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Abstract
The performance of automatic speech recognition based on
coded-decoded speech heavily depends on the quality of the
transmitted signals, determined by channel impairments. This
paper examines relationships between speech recognition per-
formance and measurements of speech quality and intelligibility
over transmission channels. Different to previous studies, the
effects of super-wideband transmissions are analyzed and com-
pared to those of wideband and narrowband channels. Further-
more, intelligibility scores, gathered by conducting a listening
test based on logatomes, are also considered for the prediction
of automatic speech recognition results. The modern instrumen-
tal measurement techniques POLQA and POLQA-based intel-
ligibility have been respectively applied to estimate the quality
and the intelligibility of transmitted speech. Based on our re-
sults, polynomial models are proposed that permit the predic-
tion of speech recognition accuracy from the subjective and in-
strumental measures, involving a number of channel distortions
in the three bandwidths. This approach can save the costs of
performing automatic speech recognition experiments and can
be seen as a first step towards a useful tool for communication
channel designers.
Index Terms: automatic speech recognition, speech intelligi-
bility, instrumental speech quality, communication channels

1. Introduction
An increasing number of commercial products and services
incorporate automatic speech recognition (ASR) transmitting
coded speech signals to a server with strong processing capa-
bilities. A disadvantage of remote ASR based on transmitted
speech, however, is the distortion introduced by communica-
tion channels, which may severely affect the recognition per-
formance.

Speech transmission channels are designed considering the
quality of transmitted signals essentially in order to meet the
users’ needs and expectations. Although the ASR accuracy is
not yet systematically taken into account in the communica-
tion channel design process, we believe that ASR can be an
additional criterion for choosing among transmission channel
elements. In this respect, this paper presents correspondences
between speech quality and ASR rates over channels of differ-
ent bandwidths and using codecs operating at different bitrates.
Since the ASR performance can be thought of being strongly
connected to the intelligibility aspect of the signal quality, our
work also examines the correspondences between speech intel-
ligibility and ASR accuracies. An intelligibility test based on a
closed set of vowel-consonant-vowel logatomes with eight al-
ternatives was conducted to obtain subjective scores. Moreover,
the POLQA-intelligibility model was applied to compute objec-
tive intelligibility scores [1]. The employment of the prediction

models for ASR performance proposed in this work can be an
alternative to performing ASR experiments, advantageous when
no resources are available to train acoustic and language mod-
els.

Previous investigations have also studied the relationships
between ASR accuracy and transmitted speech quality. The
study in [2] compared the subjective MOS and the ASR per-
formance for the AMR-NB codec, showing a general detriment
of word recognition with decreasing bitrate. The ASR per-
formance has also been shown to be affected by degradations
of speech quality estimated by the Perceptual Evaluation of
Speech Quality (PESQ) model [3, 4] and by the E-model for un-
correlated white noise and for signal-correlated noise [5]. The
PESQ and the E-model are, respectively, an intrusive signal-
based model and a parametric model which can estimate sub-
jective quality ratings in terms of Mean Opinion Scores (MOS).

The automatic evaluation of speech intelligibility has been
shown to be successful employing ASR in [6] (considering dif-
ferent NB codecs and bit errors) and in [7, 8, 9] (considering
noise conditions). While these works focus on intelligibility
modeling, no publication is known to the authors that addresses
the prediction of ASR results from subjective and objective in-
telligibility measures, as presented in this paper.

The speech bandwidth considered in the reviewed stud-
ies that employed transmitted speech was limited to conven-
tional narrowband (NB, 300–3,400 Hz), which transmits only
a small portion of the frequencies of human speech. With the
advent of wideband channels (WB, 50–7,000 Hz), e.g. en-
countered in IP-based voice communications (VoIP), it has been
shown that the added frequency components account for better
word intelligibility and higher voice naturalness [10]. Besides,
super-wideband transmission (SWB, 50–14,000 Hz), offering
an even more extended bandwidth, is currently gaining adop-
tion in the marketplace, usually combined with high-definition
video streams.

