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Figure 1: Our dilated temporal fully-convolutional neural network (DTFCN) for motion capture segmentation. The initial layer consists of
a traditional 2D convolutional layer. The next layers are 1D temporal acausal convolutions with dilation. The final dilated conv layer uses a
normalizing ReLU activation function. Finally, we add a Softmax layer and upsample the output.

Abstract

Semantic segmentation of motion capture sequences plays a key part in many data-driven motion synthesis frameworks. It is
a preprocessing step in which long recordings of motion capture sequences are partitioned into smaller segments. Afterwards,
additional methods like statistical modeling can be applied to each group of structurally-similar segments to learn an abstract
motion manifold. The segmentation task however often remains a manual task, which increases the effort and cost of generating
large-scale motion databases. We therefore propose an automatic framework for semantic segmentation of motion capture data
using a dilated temporal fully-convolutional network. Our model outperforms a state-of-the-art model in action segmentation,
as well as three networks for sequence modeling. We further show our model is robust against high noisy training labels.

CCS Concepts

eComputing methodologies — Motion processing; Motion capture; Image processing;

1. Our Proposed Architecture

Recurrent neural networks (RNN) are the go-to method to model
time-dependent sequences. However, one of their major drawbacks
is the exploding and vanishing gradient problem and the difficulty
to parallelize their training. Additionally, [BKK18] have shown
that temporal convolutional networks (TCN) perform just as well
or even better than RNNs in sequence modeling tasks. Hence, we
introduce a model, which is inspired by traditional image segmen-
tation approaches [LSD15] and recent advances in sequence mod-
eling [BKK18] for semantic segmentation of motion capture data.

In a preprocessing step, we first transform our motion capture
data to an RGB image domain, much in the spirit of [LB*17]. Each

T First two authors contributed equally; email: ncheema@mpi-inf.mpg.de

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.

OUTPUT OUTPUT

P B =4
III III
...... d=2
d=1
INPUT INPUT

Figure 2: Dilated convolution. Left: acausal dilation. Right: causal
dilation. Systematic dilation increases the receptive field size expo-
nentially.

column of the image represents a frame in the motion sequence.
The rows represent the joints and the RGB values are the scaled
XYZ Euclidean coordinates of each corresponding joint. Such a
motion image can be seen in Fig. 4 (top). We then pass it to our
network (Fig. 1). Akin to the five areas in our visual cortex (V1
- V5) [Rem12], our model has a total of five convolution layers.
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Figure 3: Number of parameters (line) vs. train (dark blue) and test
(red) accuracy for different convolution widths. The receptive field

size with dilations after the first five layers is written in parentheses.

ED-TCN | WaveNet | TDNN LSTM Ours
Train 90.05% 90.64% 87.22% | 86.32% | 96.11%
Test 88.69% 88.47% 85.54% | 81.95% | 91.64%

Table 1: Comparison against other models. ED-TCN: [L*17],
WaveNet: [VDO* 16], TDNN: [W*90], LSTM: [HS97]

The initial layer consists of a traditional 2D convolutional layer
which is only applied in the time dimension. To do that, we set
the kernel height to the height of the image. Every layer has the
same convolution width w with stride 1. The next four layers are
1D temporal acausal convolutions with dilation. The dilation rate d
increases with each layer /, according to d = w!~!. A convolution-
ized dense layer with a Softmax activation function is added after
that. We found that a normalizing ReLLU function [L* 17] before the
Softmax layer increases accuracy.

Fig. 2 shows how dilated convolutions increase the receptive
field exponentially without loss of resolution for acausal and causal
convolutions. Causal convolutions are used for temporal data,
where the output depends on previous samples only. Since our goal
is to distinguish motions like left step (step while walking) from
begin and end left step (step from/to standing position), we use
acausal convolutions, as these motion types rely on past and future
information.

2. Experiments and Results

Our motion capture dataset consists of 70 sequences with 10 mo-
tion labels: standing, left/right step, begin/end left step, begin/end
right step, reach, retrieve and turn. Our sequences reach up to
1500 frames. In all of our experiments, we use non-randomized
7-fold cross-validation. We use the Adam [KB14] optimizer with
100 epochs for training.

In order to determine the optimal receptive field size (RFS), we
test our model on different convolution kernel widths w. Fig. 3
shows that even though a width w = 5 (RFS: 3125 frames) covers
the entire sequence, the accuracy does not differ much from using
w = 3 (RFS: 342 frames). A width w = 3 uses ~438K fewer pa-
rameters, however. Since our model has to be robust against human
error due to wrongly-classified labels, we further train our model
on noisy labels and test it on the true labels. Fig. 5 shows despite
adding 80% noisy labels in the training data, an accuracy of over
88% is reached on the true test labels for w = 3.

We test our model (w = 3) against another state-of-the-art TCN

Figure 4: Top: Motion capture sequence in RGB image domain.
Middle: True labels. Bottom: Our predictions.
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Figure 5: Test accuracies for different receptive field sizes depend-
ing on noise level.

model [L*17] for action segmentation and three commonly used
neural network models [VDO* 16,HS97, W*90] for sequence mod-
eling and classification using our dataset without noisy labels, and
show that our model is superior to these models (Tab. 1).

With this work, we have shown that our model provides a fruit-
ful segmentation tool for motion capture segmentation. To support
various types of motion, we further plan on increasing our motion
image database and do more experiments on noisy data.
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