara, Turkey.

Ralph Grishman, editor. 1995. "Tipster Phase n
Architecture Design Document". New-York
University, NY, July 1995.

Nigel Sharpies and Philip Bernick. 1996. "A User's
Guide to TDM: The CRL TIPSTER Document
Manager", CRL Technical Report MCCS-96-298.

Henry Thompson. 1995. "Multext Workpackage 2,
Milestone B, Deliverable Overview". LRE 62-050
Deliverable 2.

Remi Zajac, Mark Casper and Nigel Sharpies.
1997. "An Open Distributed Architecture for Reuse
and Integration of Heterogeneous NLP
Components". Proceedings of the 5th Conference
on Applied Natural Language Processing -
ANLP'97, 31 March-3 April, Washington DC.
pp245-252.

Remi Zajac. 1992. "Inheritance and Constraint-
based Grammar Formalisms". Computational
Linguistics 18/2, June 1992, pp!59-182.

Extending Grammar Annotation Standards to Spontaneous Speech

Anna RAHMAN
School of Cognitive and Computing Sciences

University of Sussex
Palmer, Brighton, UK. BN1 9QH

annar@cogs.susx.ac.uk

Geoffrey SAMPSON
School of Cognitive and Computing Sciences

University of Sussex
Palmer, Brighton, UK. BN1 9QH

geoffs@cogs.susx.ac.uk

Abstract

We examine the problems that arise in extending
an explicit, rigorous scheme of grammatical
annotation standards for written English into the
domain of spontaneous speech. Problems of
principle occur in connexion with part-of-speech
tagging; the annotation of speech repairs and
structurally incoherent speech; logical
distinctions dependent on the orthography of
written language (the direct/indirect speech
distinction); differentiating between nonstandard
usage and performance errors; and integrating
inaudible wording into analyses of otherwise-
clear passages. Perhaps because speech has
contributed little in the past to the tradition of
philological analysis, it proves difficult in this
domain to devise annotation guidelines which
permit the analyst to express what is true
without forcing him to go beyond the evidence.

Background

To quote Jane Edwards (1992: 139), "The single
most important property of any data base for
purposes of computer-assisted research is that
similar instances be encoded in predictably
similar ways". This principle has not often been
observed in the domain of grammatical
annotation. Although many alternative lists of
grammatical categories have been proposed for
English and for other languages, in most cases
these are not backed up by detailed, rigorous
specifications of boundaries between the
categories. A scheme may define how to draw a
parse tree for a clear, "textbook" example
sentence, with node labels drawn from a large,
informative label-alphabet, but may leave it
entirely to analysts' discretion how to apply the

annotation to the messy constructions that are
typical of real-life data.

The SUSANNE scheme, developed over the
period 1983-93 Sampson (1995;
ftp://ota.ox.ac.uk/pub/ota/susanne/) is a first
published attempt to fill this gap for English; the
500 pages of the scheme aim to define an
explicit analysis for everything that occurs in the
language in practice. No claim is made that the
numerous annotation rules comprised in the
SUSANNE scheme are "correct" with respect to
some psychological or other reality; undoubtedly
there are cases where the opposite choice of rule
could have yielded an equally well-defined and
internally consistent annotation scheme. But,
without some explicit choice of rules on a long
list of issues , one has only a list of category-
names and symbols, not a well-defined scheme
for applying them.

The SUSANNE scheme has been achieving a
degree of international recognition: "the detail
... is unrivalled" Langendoen (1997: 600);
"impressive ... very detailed and thorough"
Mason (1997: 169, 170); "meticulous treatment
of detail" Leech & Eyes (1997: 38). We are not
aware of any alternative annotation scheme (for
English, or for another language) which covers
the ground at a comparable level of detail. (The
other schemes that we know about seem to have
been initiated substantially more recently than
SUSANNE, as well as being less detailed; we do
not survey them here.) Various research groups
may prefer to use different lists of grammatical
symbols, but it is not clear what value will attach
to statistics derived from annotated corpora
unless the boundaries between their categories
are defined with respect to the same issues that
the SUSANNE scheme treats explicitly.

