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ABSTRACT

We propose a real-time and robust approach to estimate the full 3D
head pose from extreme head poses using a monocular system. To
this end, we first model the head using a simple geometric shape ini-
tialized using facial landmarks, i.e., eye corners, extracted from the
face. Next, 2D salient points are detected within the region defined
by the projection of the visible surface of the geometric head model
onto the image, and projected back to the head model to generate the
corresponding 3D features. Optical flow is used to find the respec-
tive 2D correspondences in the next video frame. Assuming that
the monocular system is calibrated, it is then possible to solve the
Perspective-n-Point (PnP) problem of estimating the head pose given
a set of 3D features on the geometric model surface and their corre-
sponding 2D correspondences from optical flow in the next frame.
The experimental evaluation shows that the performance of the pro-
posed approach achieves, and in some cases improves the state-of-
the-art performance with a major advantage of not requiring facial
landmarks (except for initialization). As a result, our method also
applies to real scenarios in which facial landmarks-based methods
fail due to self-occlusions.

Index Terms— Head pose estimation, monocular system,
perspective-n-point

1. INTRODUCTION AND RELATED WORK

The extensive literature on head pose estimation (HPE) [1] evidences
the importance to determine the position and orientation of the head
relative to some coordinate system. Indeed, HPE is an essential step
to address well-known research topics such as face recognition [2],
facial expression recognition [3] and eye location [4, 5]. Certainly,
it has been demonstrated that the combination of head pose and eye
location provides a reference framework to estimate the gaze, from
which is possible to determine the level of attention or drowsiness,
for instance, of a vehicle driver [6, 7]. However, a real-time HPE
algorithm that is robust under realistic conditions is still a challenge
in computer vision. Such conditions are, e.g., varying illumination,
(self-)occlusions due to person’s accessories or large head rotations.

Among the vast literature on HPE, we herein focus on geometric-
based methods that apply to monocular systems. Concerned by illu-
mination changes, La Cascia et al. [8] proposed a 3D head tracking
approach based on a cylindrical head model (CHM), with registra-
tion of texture map images. An illumination correction term was
applied to handle light variation among consecutive image frames.
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In [9], Basu et al. presented a framework for rigid motion estima-
tion employing an ellipsoidal head model (EHM). Tracking was per-
formed through motion regularization; optical flow was used to com-
pute the model flow and the motion error was minimized using the
simplex gradient descent technique. Motion was estimated simi-
larly in [10], and the head represented with an extended superquadric
(ESQ) model. The approach was robust to self-occlusions and non-
rigid motion, but not suited for real-time applications. An alterna-
tive HPE approach was proposed by Xiao et al. in [11], where a
CHM was initialized using a reference template of the head image
and its 3D pose. Motion was recovered by minimizing an objec-
tive function and assuming a perspective projection. A tracking ap-
proach based on dynamic templates together with a pixel weighting
scheme were included to handle occlusions, non-rigid motion and
gradual lighting changes. Jang and Kanade presented in [12, 13]
an user-specific approach for head tracking using a CHM. Kalman
filter was used to combine motion estimated between consecutive
frames and the pose from a database that related SIFT feature points
to different head poses. Choi and Kim proposed in [3] an alterna-
tive template approach for head motion recovering in which they
combined a particle filter with an EHM. Active appearance model
(AAM) was implemented to initialize the 3D motion parameters,
and a modified version of the online appearance model (OAM) was
integrated at the observation model. Similarly, Sung et al. [14] com-
bined the AAM with a CHM in order to extent the working range
of the head motion. AAM was used to initialize the global mo-
tion parameters of the CHM. Later, these parameters were employed
to update the AAM during the tracking step. An and Chung pro-
posed in [2] a method for face recognition where the pose was es-
timated using a parametrized EHM. They modelled a linear sys-
tem assuming a rigid body motion under perspective projection and
estimated the pose using least squares. From this pose, face im-
ages were registered into frontal views, facilitating their recognition.
In [4, 5], Valenti et al. presented a hybrid scheme for gaze estimation
that combined HPE and eye tracking. Eyes were located using an
isophote-based method that exploited the semi-circular patterns in-
side the eye and the head was modelled using a CHM. Morency et al.
introduced in [15] GAVAM (Generalized Adaptive View-based Ap-
pearance Model), a probabilistic scheme, where the head was mod-
elled using a half ellipsoid. The pose estimation problem was formu-
lated as a linear system solved by Normal Flow Constraint (NFC).
More recently, a pose-adaptive Constrained Local Model (CLM)
framework was proposed in [16], which integrates AAM in order
to handle large head rotations. Similarly to our work, Ju et al. [6]
used salient 2D points as 2D features for pose estimation. These
features were detected in the face region and later projected onto a
EHM using ray tracing. The head pose was computed by solving the



