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1. INTRODUCTION

Crowdsourcing is recently used to automate complex tasks when computational systems alone fail. The
literature includes several contributions concerning natural language processing, e.g., language trans-
lation [Zaidan and Callison-Burch 2011; Minder and Bernstein 2012a; 2012b], also in combination
with active learning [Green et al. 2015] and interactive model training [Zacharias et al. 2018].

In this work, we investigate (1) whether a (paid) crowd, that is acquired from a multilingual website’s
community, is capable of translating coherent content from English to their mother tongue (we consider
Arabic native speakers); and (2) in which cases state-of-the-art machine translation models can com-
pete with human translations for automation in order to reduce task completion times and costs. The
envisioned goal is a hybrid machine translation service that incrementally adapts machine translation
models to new domains by employing human computation to make machine translation more compet-
itive (see Figure 1). Recently, approaches for domain adoption of neural machine translation systems
including filtering of generic corpora based on sentence embeddings of in-domain samples [Wang et al.
2017] have been proposed, as well as the fine-tuning with mixed batches containing domain and out-
of-domain samples [Chu et al. 2017] and with different regularization methods [Barone et al. 2017].

As a first step towards this goal, we conduct an experiment using a simple two-staged human compu-
tation algorithm for translating a subset of the IWSLT parallel corpus including English transcriptions
of TED talks and reference translations in Arabic with a specifically acquired crowd. We compare the
output with the state-of-the-art machine translation system Google Translate as a baseline.

2. EXPERIMENT

For this experiment, we apply our human computation algorithm (explained further down) to a subset
of the parallel IWSLT evaluation corpus1 that is commonly used as a gold standard for machine trans-

1https://sites.google.com/site/iwsltevaluation2016/mt-track
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Fig. 1: Conceptual architecture of the hybrid translation system that obtains crowdworkers from the website’s community and
adapts the machine translation model to the new domain based on human-generated translations.
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Table I. : Mean and standard deviation of performance met-
rics for workflow stages S.1 and S.2 and for the machine
translation baseline GT including n = 54 complete transla-
tions.

Metric S.1 S.2 GT

BLEU M = .387
SD = .189

M = .403
SD = .192

M = .37
SD = .144

Human
Judgement

M = 3.97

SD = 1.18
— —

Table II. : Mean and standard deviation of performance met-
rics for S.1 concerning the factor platform: Mobile (n=18) –
Desktop (n=101).

Metric Mobile Desktop

BLEU M = .437
SD = .16

M = .443
SD = .21

Task Completion
Time

M = 208.8s

SD = 148.6s

M = 196.9s

SD = 140.4s

Human Judgement
(n=10 – n=44)

M = 4.72

SD = .395

M = 3.803

SD = 1.233

lation systems: it contains English transcriptions of TED talks and corresponding reference transla-
tions in Arabic. We select 60 sentences from a random talk2 as reference document that is semantically
coherent, similar to inputs that we can expect from a website.

Our human computation algorithm includes two stages: a translation stage S.1 that asks work-
ers to translate a single sentence from English to Arabic from scratch; and a proof-reading stage
S.2 in which workers are asked to rate and, if necessary, improve the Arabic translation given the
source sentence. It is executed on the crowdsourcing platform Crowdee3 with crowdworkers invited
via handbookgermany.de, an information portal for refugees. Participants are asked to complete a paid
language proficiency test for English and Arabic which is offered as a job on Crowdee. Only those who
reach a score of at least 80% for both languages are considered for translation and proof-reading tasks.
First, we deploy 180 translation jobs; three for each sentence. After all translation jobs are completed,
three proof-reading jobs are uploaded per translation candidate yielding 540 approved translations.
The results of both stages are compared to the commercial machine translation system Google Trans-
late4 (GT). Additionally, we investigate the impact of the platform type used by crowdworkers (mobile
or desktop) for S.1 and the influence of the sentence length for all stages and the baseline.

For measuring the translation performance, we consider the task completion time and the automated
quality metric BLEU [Papineni et al. 2001] which reports translation quality in a range between 0 and
1. The automated metric is computed using the translations from the IWSLT dataset as reference and
each system’s result as hypothesis. In addition, we investigate the crowdworkers’ language proficiency
and human judgements. The human judgement is reported on a 5 point Likert scale for each translation
of S.1 in the beginning of S.2 (it is only available for S.1 and if, at least, one proof-read job gets
completed).

2.1 Results

First, we process the output of S.1 by merging the translation results with references from the IWSLT
corpus and baseline data from GT, computing the BLEU scores and adding further measures such as
the language proficiency. Due to problems with some mobile devices, we have to exclude 61 entries with
empty or wrongly encoded translations. Then, we merge the results from S.2: we assign the average
values of each metric, because there are up to three proof-reads per translation. After excluding invalid
samples, e.g., due to incomplete proof-reading jobs, we have a set of n = 54 translations for S.2. On
average, the language proficiency is 0.94 (SD = 0.14) for Arabic and 0.88 (SD = 0.05) for English.

2TED talk with ID 535 from TED2009; segments 1 to 60.
3https://www.crowdee.de/
4generated using https://cloud.google.com/ml-engine/ on 6th of December 2017.
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Fig. 2: (a) BLEU scores for each translation task and averaged for groups split by the number of tokens including all considered
systems; (b) Mean BLEU score in comparison to normalized human judgements for different groups of S.1.

Including all complete translations (n = 54), the pairwise system comparisons S.1–S.2 and S.2–GT
yield no significant differences in means for BLEU (Wilcoxon signed-rank test); human judgements
are available for S.1 only and average to M = 3.97 (see Table I). Concerning S.1, we analyse 119
translation results, of which 18 are completed with a mobile device and 101 with a desktop-like device.
Mobile and desktop users achieve similar BLEU scores and task completion times (see Table II). The
Mann-Whitney U test confirmed that differences are not statistically significant. Concerning human
judgements, we observed significantly better results for mobile users compared to desktop users as de-
picted in Table II (U = 109.5, p = .005). In addition, we split results in five groups with nearly equal
sample size based on the sentence length according to percentiles. Group borders are [0, 11, 15, 20, 42]
tokens per sentence: the first group includes all sentences that contain k tokens with 0 < k ≤ 11.
Figure 2a shows BLEU scores averaged per group and for each translation tasks including complete
translations for all considered systems: the scores decrease with increasing sentence length. In Fig-
ure 2b, we compared the BLEU scores of S.1 with the corresponding normalized human judgements.
In contrast to BLEU scores, they increase with increasing sentence length.

3. DISCUSSION & CONCLUSION

Overall, the quality of crowd-based translations is not better than the automatic translation baseline
(according to BLEU scores). However, as the automated BLEU score does not correlate well with hu-
man judgements (see Figure 2b), we will investigate more into crowd-based solutions and evaluations
of subjective judgements. A future experiment should consider the fluency and adequacy of transla-
tions as metrics for text coherence. The comparably good results of the automatic machine translation
suggest that these can be used as candidates for proof-reading to reduce the crowd workload as done in
more sophisticated workflows [Minder and Bernstein 2012b]. Machine translations could also be used
to identify and filter low-performing crowdworkers, which we identified in our scenario (see outliers of
S.2 in Figure 2a). Interestingly, the mobile users achieved better scores from humans, which might be
casued by auto-correction features of modern smartphone keyboards. Our next experiments will focus
on incremental model improvement of the hybrid translation service and its integration into existing
dialogue frameworks [Sonntag et al. 2009; Sonntag et al. 2010; Sonntag 2010; Prange et al. 2017].
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