Currently, the CHRISTINE project
(http://www.cogs.susx.ac.uk/users/
geoffs/RChristine.html) is extending the
SUSANNE scheme, which was based mainly on
edited written English, to the domain of
spontaneous spoken English. CHRISTINE is
developing the outline extensions of the
SUSANNE scheme for speech which were
contained in Sampson (1995: ch. 6) into a set of
annotation guidelines comparable in degree of
detail to the rest of the scheme, "debugging"
them by applying them manually to samples of
British English representing a wide variety of
regional, social class, age, and social setting
variables. Figure 1 displays an extract from the
corpus of annotated speech currently being
produced through this process. The sources of
language samples used by the CHRISTINE
project are the speech section of the British
National Corpus (http://info.ox.ac.uk/bnc/), the
Reading Emotional Speech Corpus
(http://midwich.reading.ac.uk/research/
speechlab/emotion/), and the London-Lund
Corpus (Svartvik 1990). Figure 1 is extracted
from file KSS of the British National Corpus.
(Except where otherwise stated, examples
quoted in later sections of this paper will also
come from the BNC, with the location specified
as three-character filename followed after full
stop by five-digit "s-unit number". BNC
transcriptions include punctuation and
capitalization, which are of questionable status
in representations of spoken wording; in Figure
1 these matters are normalized away, but they
have been allowed to stand in examples quoted
in the text below.)

Figure 1 - *. . -

date April 1992, location South Shields,
locale home, activity conversation
PS6RC: f, 72, dial Lancashire,
Salvation Army, educ X, class UU
PS6R9: m, 45, dial Lancashire,
unemployed, educ X, class DE
(sonofPS6RC)

VDO do
XX +n't
VVOv know
RRQq where
PPHSlf
VHZ +'s
WGK gon
TO +na
VVOv get
NNln cake
VDN done
YG plOl
RRs yet

[Ve.

.Ve]
[Fn?:o[Rq:G101.Rq:G101]
she [Nas:s.Nas:s]
[Vzut.
.Vzut]
[Ti:z[Vi.
-Vi]
[Ns:o.Ns:o]
[Tn:j[Vn.Vn]Tn:j]
.Ti:z]Fn?:o]
[Rs:t.Rs:t]Fn:o]S]

? <unclear> [Y.Y]
PPY you
VMo ca
XX +n't
VVOv ice
ATI a
YR #
WOv/icei
YR #
WOv ice
ATI a
NNln cake
CSi if
PPY you
VHO have
XX +n't
VVNv got
MCI one

[S[Ny:s.Ny:s]
[Vce.
.

.Vce]
[Ns:o.Ns:o]
.

[V[VVOv#.
.

.VVOv#]V]
[Ns:o.
.Ns:o]
[Fa:c.
[Ny:s.Ny:s]
[Vef.

.Vef]
[Ms:o.Ms:o]Fa:c]S]

PS6RC
PPIS1 I
VVOv say
PPIS1 I

[S[Nea:s.Nea:s]
[V.V]
[Fn:o[Nea:s.Nea:s]

In Figure 1, the words uttered by the speakers
are in the next-to-rightmost field. The field to
their left classifies the words, using the
SUSANNE tagset supplemented by some
additional refinements to handle special
problems of speech: the part-word i at byte
0692161 is tagged "VVOv/ice" to show that it is
a broken-off attempt to utter the verb ice. The
rightmost field gives the grammatical analysis of
the constructions, in the form of a labelled tree
structure which again uses the SUSANNE
conventions. All tagmas are classified formally,
with a capital letter followed in some cases by
lower-case subcategory letters: S stands for
"main clause", Nea represents "noun phrase
marked as first-person-singular and subject", Ve
labels don't know as a verb group marked as
negative. Additionally, immediate constituents
of clauses are classified functionally, by a letter
after a colon: Nea:s in the first line shows that 7

is the subject of say, Fn:o in the third line shows
that the nominal clause (Fn) / don't know where
... is direct object of say. Three-digit index
numbers relate surface to logical structures.
Thus where in the seventh line is marked as an
interrogative adverb phrase (Rq) having no
logical role (:G) in its own clause (that is, the
clause headed by + 's gon, i.e. is going), but
corresponding logically to an unspoken Place
adjunct ("plOl") within the infinitival clause
+na (= to) get cake done. (The character "y" in
column 3 identifies a line which contains an
element of the structural analysis rather than a
spoken word.)