transformation between these 3D features and their corresponding
2D features in the next frame, obtained through the KLT tracker [17].
Two different approaches were evaluated, namely the Perspective-n-
Point problem and POSIT. The downside of this method was related
to the need of detecting the face at each frame in order to define the
region of interest (ROI) for 2D feature extraction.

In this work we estimate the head pose and provide its position
and orientation across 6-DoF for each video frame. We have mod-
elled the human head as a disembodied rigid object [1] being free to
move left/right, up/down and forward/backward, i.e., translation in x,
y, and z perpendicular axes, respectively, combined with the rotation
about the same axes, often termed as pitch, yaw, and roll, respec-
tively. Similarly to [3, 11] and due to its ease of initialization in
comparison to precise and flexible head models [1] or parametrized
face models [18, 19], we use a simple geometric shape to model the
head. Indeed, a CHM or EHM only require the estimation of fewer
facial landmarks to be initialized, as we describe in Section 2.

The main contributions of our method are:

• In general, alternative HPE approaches require face detection
to define the ROI for feature detection. We, instead, define the
ROI by projecting the visible surface of our geometric model.
This enables for a real-time performance.

• The use of salient 2D points as 2D features within the ROI in-
stead of specific facial landmarks, e.g., nose tip, eyes’ and/or
lips’ corners. By doing so, our system is robust in situa-
tions where facial landmarks are not available due to e.g.,
(self-)occlusions.

• We introduce a weighting scheme based on the distance trans-
form to identify those 2D features that are lying close to the
border of ROI and thus prone to self-occlusion or likely to
belong to the background.

The remainder of this paper is organized as follows: Section 2
describes the proposed approach; Section 3 discuses the experimen-
tal evaluation and obtained results. Concluding remarks and future
work are presented in Section 4.

2. PROPOSED APPROACH

In general, HPE approaches based on simple geometric models and
intended for monocular systems require precise detection of facial
landmarks, or rely on frame to frame face detection in order to
continuously update the CHM/EHM. Contrary, we propose a HPE
pipeline that once initialized estimates the head pose with no need
of face detection, neither facial landmarks. As a result, the proposed
approach is robust to large head rotations regardless of the facial
expression and/or self-occlusions. The pipeline is shown in Fig. 1.

In the following and due to space limitations, we present our
approach using a CHM. However, EHM has been also implemented
and evaluated in the experiments (see Section 3).

2.1. System Initialization

An essential step before starting the HPE process is to adjust the
CHM to the user’s head. To that end, the user’s face dimensions as
well as the distance between the eye’s centers are needed. Herein, we
use the OpenCV [20] implementation of the Viola-Jones detection

Fig. 1. Proposed HPE pipeline.

Fig. 2. Location of the CHM in the 3D space.

method [21] which is based on a cascade of boosted classifiers con-
structed from low-level features. However, alternative techniques
such as appearance template methods [1] might also work, as soon
as the eyes’ centers are also provided.

