
Delay constrained Energy Optimization for Edge
Cloud Offloading

Shreya Tayade∗, Peter Rost†, Andreas Maeder† and Hans D. Schotten∗
∗University of Kaiserslautern, Institute for Wireless Communications and Navigation, Kaiserslautern, Germany

Email: {tayade, schotten}@eit.uni-kl.de
†Nokia Bell Labs, Munich, Germany

Email: {peter.m.rost, andreas.maeder}@nokia-bell-labs.com

Abstract—Resource limited user-devices may offload computa-
tion to a cloud server, in order to reduce power consumption and
lower the execution time. However, to communicate to the cloud
server over a wireless channel, additional energy is consumed for
transmitting the data. Also a delay is introduced for offloading the
data and receiving the response. Therefore, an optimal decision
needs to be made that would reduce the energy consumption,
while simultaneously satisfying the delay constraint. In this paper,
we obtain an optimal closed form solution for these decision
variables in a multi-user scenario. Furthermore, we optimally
allocate the cloud server resources to the user devices, and
evaluate the minimum delay that the system can provide, for
a given bandwidth and number of user devices.

I. INTRODUCTION

Edge cloud offloading is a promising technique that en-
ables resource-limited user devices to execute computationally
extensive tasks. Cloud offloading has been broadly studied
recently [1]–[4]. From the user device perspective, to optimally
offload the computation, two necessary conditions have to
be satisfied: a) Energy consumption of device should be
minimum, and b) the offloaded task should be processed within
a given latency constraints. However, although energy can be
saved by offloading the computation, an additional energy is
consumed for transmitting the data to the cloud. Furthermore,
an additional transmitting and receiving delay is introduced for
offloading the computation to the cloud. As their exist a trade-
off between processing locally and offloading, we evaluate the
optimal offloading decision.

Many optimal offloading strategies have been proposed to
reduce the energy consumption of user devices [5]–[8]. In [5],
[6], the energy efficiency of a user device is increased by
dynamically scheduling data transmission and link selection,
as per the channel condition. Also, a delay constrained, energy
minimizing offloading techniques have been proposed in [9]–
[11]. In [9], [10], the authors partition a single task, and offload
the individual partitions to the distributed cloud servers, ensur-
ing that the execution is completed within a given deadline.
However, the work in [5], [6], [9], [10] does not consider
the multi-user effects on the cloud server, while taking an
offloading decision.

Furthermore, offloading computation also implies an ad-
ditional cost of communication and cloud resources. The
offloading decision is highly influenced by the availability of
these resources [12]. Resources like bandwidth, cloud server

capacity should be sufficient to satisfy the system requirements
of ultra-low latency, and serve computational needs of all
the user devices. At the same time, these resources must be
used efficiently, which motivates the tradeoff analysis between
these resources and the imposed delay requirements. [13],
[14] deal with joint optimization of the communication and
computational resources for cloud offloading. However, no
analysis on the trade-off between these resources and the
achieved delay performance was presented.

In this paper, a delay constrained energy optimization
algorithm to optimally offload the computation to a cloud-
server is designed. A closed form solution is provided for
an optimal offloading decision. Also, the cloud resources
are optimally allocated among multiple users. Furthermore,
the delay performance of system is analyzed for the given
bandwidth. In Section II, we describe the system model. The
energy optimization problem and the closed form solution is
presented in Section III. Finally, the results and conclusion are
discussed in Section IV and V respectively.

II. SYSTEM MODEL

Consider N uniformly distributed user devices in a circular
area of radius R. An edge-cloud server is located at the
base station in the center of the cell. The processor of an
edge cloud server has a maximum computational capacity
of Cs. The processors deployed in the user device have a
maximum computational capacity of Cu, where, Cs ≫ Cu.
The user devices can successfully process all the data within
the given time constraints. However, to minimize the energy
consumption and reduce latency, user devices offload a share
of data processing to the edge cloud server. The edge cloud
server processes the data and sends the outcome of the
computation to the user-device via the downlink channel as
shown in Fig. 1. The uplink and downlink channel are known
to the base-station for each user i ∈ [1;N ].