Legal constraints permitting, the CHRISTINE
Corpus will be made freely available
electronically, after completion in December
1999, in the same way as the SUSANNE Corpus
already is.

Defining a rigorous, predictable structural
annotation scheme for spontaneous speech
involves a number of difficulties which are not
only additional to, but often different in kind
from, those involved in defining such a scheme
for written language. This paper examines
various of these difficulties. In some cases, our
project has already identified tentative
annotation rules for addressing these difficulties,
and in these cases we shall mention the decision
adopted; but in other cases we have not yet been
able to formulate any satisfactory solution.
Even in cases where our project has chosen a
provisional solution, discussing this is not
central to our aims in the present paper. Our
goal, rather, is to identify the types of issue
needing to be resolved, and to show how
devising an annotation scheme for speech
involves problems of principle, of a kind that
would have been difficult to anticipate before
undertaking the task.

1 The Software Engineering Precedent

The following pages will examine a number of
conceptual problems that arise in defining
rigorous annotation standards for spontaneous
speech. Nothing will be said about
computational technicalities, for instance the

possibilities of designing an automatic parser
that could apply such annotation, or the nature
of the software tools used in our project to
support manual annotation. (The project has
developed a range of such tools, but we regard
them as being of interest only to ourselves.)

In our experience, some computational linguists
see a paper of this type as insubstantial and of
limited value in advancing the discipline. While
it is not for us to decide the value of our
particular contribution, as a judgement on a
genre we see this attitude as profoundly wrong-
headed. To explain why, let us draw an analogy
with developments in industrial and commercial
computing.

Writing programs and watching them running is
fun. Coding and typing at keyboards are the
programmer activities which are most easy for
IT managers to perceive as productive. For both
these reasons, in the early decades of computing
it was common for software developers to move
fairly quickly from taking on a new assignment
to drafting code — though, unless the
assignment was trivially simple, the first
software drafts did not work. Sometimes they
could be rescued through debugging — usually a
great deal of debugging. Sometimes they could
not: the history of IT is full of cases of many-
man-year industrial projects which eventually
had to be abandoned as irredeemably flawed
without ever delivering useful results.

There is nowadays a computer science
subdiscipline, software engineering e.g.
Sommerville (1992), which has as one of its
main aims the training of computing personnel
to resist their instincts and to treat coding as a
low priority. Case studies have shown Boehm
(1981: 39-41) that the cost of curing
programming mistakes rises massively,
depending how late they are caught in the
process that begins with analysing a new
programming task and ends with maintenance of
completed software. In a well-run modern
software house, tasks and their component
subtasks are rigorously documented at
progressively more refined levels of detail, so
that unanticipated problems can be detected and
resolved before a line of code is written;

programming can almost be described as the
easy bit at the end of a project.

The subject-matter of computational linguistics,
namely human language, is one of the most
complex phenomena dealt with by any branch of
IT. To someone versed in modern industrial
software engineering, which mainly deals with
structures and processes much simpler than any
natural language, it would seem very strange that
our area of academic computing research could
devote substantially more effort to developing
language-processing software than to analysing
in detail the precise specifications which
software such as natural-language parsers should
be asked to deliver, and to uncovering hidden
indeterminacies in those specifications.
Accordingly, we make no bones about the data-
oriented rather than technique-oriented nature of
the present paper. At the current juncture in
computational linguistics, consciousness-raising
about problematic aspects of the subject-matter
is a high priority.