In the following we assume a calibrated camera with known
intrinsic parameters. As shown in Fig. 2, we define the distance
between the camera and the baseline of the eyes in the CHM by
Zeyes = f · δmm

δpx
, with f the focal length of the camera, δpx

the estimated distance between the eye’s centers (both in pixels),
and δmm the mean interpupillary distance, which corresponds to
64.7 mm for male and 62.3 mm for female according to anthropo-
metric databases. Zcam denotes the distance between the center of
the CHM and the camera, and results from the sum of Zeyes and
Zhead, i.e., the distance from the head’s center to the midpoint be-
tween the eyes’ baseline. Zcam is related to the radius r of the CHM
as Zhead =

√
r2 − (δmm/2)2, with r = 1

2
|pTR − pTL | ·

δmm
δpx

,
and pTR and pTL the top right and top left corners of the detected
face bounding box (see Fig. 3). Similarly, the height of the CHM is



Fig. 3. Initialization of the CHM to fit the user’s head.

adjusted to the user’s head by h = |pTR − pBR | ·
δmm
δpx

.
Once Zcam is estimated, we compute the corners of the face

bounding box in the 3D space, i.e., {PTL , PTR , PBL , PBR}, to-
gether with the centers of the top and bottom bases of the CHM, i.e.,
CT and CB . We note that during the initialization step we assumed
that the user is facing the camera. Therefore, both rotation angles
(ωx, ωy, ωz) and initial translation values (tx, ty , tz) are set to zero.

2.2. Robust Non-facial 2D Feature Detection and Matching

Geometric-based HPE approaches either require facial landmarks
like nose tip, eye’s and/or lips’ corners to be frame-to-frame de-
tected, or sample and project onto the image plane the visible sur-
face of the CHM/EHM in a grid-like structure for 2D feature de-
tection [4]. Contrary, we propose to detect salient 2D points as 2D
features pi (see Step 1 in Fig. 1) within the ROI defined by the pro-
jection of the visible surface of the CHM onto the image plane, fur-
ther explained in Section 2.5.

To detect the 2D features we use FAST [24], a machine learning-
based corner-detection algorithm. Aside from being very well suited
for real-time applications, it provides accurate corners. Each fea-
ture is weighted according to its location within the ROI. That is, we
have introduced a feature weighting scheme that enables us to dis-
card outliers and/or non-reliable features and thus, to only consider
robust features for HPE. This weighting scheme results from apply-
ing the distance transform onto the ROI, i.e., each pixel within the
ROI has a normalized weight related to the Euclidean distance to the
closest boundary. Therefore, a higher weight will be set to those fea-
tures located in the center of the ROI than to those near to the ROI
boundaries. As can be observed in Section 3, a better performance
is achieved when removing low-weighted features within the HPE
process.

The iterative Lucas-Kanade feature tracker with pyramids de-
scribed in [25] has been used to find the feature correspondences in
the next frame (see Step 2 in Fig. 1).

2.3. Computation of 3D Features

3D features Pi (see Step 3 in Fig. 1) result from the intersection be-
tween the ray starting at the optical center of the camera and passing
through the 2D feature at the image plane, and the visible surface
of the CHM. The equation of the line is defined as P = C + kV,
with V being a vector parallel to the line that goes from the cam-
era’s optical center C through P. The scalar parameter k is com-
puted by solving the quadratic equation of the geometric model.

In the case of the CHM, the equation is defined as |V1|2 k2 +
2 (V1 · X1) k + |X1|2 − r2 = 0, with V1 = V − V·A

|A| A, and

X1 = (C−CB)− (C−CB)·A
|A| A. A is a vector parallel to the axis

of the cylinder, CB is the center of its lower base, and r is the radius.

2.4. Head Pose Estimation

The set of 3D features along with the corresponding 2D features de-
tected in Step 2 (see Fig. 1) from the next frame are used to solve
the PnP problem and thus, to estimate the head pose. The pose (see
Step 4 in Fig. 1) is computed by minimizing the error between the
reprojection of the 3D features onto the image plane and their respec-
tive detected 2D features by means of an iterative approach based on
the Levenberg-Marquardt algorithm.