A. Data model

Uplink data model: Every user device processes data
from L sensors. The data consists of M data elements that
are represented by S bits each as shown in Fig. 1, e. g.,
surveillance by drones, where, L cameras send images to the
user device for processing. Each image is of pixel size M ,
where each pixel is represented by S bits. Therefore, the total
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Figure 1. System model

data bits that the user device needs to process is Di = L·M ·S.
An algorithm to process this data has a complexity class
given by the function fi(M). fi(M) represents the amount
of computational cycles required, with respect to the number
of data elements. The decision variable αi denotes the share of
data that should be offloaded, where 0 ≤ αi ≤ 1. Hence, αi·Di

data bits are transmitted to an edge cloud server for processing.
The processing algorithm is distributed to user device and edge
cloud if 0 < αi < 1.

Downlink data model: Once the edge cloud server has
completed all the data processing for the ith user device, it
sends back the result to user device via the downlink channel.
If Srx represents the number of bits, required to convey the
result of a single sensor to the user device, the total data from
cloud server to ith user device is αiDrx,i, where Drx,i = L ·Srx.

B. Delay model

Let Ttr,i be the total time for transmitting the data bits to the
edge cloud server from the ith user. The available bandwidth
B is distributed equally among all the user devices, i. e., Bi =
B/N per user device. If αiDi are the total data bits transmitted
over the channel with maximum spectral efficiency Ri, the
total transmission time is given as

Ttr,i(αi) =
αiDi

BiRi
. (1)

After transmission, the sensor data is processed in the edge
cloud server.

The execution time Texe,i to process the data, depends upon
the computational load Cserv,i introduced on the cloud, and
the available cloud server capacity Cs. The computation load
at the cloud server from ith user device is given as Cserv,i =
L·ηs·fi(M), where ηs is the number of CPU cycles required to
process a single data element, for an algorithm of complexity
fi(·). Therefore, the execution time is given as:

Texe,i(αi) =
αiCserv,i

ρiCs
, (2)

where ρi represents the percentage of cloud resource allocated
to the ith user device, and it holds

∑N
i ρi ≤ 1; ∀i =

1 . . . N ; ρi ≥ 0.
We further define Trx,i to be the time required to receive the

processed result from the cloud server to the i-th user device,
i. e.,

Trx,i(αi) =
αiDrx,i

Brx,i ·Rrx,i
, (3)

where, Brx,i and Rrx,i are the allocated bandwidth and maxi-
mum spectral efficiency respectively, for the ith user device in
the downlink.

In order to fulfill the latency requirements, the total delay
experienced by the user for transmitting, processing and re-
ceiving should be less than the maximum delay Tmax:

∀i = 1 . . . N : Ttr,i(αi) + Texe,i(αi) + Trx,i(αi) ≤ Tmax. (4)

For the sake of simplicity and due to the limited space of
this paper, queuing delay is not considered in the model but a
pre-reservation of computation resources at the cloud-server
is assumed (as it would apply in hard real-time operating
systems).

C. Device-centric energy consumption model

The energy consumption model for the user devices is based
on the model presented in [12].

Energy consumption for local processing: The total
energy consumed by the ith user device to locally process
(1− αi)Di bits, is given as

Eu,i(αi) = (1− αi) · ϵi · Cu,i (5)

where ϵi is the average amount of energy consumed by the
user device for a single computation cycle, and Cu,i is the
computation load generated in terms of computation cycles
on the user device [12]. The computational load is given as
Cu,i = L · ηifi(M) where L is the number of sensors, and ηi
is a processor specific proportionality constant. ηi represents
the number of computation cycles required to process a single
data element (M = 1) for an algorithm of complexity fi.