Signal quality has been found to be improved by 30% when
switching from NB to WB [11]. Further benefits of the en-
hanced bandwidth have been shown for human and automatic
speaker recognition [12], speech intelligibility [13, 1], and ASR
performance [14]. The superiority of SWB over NB and WB
has been revealed in [15] for subjective quality judgments and
in [12] for automatic speaker verification. The possible advan-
tage of SWB over WB for ASR still remains to be assessed,
which is a secondary goal of the present paper. Possible advan-
tages may partly determine investments on SWB channels for
telecommunication operators.

Only the study in [14] is known to the authors that exam-
ined the ASR performance comparing NB and WB channels. It
was reported that high MOS values (estimated by PESQ) did
not always correspond to high recognition rates. Their results
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revealed almost no variation in the ASR performance across
WB codecs. Differently, in this work we apply the Perceptual
Objective Listening Quality Assessment (POLQA) [16] and the
POLQA-based intelligibility models to compute the instrumen-
tal measures to be related to ASR. The POLQA model is the
successor of PESQ and is the only ITU-T standard for estimat-
ing SWB speech quality. It can operate in NB and in SWB
mode, the latter covering a bandwidth wider than that consid-
ered in WB-PESQ [17]. The analysis in [18] asserted that
the correlation between POLQA and the subjective MOS was
higher than for PESQ for WB data.

The POLQA-intelligibility model (V1490intellV2) is a fur-
ther development of PESQ intelligibility [19] using the lat-
est developments in the objective assessment of speech qual-
ity [20, 21]. The main differences between POLQA and
POLQA-intelligibility are:

• The zero impact of noise degradations in the silent inter-
vals which have an impact on quality but not on intelli-
gibility

• The difference of the impact of loud degradations in loud
speech parts which lead to extremely low-quality speech
that still remains intelligible

• Extended modeling of extreme severe degradations
which all lead to the same MOS sore of 1.0 while the
intelligibility may differ significantly

• Extended modeling of the impact of local severe loss of
signal, e.g. time clipping, which may lead to high qual-
ity, but not intelligible speech

To the best of our knowledge, no other intelligibility model (e.g.
SII, STOI) can satisfactorily predict subjective scores under the
effects of communication channel degradations such as those
considered in this work.

2. Data preparation
For the study of the ASR performance under different channel
distortions, it was required that the speech data were recorded
in clean conditions and have a sampling frequency of at least
32 kHz for SWB transmission. Unfortunately, most publicly
available databases, with speech sampled at 8 kHz or at 16 kHz,
were not suitable for our analysis. The speech data employed
in this work was a small portion of the AusTalk database [22].
Only the speech from 37 speakers of Australian English (21
females and 16 males), clean and with a sampling frequency of
44.1 kHz, was available to the authors. Each speaker uttered
the same set of 322 words in three separate recording sessions
which took place in different days. This speech, totaling around
eight hours (after voice activity detection), was selected for the
ASR experiments in this work.

Differently, for the intelligibility test, eight VCV logatomes
were chosen, varying the middle consonant: “ama”, “aba”,
“afa”, “ana”, “apa”, “asa”, “awa”, and “ascha”, pronounced
in German. These logatomes were selected based on the high
phoneme confusions previously found in [13]. The logatomes
were extracted from words in purposely created sentences
recorded by four native German speakers (2m, 2f, age range
25–36 years). The recordings were made in clean conditions
with 48 kHz sampling frequency. The test stimuli are thus ex-
cerpts of natural speech, which can presumably be less carefully
articulated than words or logatomes spoken in isolation as in the
OLLO logatome speech database [23, 13], but on the other hand
reflect a realistic pronunciation.

All original speech files (AusTalk and logatomes) were
transmitted through simulated communication channels, creat-
ing different degraded versions of the same speech. Conditions
with no bandwidth filter or codec applied, i.e. direct speech
sampled as 8, 16, or 32 kHz were also considered. The ASR
experiment and the intelligibility test examined a common set
of 19 conditions, listed in Table 1, which are considered in this
paper for building the prediction models for ASR.