From the resulting translation t and rotation R we update the
CHM (see Step 5 in Fig. 1) as well as the set of 3D features, i.e.,
P′i = R ·Pi+t. However, we do not update the pose of the corners
defining the face bounding box in the 3D space, i.e., {PTL , PTR ,
PBL , PBR} in a same way, as they need to be recalculated to define
the new ROI for feature detection in the next frame.

2.5. ROI for Non-facial 2D Feature Detection

As introduced in Section 2.2, the ROI for non-facial 2D feature de-
tection is defined by the projection of the visible surface of the CHM
onto the image, regardless of the orientation of the head (see Step 6
in Fig. 1). However, this is not a trivial task. Alternative geometric-
based methods simply keep track of the 3D face bounding box, i.e.,
{PTL , PTR , PBL , PBR} and define the ROI by its projection to the
image plane. Even so, these methods fail for large head rotations in
which the track of the face bounding box results partially visible or
even not visible. Other authors used a grid-like or mesh structure
along the CHM surface from which the projection of each vertex is
used for feature detection. However, a dense grid is needed to en-
sure robust 2D features detection, which is not practical if real-time
is required. Herein, we present an alternative solution in which only
the four corners defining the visible surface of the CHM along with
the curvature of the CHM’s bases are needed to define the ROI. To
do so, we first define a plane π with its normal vector resulting from
the cross product between a parallel vector to the x-axis of the cam-
era and the vector resulting from the two centers of the CHM bases,
i.e., CT and CB . The visible surface of the CHM is given by the
furthermost intersected points between the CHM and π, i.e., {P′TL ,
P′TR , P′BL , P′BR}, whereas the new ROI results from filling the
polygon defined by their projection along with the curvature of the
CHM’s bases (see Step 7 in Fig. 1).

3. EXPERIMENTS

The evaluation of the proposed approach was carried out using
an Intel Core(TM) i5-4210U processor. The approach has been
implemented in C++, with assistance of the OpenCV library. We
have evaluated our approach for both the CHM and EHM using the
Boston University (BU) head pose dataset [8]. The BU dataset con-
tains 45 video sequences of 5 persons performing different motions
in an office under uniform illumination. Ground truth is generated
using the Flock of Birds tracker with a nominal accuracy of 1.8 mm
in translation and 0.5 degrees in rotation.



CHM EHM
Weight Roll Pitch Yaw Roll Pitch Yawthresh.

0 4.22 6.37 6.30 3.41 4.36 5.31
5 3.66 5.73 6.16 3.36 4.46 5.09
10 3.23 5.89 6.22 3.29 4.79 5.44
15 3.15 6.19 6.56 3.34 5.04 5.69
25 3.06 6.32 6.46 3.31 5.19 5.66

Table 1. RMSE of the head orientation depending on the chosen
weight threshold.

Roll Pitch Yaw

R
M

SE

Our approach
CHM 3.66 5.73 6.16
EHM 3.36 4.46 5.09

Valenti et al. [4]
Fixed template with eye cues 3.00 5.26 6.10
Fixed template w/o eye cues 3.85 6.00 8.07
Updated template with eye cues 3.93 5.57 6.45
Updated template w/o eye cues 4.15 5.97 6.40

Asteriadis et al. [26]* 3.56 4.89 5.72
Sung et al. [14] 3.1 5.6 5.4
An et al. [2]

CHM 3.22 7.22 5.33
EHM 2.83 3.95 3.94
Plane Head Model (PHM) 2.99 7.32 18.08

ST
D

Our approach
CHM 3.35 4.54 5.42
EHM 2.98 3.84 4.56

Valenti et al. [4]
Fixed template with eye cues 2.82 4.67 5.79
Fixed template w/o eye cues 3.43 5.21 7.37
Updated template with eye cues 3.57 4.56 5.72
Updated template w/o eye cues 3.72 4.87 5.49

M
A

E

Our approach
CHM 2.80 4.58 4.87
EHM 2.56 3.39 3.99

Wang et al. [18]* 1.86 2.69 3.75
Prasad et al. [19]* 3.6 2.5 3.8
Jang et al. [13] 2.07 3.44 4.22
Jang et al. [12] 2.1 3.7 4.6
Choi et al. [3]

CHM 2.45 4.43 5.19
EHM 2.82 3.92 4.04

Morency et al. [15] 2.91 3.67 4.97
*These methods do not use a simple geometric head model but a 3D
parametrized face model.