Energy consumption for offloading: The energy con-
sumed to transmit αiDi data bits to the cloud with spectral
efficiency Ri is given as

Etr,i(αi) =

(
2Ri − 1

)
G

·
[
di
do

]β
·N0Bi · Ttr,i(αi) (6)

where β is the path-loss exponent, di is the distance between
user device and base station, do is the reference distance, N0 is



the noise power spectral density, and G is attenuation constant
for free-space path-loss. Using Ttr,i in (1), we get

Etr,i(αi) =

(
2Ri − 1

)
G

·
[
di
do

]β
·N0Bi ·

αiDi

BiRi
. (7)

The total energy consumption at the ith user device is

Esum,i(αi) = Eu,i(αi) + Etr,i(αi). (8)

III. OFFLOADING OPTIMIZATION

A. Problem formulation

Our objective is the derivation of an optimal offloading
strategy that minimizes the energy consumption of the user
device, while simultaneously ensuring that the total delay is
below the threshold Tmax, i. e.,

A′ = arg min
A∈RN

N∑
i=1

Esum,i(αi) (9)

s.t
N∑
i

αiCserv,i

Texe,i(αi)
≤ Cs (10)

A = {α1, α2, . . . αN} (11)
0 ≤ αi ≤ 1 ∀i = 1 . . . N (12)

In the given optimization problem, the decision vector A′

is evaluated such that the total energy consumption of the
user device is minimized. As the objective is to reduce the
energy consumption of user devices, the energy consumed at
the cloud server is not considered in the optimization problem.
The second constraint for optimization ensures that the total
processing rate required by the user devices should be less
than the total server capacity. It reflects that the sum of the
allocated shares of cloud resources ρi must not exceed 1, i. e.∑N

i ρi ≤ 1. αi is the offloading decision parameter for the ith

user. If αi = 0, the user device do not offload, while if αi =
1, all data processing is performed by the cloud server.

In order to serve more user devices on the cloud, it is neces-
sary to efficiently allocate the cloud computational resources,
ρi. The idea is to allocate more cloud server resources to the
user devices that experience larger communication (Ttr,i+Trx,i)
delay, so as to reduce their execution time. As mentioned in
Section II-B, the total delay for offloading should be less than
the maximum delay threshold Tmax. Therefore, the maximum
execution time permitted by the user device is

Texe,i(αi) ≤ Tmax − (Ttr,i(αi) + Trx,i(αi)) . (13)

By substituting (13) in (10), the solution to the optimization
problem is evaluated. As the optimization problem is convex,
the solution is obtained by applying Lagrangian’s duality
theorem and KKT conditions.

B. Solution

a) Optimal offloading decision:

Theorem 1. If the rate of increase in energy consump-
tion for local processing is higher than for offloading, i.e,

[
−E′

tr,i − E
′

u,i

]
> 0, the optimal offloading decision for ith

user device is given by

αi = min

1, 1[
Di

BiRi
+ Drx,i

Brx,iRrx,i

] (Tmax −
√

νγiTmax

(−E′
tr,i − E

′
u,i)

)+
 ,

(14)
where, E

′

tr,i(αi) =
∂Etr,i(αi)

∂αi
and E

′

u,i(αi) =
∂Eu,i(αi)

∂αi
, ν is the

Lagrange parameter defining the threshold for admitting the
user devices, and γi is the ratio of computational load to the
cloud server capacity, given as γi =

Cserv,i
Cs

.
If the computation load Cserv,i ≪ Cs, γi → 0 and ν = 0, the
optimal offloading decision becomes

αi = min

1,
 Tmax[

Di

BiRi
+ Drx,i

Brx,iRrx,i

]
+ (15)

Proof. The proof of the theorem is given in Appendix.