The channel simulation process was conducted as follows.
First, the speech was level-equalized to -26 dBov, a character-
istic level of telephone channels, using the voltmeter algorithm
of the ITU-T Rec. P.56. To simulate NB channels, the speech
was downsampled to 8 kHz and then band-passed according to
the ITU-T Rec. G.712 (300–3,400 Hz). For WB channels, the
signals were downsampled to 16 kHz and band-filtered com-
plying with ITU-T Rec. P.341 (50–7,000 Hz). For the SWB
channels, the speech was downsampled to 32 kHz and then
processed with the 14KBP filter (50–14,000 Hz), of the ITU-
T Rec. G.191. Anti-aliasing low-pass FIR filters were always
employed before downsampling. After band-filtering the sig-
nals, codecs were applied employing standard ITU and ETSI
tools or the open-source Speex codec [24]. Finally, the speech
was again level-equalized to -26 dBov.

3. Automatic speech recognition

The CMU Sphinx toolkit (Sphinx 4, [25]) was adopted for the
ASR experiments. Separate context-dependent Hidden Markov
Models (HMM) were trained and tested with speech data of
each channel condition, that is, the distortion of the training
files matched that of the testing files. The words of the first
and second recording session from all speakers were pooled to
build the training models, whereas the words uttered in the third
recording session were retained for testing.

Our ASR system makes use of continuous HMMs with 39
base-phones without stress, three filler phones, and 9679 tri-
phones. Five states per HMM are used, with each state mod-
elled by eight Gaussians. The language model contains 324
uni-grams, 646 bi-grams and 966 tri-grams. 19 Mel-Frequency
Cepstral Coefficients (MFCC) including the energy coefficient
and the corresponding delta and delta-delta were extracted, con-
stituting feature vectors of 57 components. 40 mel filters were
employed for feature extraction, with the low and upper limits
set as 300–3,400 Hz, 50–7,000 Hz, and 50–14,000 Hz, for NB,
WB, and SWB distortions, respectively. Some of these param-
eters, i.e. the number of MFCCs and of filters in the filterbank,
were defined by preliminary experimentation.

The recognition results were analyzed in terms of Word Er-
ror Rate (WER), calculated as the percentage of incorrectly rec-
ognized words in the test set. The WERs are shown for the
different distortions of the training and test speech in Table 1
along with results of the intelligibility test, objective intelligi-
bility estimations and POLQA MOS, obtained as described in
next sections.

We are aware that the limited amount of training data may
be the primary cause of the low ASR accuracy reached. On the
other hand, the low, not saturated performance enabled us to
detect effects between transmission conditions. Contrastingly,
almost no variability was found within the ASR accuracy from
WB codecs in [14]. The authors achieved around 98% accuracy
in WB employing the TIMIT database for their experiments.
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Table 1: WERs, subjective intelligibility, predictions by the
POLQA-intelligibility model, and POLQA MOS for NB (first
block), WB (second block), and SWB (third block) degradations.
The bitrates are indicated in kbit/s.

Distortion WER (%) subj-intell obj-intell MOS

8kHz, nocodec 19.6 92.5 96.3 3.68
G.711@64 20.1 93.2 92.9 3.43

G.723.1@6.3 26.4 88.6 91.2 2.64
GSM-EFR@12.2 21.8 90.6 90.9 2.76
AMR-NB@4.75 27.3 85.9 85.1 2.03
AMR-NB@12.2 22.8 90.5 91.5 2.91
Speex-NB@2.15 41.8 70.5 82.0 1.86

Speex-NB@11 23.2 87.7 91.6 2.81
Speex-NB@24.6 20.3 91.8 92.2 3.05

16kHz, nocodec 15.3 96.8 99.8 4.43
G.722@64 16.6 95.5 97.7 4.14

AMR-WB@12.65 17.9 94.1 97.0 3.43
AMR-WB@23.05 16.7 94.8 97.5 3.78
Speex-WB@3.95 36.3 78.8 87.6 1.55
Speex-WB@23.8 23.4 94.0 95.2 3.79
Speex-WB@42.2 16.6 95.3 95.8 3.93

32kHz, nocodec 16.6 96.9 99.1 4.66
G.722.1C@24 18.9 92.7 97.2 3.46
G.722.1C@48 18.3 93.9 97.2 3.78