2 Wordtagging

One fundamental aspect of grammatical
annotation is classifying the grammatical roles
of words in context — wordtagging. The
SUSANNE scheme defined an alphabet of over
350 distinct wordtags for written English, most
of which are equally applicable to the spoken
language though a few have no relevance to
speech (for instance, tags for roman numerals, or
mathematical operators). Spoken language also,
however, makes heavy use of "discourse items"
Stenstrom (1990) having pragmatic functions
with little real parallel in writing: e.g. well as an
utterance initiator. Discourse items fall into
classes which in most cases are about as clearly
distinct as the classifications applicable to
written words, and the CHRISTINE scheme
provides a set of discourse-item wordtags
developed from Stenstrom's classification.
However, where words are ambiguous as
between alternative discourse-item classes, the
fact that discourse items are not normally
syntactically integrated into wider structures
means that there is little possibility of finding
evidence to resolve the tagging ambiguity.

Thus, three discourse-item classes are Expletive
(e.g. gosh), Response (e.g. ah), and Imitated
Noise (e.g. glug glug). Consider the following
extracts from a sample in which children are
"playing horses", one riding on the other's back:

KPC.00999-1002 speaker PS 1DV: ... all you
can do is <pause> put your belly up and
I'll go flying! ... Go on then, put your
belly up! speaker PS 1DR: Gung!

KPC. 10977 Chuck a chuck a chuck chuck! Ee
eel Go on then.

In the former case, gung is neither a standard
English expletive, nor an obviously appropriate
vocal imitation of anything happening in the
horse game. Conversely, in the latter case ee
could equally well be the standard Northern
regional expletive expressing mildly shocked
surprise, or a vocal imitation of a "riding" noise.
In many such cases, the analyst is forced by the
current scheme to make arbitrary guesses, yet
clear cases of the discourse-item classes are too
distinct from one another to justify eliminating
guesswork by collapsing the classes into one.

Not all spoken words posing tagging problems
are discourse items. In:

KSU.00396-8 Ah ah! Diddums! Yeah. , -

any English speaker will recognize the word
diddums as implying that the speaker regards the
hearer as childish, but intuition does not settle
how the word should be tagged (noun? if so,
proper or common?); and published dictionaries
do not help. To date we have formulated no
principled rule for choosing an analysis in cases
like these.

3 Speech Repairs

Probably the most crucial single area where
grammatical standards developed for written
language need to be extended to represent the
structure of spontaneous spoken utterances is
that of speech repairs. The CHRISTINE repair
annotation system draws on Levelt (1983) and
Howell & Young (1990, 1991), to our
knowledge the most fully-worked-out and
empirically-based previously existing approach.

This approach identified a set of up to nine
repair milestones within a repaired utterance, for
instance the point at which the speaker's first
grammatical plan is abandoned (the "moment of
interruption"), and the earlier point marking the
beginning of the stretch of wording which will
be replaced by new wording after the moment of
interruption. However, this approach is not fully
workable for many real-life speech repairs. In
one respect it is insufficiently informative: the
Levelt/Howell & Young notation provides no
means of showing how a local sequence
containing a repair fits into the larger
grammatical architecture of the utterance
containing it. In other respects, the notation
proves to be excessively rich: it requires speech
repairs to conform to a canonical pattern from
which, in practice, many repairs deviate.

Accordingly, CHRISTINE embodies a
simplified version of this notation, in which the
"moment of interruption" in a speech repair is
marked (by a "#" sign within the stream of
words), but no attempt is made to identify other
milestones, and the role of the repaired sequence
is identified by making the "#" node a daughter
of the lowest labelled node in a parse tree such
that both the material preceding and the material
following the # are (partial) attempts to realize
that category, and the mother node fits normally
into the surrounding structure. This approach
works well for the majority of speech repairs,
e.g.:

KBJ.00943 That's why I said [Ti:o to get ma ba
#, get you back then] ...
KCA.02828 I'll have to [VVOv# cha # change]
it

"A:'

In the KBJ case, to get ma ba (in which ma and
ba are truncated words, the former identified by
the wordtagging as too distorted to reconstruct
and the latter as an attempt at back as an
adverb), and get you back then, are successive
attempts to produce an infinitival clause (Ti)
functioning as object (:o) of said. In the KCA
case, cha and change are successive attempts to
produce a single word whose wordtag is WOv
(base form of verb having transitive and
intransitive uses). In Figure 1, the "#" symbol is
used at two levels in the same speaker turn:
speaker PS6RC makes two attempts to realize a

main clause (S), and the second attempt begins
with two attempts to pronounce the verb ice.