Theorem 2. In case of an overloaded system, i. e., ν ̸= 0, as
αi ≥ 0, the lower bound on Lagrange parameter ν is

min
i:αi>0

B ≤ ν, (16)

where, B = {ν̂1, ν̂2, . . . ν̂N}, and

ν̂i =

[(
Tmax −

[
Di

BiRi
+

Drx,i

Brx,iRrx,i

])2 (−E′

tr,i − E
′

u,i)

γiTmax

]+
(17)

Proof. The theorem follows from Theorem 1 and applying the
condition α ≤ 1 in (14).

b) Optimal cloud resource allocation: The relative share
of cloud server capacity allocated to user device i is given as

ρi =
αiCserv,i

Cs · Texe,i(αi)
. (18)

Hence, ρi and Texe,i are a function of the optimal offloading
decision αi. If the communication delay is higher then the
execution time should be lower and the assigned computational
share ρi should be higher. In addition, the computational
share ρi scales linearly with the required computational load
αiCserv,i.

C. Performance metrics

a) Offloading percentage: The offloading percentage is
the ratio of total offloaded data processing for all user devices
to the total data processing of the system, and it is given by

Λ =

N∑
i=1

αi ·Di

N∑
i=1

Di

. (19)



b) Sum energy: The performance of the offloading strat-
egy is evaluated by comparing the total optimized energy
consumption for all N user devices to the total energy
consumption for local processing. The total optimized energy
consumption, i. e., Esum(A′), is given as

Esum(A′) =

N∑
i=1

Esum,i(αi) (20)

where αi is evaluated according to Theorem 1 and (14). The
total energy consumption in the case that no user device
offloads (∀i ∈ [1; . . . N ] : αi = 0) is given by

Esum(0) =

N∑
i

Eu,i(0). (21)

c) Cut-off delay Tc: The minimum threshold delay
within which the system can process all the optimally of-
floaded data from N user devices, in presence of bandwidth
B.

Tc(B,N) = inf

{
Tmax > 0

∣∣∣∣∂Λ(Tmax, B,N)

∂Tmax
= 0

}

Algorithm 1 Optimal Cloud Offloading
Initialization:

ν = 0; αi = 1, ∀ i = 1 . . . N ;
B = {ν̂1, ν̂2, . . . ν̂N}

Check on energy consumption:
for User device i = 1:N do

if
[
−E′

tr,i − E
′

u,i

]
> 0 then

αi = 1 ▷ Offload
else

αi = 0 ▷ Local processing
end if

end for
Check load on the cloud server:

while
(

N∑
i

αiγi

[Tmax−(Ttr,i(αi)+Trx,i(αi))]
− 1

)
> 0 do

ν = min
∀i=1...N ;αi>0

{B|B > 0}

Drop the user device that have highest communication
delay and saves least energy, i. e. αi = 0

Update: B, s.t B = B − {ν}
Assign αi with new value of ν, ∀i = 1 . . . N

αi = min

1,
(
Tmax −

√
νγiTmax

(−E
′
tr,i−E

′
u,i)

)+

[
Di

BiRi
+ Drx,i

Brx,iRrx,i

]


end while
Output: A′ and ν
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Figure 2. Offloading percentage
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Table I
SIMULATION PARAMETERS

Variable Value Variable Value
Cs 200 MHz N 50 Users
L 10 M 70 data elements

B, Brx 20 MHz S,Srx 8 bits
d0 200 m R 800 m
β 2 Ri, Rrx 6 bps/Hz
ϵi 5e−6 mJ ηi 100 cycles