Table 2. Comparison of the RMSE, STD and MAE achieved by the
proposed approach to other methods of the state of the art.

Table 1 reports the root mean square errors (RMSE) of the es-
timated head orientation by both CHM and EHM, and given by the
proposed HPE approach depending on the chosen weight threshold
described in Section 2.2. As expected, the overall performance im-
proves in both geometrical models as soon as a weight threshold
above 0 is chosen. Indeed, outliers that correspond to 2D features
from the background of the head are then discarded. However, in
the case of the EHM, the weighting scheme improvement is less sig-
nificant for the pitch rotation, which might be due to the fact that
the EHM fits better to the shape of the head and thus, less outliers
are detected. This better fitting also explains why the EHM outper-
forms the CHM, where errors are introduced when computing the
3D features by ray tracing. Table 2 reports the RMSE, the mean

Time in ms
CHM EHM

System Initialization 657 631
Robust Non-facial 2D Feature Detection 2.29 1.99
2D Feature Matching 9.89 6.97
Computation of 3D Features 1.04 1.68
Head Pose Estimation 3.43 2.49
ROI for Non-facial 2D Feature Detection 6.87 4.70

Time consumption for first frame 680.51 648.83

Time consumption for other frames 23.51 17.83

Table 3. Average runtimes of each step of the proposed HPE
pipeline presented in Fig. 1, for 150 launches.

absolute error (MAE), and the standard deviation (STD) measures
of the estimated head orientation given by our approach and by the
most outstanding HPE approaches in the literature. In this case, we
have chosen a weight threshold of 5 for robust 2D feature selection.
From the table we can observe that our results are comparable or
even better than state-of-the-art approaches such as [4], and with a
major advantage of not using eye cues. Also, we note that some of
the approaches considered for evaluation do not use geometric mod-
els, e.g., [26], requiring the detection of facial landmarks in each
frame. On the other hand, [18] and [19] use 3D parametrized face
models, which make them non suitable for real-time applications.
We note that the results related to the head translation have not been
reported as the calibration data for the ground truth is not available.
Finally, Table 3 reports the time consumption of each step of the pro-
posed HPE pipeline (see Fig. 1). As can be observed, the initializa-
tion is the most time-demanding step whereas the rest of the process
perfectly suits for real-time applications in which a robust HPE is
required, e.g., drowsiness, distraction/attention, or fatigue detection.

4. CONCLUDING REMARKS

We present a real-time HPE approach that handles extreme head po-
sitions under real scenarios. The proposed approach is intended for
monocular systems and only requires 2D salient points to accurately
provide the 6 DoF of the user’s head. The proposed approach is
suitable for real-time applications as it does not require to detect the
face of the user, neither facial landmarks at each frame. Indeed,
and in contrast to the alternative HPE approaches, we simply use
2D salient points that we filter according to an introduced 2D fea-
ture weighting scheme based on the distance transform. We model
the head using simple geometric models such as a CHM or an EHM
and we generate 3D features by projecting the previously computed
2D features onto the model surface. 2D feature correspondences are
also detected in the following frame and used to solve the PnP prob-
lem, from which results the head pose. By doing so, our approach
can handle extreme head rotations in which facial landmarks are not
necessarily available and it is robust to self-occlusions.

Occlusion handling and pose recovering are already topics in
which we are working on, together with eye tracking and gaze esti-
mation. Furthermore, we are also working on a novel HPE and gaze
estimation dataset that will address large head rotations, illumination
changes, long sequences, multiracial subjects, and accessories such
as glasses, hat or scarf. This new dataset will be publicly available
for the research community.
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