However, although the CHRISTINE speech-
repair notation is less informative than the full
Levelt/Howell & Young scheme, and seems as
simple as is consistent with offering an adequate
description of repair structure, applying it
consistently is not always straightforward. In
the first place, as soon as the annotation scheme
includes any system for marking speech repairs,
analysts are obliged to decide whether particular
stretches of wording are in fact repairs or well-
formed constructions, and this is often unclear.
Sampson (1998) examined a number of
indeterminacies that arise in this area; one of
these is between repairs and appositional
structures, as in:

KSS.05002 she can't be much cop if she 'd open
her legs to a first date to a Dutch s-
sailor

— where to a Dutch s- sailor might be intended
to replace to a first date as the true reason for
objecting to the girl, but alternatively to a Dutch
s- sailor could be an appositional phrase giving
fuller and better particulars of the nature of her
offence. Annotation ought not systematically to
require guesswork, but it is hard to see how a
neutral notation could be devised that would
allow the analyst to suspend judgment on such a
fundamental issue as whether a stretch of
wording is a repair or a well-formed
construction.

Even greater problems are posed by a not
uncommon type of ill-formed utterance that
might be called "syntactically Markovian", in
which each element coheres logically with what
immediately precedes but the utterance as a
whole is not coherent. The following examples
come from the London-Lund Corpus, with text
numbers followed by first and last tone-unit
numbers for the respective extracts:

S.I.3 0901-3 ... of course I would be willing to
urn <pause => come into the common-
room <pause => and uh <pause >
in fact I would like nothing I would like
better [speaker is undergraduate, age ca

36, describing interview for Oxbridge
fellowship]

S.5.5 0539-45 and what is happening
<pause=> in Britain today <pause ->
is ay- demand for an entirely new
foreign policy quite different from the
cold war policy <pause => is emerging
from the Left [speaker is Anthony
Wedgwood Benn MP on radio
discussion programme]

In the former example, nothing functions
simultaneously as the last uttered word of an
intended sequence / would like nothing better
and the first uttered word of an implied sequence
something like there is nothing I would like
better. In the latter, the long NP an entirely new
foreign policy quite different from the cold war
policy appears to function both as the
complement of the preposition for, and as
subject of is emerging. In such cases one cannot
meaningfully identify a single point where one
grammatical plan is abandoned in favour of
another. Because these structures involve
phrases which simultaneously play one
grammatical role in the preceding construction
and a different role in the following
construction, they resist analysis in terms of
tree-shaped constituency diagrams (or,
equivalently, labelled bracketing of the word-
string). Yet constituency analysis is so solidly
established as the appropriate formalism for
representing natural-language structure in
general that it seems unthinkable to abandon it
merely in order to deal with one special type of
speech repair.

4 Logical Distinctions Dependent on the
Written Medium
There are cases where grammatical category
distinctions that are highly salient in written
English seem much less significant in the spoken
language, so that maintaining them in the
annotation scheme arguably misrepresents the
structure of speech. Probably the most
important of these is the direct/indirect speech
distinction. Written English takes great pains to
distinguish clearly between direct speech,
involving a commitment to transmit accurately

the quoted speaker's exact wording, and indirect
speech which preserves only the general sense of
the quotation. The SUSANNE annotation
scheme uses categories which reflect this
distinction (Q v. Fn). However, the most crucial
cues to the distinction are orthographic matters
such as inverted commas, which lack spoken
counterparts. Sometimes the distinction can be
drawn in spoken English by reference to
pronouns, verb forms, vocatives, etc.:

KD6.03060 ... he says he hates drama because
the teacher takes no notice, he said one
week Stuart was hitting me with a stick
and the teacher just said calm down you
boys ...