fi(M) M ηs 1 cycle

IV. RESULTS AND DISCUSSIONS

a) Optimal offloading strategy and energy consumption:
Fig. 2 shows the effect on the average offloading percentage Λ,
with an increasing delay Tmax, and for different bandwidth B
available. The simulation parameters used for this evaluation
are shown in Table I.
To optimally offload the data from the user devices, two
crucial goals need to be achieved: a) save energy of the user
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device, and b) finish the computation within Tmax. Consider
the case when 40%, of bandwidth B is available. At lower
values of threshold delay, i. e. Tmax < 12ms, the cloud server
cannot process all the computational data within the given time
constraint. Therefore, user devices only offload the data par-
tially, ensuring that the offloaded data is computed within the
specified delay. Therefore, more data is offloaded as the delay
threshold is increased until the cut-off delay Tc is reached.
A further increase in the delay threshold Tmax > 12ms
do not impact the offloading percentage Λ, which remains
constant and is limited below 15%. This indicates that the
cloud server could process more data for Tmax > 12ms but
due to the limited bandwidth, it is not energy-efficient to
offload more data. Therefore, the user devices do not offload,
even for the lenient time constraints. The optimal offloading
percentage increases, if the percentage of available bandwidth
is increased. Higher the bandwidth available, lower will be
the data transmission time, and hence, the end-end delay.
Therefore, at higher bandwidth (60%B and 80%B), the cut-off
delay Tc is reduced.

Similar behavior is seen in Fig. 3. The energy consumption
decreases, with an increase in the delay threshold Tmax. This
implies that energy consumption can be further reduced, if
the cloud server can process more computation within the
threshold delay. However, more computation could not be
offloaded due to limited cloud server capacity and bandwidth.
Therefore, at lower threshold delay, i. e., Tmax < Tc, more
energy can be saved by increasing the cloud server capacity.
An increase in cloud server capacity will reduce the processing
time, and hence will allow user devices to offload more
computation. Whereas, if the threshold delay is higher, i. .e.,
Tmax > Tc, the cloud server can effortlessly process more
computation. An increase in cloud server capacity will have
no impact on the energy consumption. Therefore, the energy
consumption can only be further reduced by increasing the
bandwidth.

b) Bandwidth-delay-user devices trade-off: The results
discussed previously show that there exists a trade-off between
bandwidth, B, number of users N that can offload their
computation, and cut-off delay Tc. If the number of user device
increases, more bandwidth is required, and processing at the
cloud server will take longer time. Whereas, if the bandwidth
increases, the cut-off delay decreases, and more user devices
can offload. Fig. 4 demonstrates the behavior of this trade-off.
The aim is to serve the maximum number of user devices with
minimum bandwidth, at very low cut-off delay. Fig. 4 illus-
trates the rate at which the cut-off delay decreases with respect
to bandwidth. The cut-off delay decreases exponentially with
an increase in bandwidth. However, when the number of user
devices is lower, bandwidth has less impact on the cut-off
delay. This is due to the fact that the time to transmit and
receive is significantly lower compared to the execution time.

V. CONCLUSION

In this paper, we presented a delay constrained and energy
optimized cloud offloading framework. A closed form solution
is obtained to optimally offload the computation from multiple
user devices, depending on the availability of bandwidth
and latency constraints. The optimal offloading strategy is to
offload more computation to the cloud, if sufficient bandwidth
and cloud server capacity is available. At higher threshold
delay, the offloading decision is independent of the delay con-
straint. However, it depends upon the difference of the energy
for transmitting and local processing. We also analyzed the
trade-off between the bandwidth and cut-off delay considering
the optimal offloading solution. In future, we plan to extend
the framework to study the effects of channel fading and
shadowing on the optimal offloading strategy.

APPENDIX

In the following, we prove Theorem 1 using the method
of Lagrange multipliers and Karush-Kuhn-Tucker (KKT) con-
ditions. Substituting the maximum value of Texe(αi) in (10),
and replacing

(
Cserv,i
Cs

)
= γi, the constraint (10) of optimization

problem becomes
N∑
i

αiγi

[Tmax−Trx(αi)−Ttr(αi)]
≤ 1. The objective

function for the optimization is hence given as

L(αi, ψ, ν) =

N∑
i=1

Esum,i(αi)+

ν

(
N∑
i

αiγi
[Tmax − (Ttr,i(αi) + Trx,i(αi))]

− 1

)
− tr [Ψdiag(αi)]

(22)

where, ν and ψ are the Lagrange’s multiplier. Take partial
derivative with respect to αi and equating ∂L

∂αi
to 0, we get,

∂L
∂αi

= E
′

tr,i + E
′

u,i + ν · γiTmax

[Tmax − Trx,i(αi)− Ttr(αi)]
2 − ψi

= 0
(23)



Where, E
′

tr,i(αi) =
∂Etr,i(αi)

∂αi
and E

′

u,i(αi) =
∂Eu,i(αi)

∂αi
.