— the underlined he (rather than /) implies that
the complement of says is indirect speech; me
implies that the passage beginning one week is a
direct quotation, and the imperative form calm
and vocative you boys imply that the teacher is
quoted directly. But in practice these cues
frequently conflict rather than reinforcing one
another:

KCT. 10673 [reporting speaker's own response
to a directly-quoted objection]: / said
well that^s his hard luck!

KCJ .01053-5 well Billy, Billy says well take
that and then he 'II come back and then
he er gone and pay that

In the KCT example, the discourse item well and
the present tense of fijs after past-tense said
suggest direct speech, but his (which from the
context denotes the objector) suggests indirect
speech. Likewise in the KCJ example, well and
the imperative take imply direct speech, he'll
rather than I'LL implies indirect speech.
Arguably, imposing a sharp two-way direct v.
indirect distinction on speech is a distortion; one
might instead feel that speech uses a single
construction for reporting others' utterances,
though different instances may contain more or
fewer indicators of the relative directness of the
report. On the other hand, logically speaking the
direct v. indirect speech distinction is so
fundamental that an annotation scheme which
failed to recognize it could seem unacceptable.
(To date, CHRISTINE analyses retain the
distinction.)

5 Nonstandard Usage

Real-life British speech contains many
differences from standard usage with respect to
both individual words and syntactic patterns.

In the case of wordtagging, the SUSANNE rule
(Sampson 1995: §3.67) is that words used in
ways characteristic of nonstandard dialects are
tagged in the same way as the words that would
replace them in standard English. This rule
tends to be unproblematic for pronouns and
determiners, thus in:

KP4.03497 it's a bit of fun, it livens up me day
KCT. 10705 she told me to have them plums

the underlined words are given the tags for
standard my, those respectively. It is more
difficult to specify a predictable way to apply
such a rule in the case of nonstandard uses of
strong verb forms. Standard base forms can be
used in past contexts, e.g.:

KCJ.01096-8 a man bought a horse and give it
to her, now it's won the race

and the solution of tagging such an instance as a
past tense is put into doubt because frequently
nonstandard English omits the auxiliary of the
standard perfective construction, suggesting that
give might be tagged as given rather than gave;
cf.:

KCA.02536 What I done. I taped it back like
that.

KCA.02572 What it is, when you sot snooker
on and just snooker you're quite
<pause> content to watch it...

(Note that done might be seen as equivalent to
standard did, rather than to standard have done;
but got meaning "have" is not plausibly analysed
as other than a perfective construction.) It is
quite impractical for annotation to be based on
fully adequate grammatical analyses of each
nonstandard dialect in its own terms; but it is not
easy to specify consistent rules for annotating
such uses as deviations from the known,
standard dialect. The CHRISTINE project has
attempted to introduce predictability into the

analysis of these cases, by recognizing a
nonstandard-English "tense" realized as past
participle not preceded by auxiliary, and by
ruling that any verb form used in a nonstandard
structure with past reference will be classified as
a past participle (thus give in the KCJ example
above is classified as a nonstandard equivalent
of given). This approach does work well for
many cases, but it remains to be seen whether it
deals satisfactorily with all the usages that arise.

At the syntactic level, an example of a
nonstandard construction requiring adaptation of
the written-English annotation scheme would be
relative clauses containing both relative pronoun
and undeleted relativized NP, unknown in
standard English but usual in various
nonstandard dialects, e.g.:

KD6.03075 ... bloody Colin who, he borrowed
his computer that time, remember?

Here the CHRISTINE decision is to treat the
relativized NP (he} as appositional to the relative
pronoun. For the case quoted, this works; but it
will not work if a case is ever encountered where
the relativized element is not the subject of the
relative clause. Examples like this raise the
question what it means to specify consistent
grammatical annotation standards applicable to a
spectrum of different dialects, rather than a
single dialect. Written English usually conforms
more or less closely to the norms of the national
standard language, so that grammatical dialect
variation is marginal and annotation standards
can afford to ignore it. In the context of speech,
it cannot be ignored, but the exercise of
specifying annotation standards for
unpredictably varying structures seems
conceptually confused.

6 Dialect Difference v. Performance
Error

Special problems arise in deciding whether a
turn of phrase should be annotated as well-
formed with respect to the speaker's
nonstandard dialect, or as representing standard
usage but with words elided as a performance
error. Speakers often do omit necessary words,
e.g.:

KD2.03102-3 There's one thing I don't like
<pause> and that's having my photo
taken. And it will be hard when we have
to photos.

— it seems safe to assume that the speaker
intended something like have to show photos.
One might take it that a similar process explains
the underlined words in:

KD6.03154 oh she was shouting at him at
dinner time <shift shouting> Steven
<shift> oh god dinner time she was
shouting him.

where at is missing; but this is cast in doubt
when other speakers, in separate samples, are
found to have produced:

KPC.00332 go in the sitting room until I shout
you for tea

KD2.02798 The spelling mistakes only
occurred when <pause> I was shouted.

— this may add up to sufficient evidence for
taking shout to have a regular transitive use in
nonstandard English.

This problem is particularly common at the ends
of utterances, where the utterance might be
interpreted as broken off before it was
grammatically complete (indicated in the
SUSANNE scheme by a "#" terminal node as
last daughter of the root node), but might
alternatively be an intentional nonstandard
elision. In:

KE2.08744 That's right, she said Margaret
never goes, I said well we never go for
lunch out, we hardly ever really

the words we hardly ever really would not occur
in standard English without some verb (if only a
placeholding do), so the sequence would most
plausibly be taken as a broken-off utterance of
some clause such as we hardly ever really go out
to eat at all; but it is not difficult to imagine that
the speaker's dialect might allow we hardly ever
really for standard we hardly ever do really, in
which case it would be misleading to include the
"#" sign.

It seems inconceivable that a detailed annotation
scheme could fail to distinguish difference of
dialect from performance error; indeed, a
scheme which ignored this distinction might
seem offensive. But analysts will often in
practice have no basis for applying the
distinction to particular examples.

7 Transcription Inadequacies

One cannot expect every word of a sample of
spontaneous speech recorded in field conditions
to be accurately transcribable from the
recordings. Our project relies on transcriptions
produced by other researchers, which contain
many passages marked as "unclear"; the same
would undoubtedly be true if we had chosen to
gather our own material. A structural annotation
system needs to be capable of assigning an
analysis to a passage containing unclear
segments; to discard any utterance or sentence
containing a single unclear word would require
throwing away too many data, and would
undesirably bias the retained collection of
samples towards utterances that were spoken
carefully and may therefore share some special
structural properties.

The SUSANNE scheme uses the symbol Y to
label nodes dominating stretches of wholly
unclear speech, or tagmas which cannot be
assigned a grammatical category because they
contain unclear subsegments that make the
categorization doubtful. This system is
unproblematic, so long as the unclear material in
fact consists of one or more complete
grammatical constituents. Often, however, this
is not so; e.g.:

KCT. 10833 Oh we didn't <unclear> to drink
yourselves.

Here it seems sure that the unclear stretch
contained multiple words, beginning with one or
more words that complete the verb group (V)
initiated by didn't; and the relationship of the
words to drink yourselves to the main clause
could be quite different, depending what the
unclear words were. For instance, if the unclear
words were give you anything, then to drink
would be a modifying tagma within an NP

headed by anything; on the other hand, if the
unclear stretch were expect you, then to drink
would be the head of an object complement
clause. Ideally, a grammatical annotation
scheme would permit all the clear grammar to be
indicated, but allow the analyst to avoid
implying any decision about unresolvable issues
such as these. Given that clear grammar is
represented in terms of labelled bracketing,
however, it is very difficult to find usable
notational conventions that avoid commitment
about the structures to which unclear wording
contributes.