(24)

E
′

tr,i(αi) and E
′

u,i(αi) are obtained by taking derivative of (7)
and (5) respectively.

E
′

tr,i =
2Ri − 1

G
·
[
di
do

]β
·N0 ·

Di

Ri
(25)

E
′

u,i = −L · ϵiηifi(M). (26)

Convexity check: Take second derivative of L(αi, ν, ψi)

∂2L
∂α2

i

= 2νγiTmax(Tmax − [Ttr,i(αi) + Trx,i(αi)])
−3 (27)

where, Tmax > (Ttr,i(αi) + Trx,i(αi)).

∂2L
∂αiαj

= 0,∀i ̸= j. (28)

Substituting the values of (27) and (28) in Hessian matrix,
shows that it is positive semi-definite, hence, the objective
function is a convex function.
KKT Conditions:

ν

(
N∑
i

αiγi
[Tmax − (Ttr,i(αi) + Trx,i(αi))]

− 1

)
= 0 (29)

ν ≥ 0;ψiαi = 0; (30)
ψi ≥ 0;αi ≥ 0; (31)

CASE I: Fully-loaded case (ν > 0;ψi = 0)

If ν > 0, i.e
(

N∑
i

αiγi

[Tmax−(Ttr,i(αi)+Trx,i(αi))]
− 1

)
= 0. If ψi =

0, i.e αi > 0. Substitute the values of ψi = 0 in (23), and
rearranging to evaluate αi, we get

αi =
1

Di

BiRi
+ Drx,i

Brx,iRrx,i

(
Tmax −

√
νγiTmax

(−E′
tr,i − E

′
u,i)

)
(32)

CASE II: Underloaded (ν = 0; ψi = 0)

If ν = 0, implies that
(

N∑
i

αiγi

[Tmax−(Ttr,i(αi)+Trx,i(αi))]
− 1

)
< 0.

It states that total required processing rate is less than the
server capacity. It means cloud server can process all the
computation data (i. e. αi = 1) from all user devices within
the specified time. Substitute the values ν = 0 in (23) we get,

E′
tr,i + E′

u,i = ψi (33)

Now, put ψi = 0 in (33). In this case user devices can offload
to the cloud if the transmission energy is less than or equal to
local processing energy.
CASE III: Overloaded (ν > 0, ψi > 0 i. e. αi = 0)
Substitute αi = 0 in (23)

E
′

tr,i + E
′

u,i +
νγiTmax

Tmax
− ψi = 0

ψi = E
′

tr,i + E
′

u,i + νγi (34)

The Lagrange multiplier ν > 0 and γi > 0. Therefore, for
ψi > 0, i. e. αi = 0, the rate at which transmission energy E

′

tr,i

increases, has to be greater than the rate of increase in energy
consumption due to local processing E

′

u,i. However, in this case
as ν > 0, that means the cloud server is already overloaded.
Hence, user device do not offload even if the transmission
energy is less than the local processing energy consumption,
unless the difference between E

′

u,i and E
′

tr,i exceeds the value
νγi.
CASE IV: Underloaded (ν = 0, ψi > 0; αi = 0); If ν = 0,

then
(

N∑
i

αiγi

[Tmax−(Ttr,i(αi)+Trx,i(αi))]
− 1

)
< 0; Now, substitute

the values ν = 0 and α = 0 in equation (23), we get

E
′

tr,i + E
′

u,i = ψi (35)

As ψi > 0, if αi = 0, it means that if the transmission energy
exceeds the in-device energy consumption, do not offload.
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