Conclusion

In annotating written English, where one is
drawing on an analytic tradition evolved over
centuries, it seems on the whole to be true that
most annotation decisions have definite answers;
where some particular example is vague between
two categories, these tend to be subcategories of
a single higher-level category, so a neutral
fallback annotation is available. (Most English
noun phrases are either marked as singular or
marked as plural, and the odd exceptional case
such as the fish can at least be classified as a
noun phrase, unmarked for number.) One way
of summarizing many of the problems outlined
in the preceding sections is to say that, in
annotating speech, whose special structural
features have had little influence on the analytic
tradition, ambiguities of classification constantly
arise that cut across traditional category
schemes. In consequence, not only is it often
difficult to choose a notation which attributes
specfic properties to an example; unlike with
written language, it is also often very difficult to
define fallback notations which enable the
annotator to avoid attributing properties for
which there is no evidence, while allowing what
can safely be said to be expressed.

Some members of the research community may
be tempted to feel that a paper focusing on these
problems ranks as self-indulgent hand-wringing
in place of serious effort to move the discipline
forward. We hope that our earlier discussion of
software engineering will have shown why that
feeling would be misguided. Nothing is easier
and more appealing than to plunge into the work
of getting computers to deliver some desired

behaviour, leaving conceptual unclarities to be
sorted out as and when they arise. Huge
quantities of industrial resources have been
wasted over the decades through allowing IT
workers to adopt that approach. Natural
language processing was one of the first
application areas ever proposed for computers
(by Alan Turing in 1948 — Hodges 1983: 382);
fifty years later, the level of success of NLP
software (while not insignificant) does not
suggest that computational linguistics can afford
to go on ignoring lessons that have already been
painfully learned by more central sectors of the
IT industry.

Effort put into automatic analysis of natural
language implies a prior requirement for serious
effort devoted to defining and debugging
detailed standard schemes of linguistic analysis.
Our SUSANNE and CHRISTINE projects have
been and are contributing to this goal, but they
are no more than a beginning. We urge other
computational linguists to recognize this area as
a priority.

Acknowledgment

The research reported here was supported by
grant ROOO 23 6443, "Analytic Standards for
Spoken Grammatical Performance", awarded by
the Economic and Social Research Council
(UK).

References

Boehm B.W. (1981) Software Engineering
Economics. Prentice-Hall, Engelwood
Cliffs, N.J.

Edwards Jane A. (1992) Design principles in
the transcription of spoken discourse.
In , "Directions in Corpus Linguistics",
J. Svartvik, ed., Mouton de Gruyter,
Berlin.

Hodges A. (1983) Alan Turing: The Enigma of
Intelligence. Burnett Books, London.

Howell P. & K. Young (1990) Speech repairs:
report of work conducted October 1st
1989-March 31st 1990. Department of
Psychology, University College London.

Howell P. & Young K. (1991) The use of
prosody in highlighting alterations in

repairs from unrestricted speech.
Quarterly Journal of Experimental
Psychology 43A,pp. 733-758.

Langendoen D.T. (1997) Review of Sampson
(1995). Language 73. pp.600-603.

Leech G.N. & Eyes Elizabeth (1997) Syntactic
annotation: treebanks In Ch. 3 "Corpus
Annotation", R.G. Garside et al., eds.,
Longman, Harlow, Essex.

Levelt W.J.M. (1983) Monitoring and self-
repair in speech. Cognition , 14, pp.41-
104.

Mason O. (1997) Review of Sampson (1995).
International Journal of Corpus
Linguistics, 2.1, pp.69-72.

Sampson G.R. (1995) English for the
Computer. Clarendon Press, Oxford.

Sampson G.R. (1998) Consistent annotation of
speech-repair structures. In
"Proceedings of the First International
Conference on Language Resources and
Evaluation, Granada, May 1998"

Sommerville I. (1992) Software Engineering
(4th ed.). Addison-Wesley,
Wokingham, Berks.

Stenstrom Anna-Brita (1990) Lexical items
peculiar to spoken discourse. In
Svartvik (1990).

Svartvik J., ed. (1990) The London-Lund
Corpus of Spoken English. Lund
University Press.