4. Intelligibility listening test
The complete set of stimuli presented in the intelligibility test
consisted of 4 speakers x 8 VCV logatomes x 27 channel
conditions = 864 segments. It has to be noted that some of
these channel conditions were not examined in the ASR experi-
ment. The test was performed by 30 listeners (15m, 15f), mean
age 25 years (range 18–38 years) and with German as mother
tongue. They were instructed to choose among the eight alter-
natives after listening to each stimulus. There was no possibility
to listen to one stimulus more than once. Short breaks were in-
cluded every 15 minutes approximately to avoid listeners’ loss
of focus. Before the test started, a brief familiarization phase
was conducted in which the participants listened to samples of
each logatome as many times as they wished. The complete test
session had a duration of about one hour. It was performed in a
quiet room using a laptop and Shure SRH240 headphones (di-
otic listening, frequency range 20–20,000 Hz). Listeners were
not allowed to control the speech loudness level.

The test results were computed as the percentage of correct
answers over all speakers and logatomes for each condition and
are presented in Table 1, 3rd column. Further aspects about this
test and its results can be read in [1].

5. Instrumental speech intelligibility and
quality measurements

The intelligibility predictions were obtained by applying the
POLQA-intelligibility model (V1490intellV2) to the logatome
speech signals of our study, concatenated for each degradation
separately. These objective scores attempt to predict the aver-
age accuracy of the intelligibility of test listeners and are shown
in Table 1, 4th column. A second-order curve could be fitted
between the objective and subjective intelligibility scores with
R2 = 0.870, RMSE = 2.10 (root mean square error).

Also using the degraded logatome speech, the POLQA
standard V2.4.1 was employed to estimate objective quality in
terms of MOS, shown in Table 1, 5th column. The speech recog-

nition performance tends to improve with higher quality (WER
decreases), contrasting with the findings in [14]. It can be ob-
served that, overall, the ASR performance and the estimated
MOS improve when transiting from NB to WB. Nevertheless,
no clear advantage of SWB over WB transmission is mani-
fested. This might be due to undesired noisy artefacts incorpo-
rated in this extended frequency band, from which no speech-
specific features can be extracted. Interestingly, the coded-
decoded SWB speech does not offer better quality or higher
recognition rates than G.722, AMR-WB, and Speex WB op-
erating at their higher bitrates. More SWB conditions should
be tested in the future to investigate which codecs can provide
both enhanced (or, at least, comparable) quality and ASR per-
formance with respect to WB. The ASR performances and MOS
in SWB are improved, however, compared to the NB conditions.

The POLQA model always operated in SWB mode, which
permits the direct comparison between the signal qualities in
the three bandwidths. The MOS were estimated on a joint scale
in the range [1–5] for all distortions. A second-order curve was
fitted between POLQA measures and subjective intelligibility
scores with R2 = 0.858, RMSE = 2.20. In [14], differently,
NB-PESQ and WB-PESQ were applied for the NB and WB
degradations, respectively. This impeded the comparison of all
MOS values on a common scale.

The intelligibility test and the correlations of subjective
results with objective intelligibility and with objective quality
scores are described in more detail in [1].

6. Predicting WER from speech
intelligibility and quality

The plausibility of predicting ASR WER from transmitted sig-
nal intelligibility (subjective and objective) and objective qual-
ity are investigated by fitting polynomial models.

6.1. Prediction from subjective intelligibility

A strong linear correspondence was found between subjective
intelligibility and WER considering all distortions listed in Ta-
ble 1. A linear fit yielded R2 = 0.951, RMSE = 1.49 and
is presented in Figure 1. The data points corresponding to the
labeled distortions present higher residuals than the rest.

The linear fit found also indicates that it can be possible
to predict subjective intelligibility scores from the ASR perfor-
mance - a more realistic case given the costs of conducting lis-
tening tests. This was also addressed in [6] yet only considering
NB codecs and bit errors conditions.

6.2. Prediction from POLQA-intelligibility

A quadratic curve was fitted to the pairs POLQA-intelligibility–
WER (4th and 2nd columns of Table 1, respectively) with R2 =
0.834, RMSE = 2.75, and shown in Figure 2.

Data points with high residuals correspond to the dis-
tortions AMR-NB@4.75 (high negative residual) and Speex-
WB@3.95, Speex-WB@23.8, and Speex-NB@2.15 (high pos-
itive residual). An expert listening analysis showed that data
points that are significantly above the optimal 2nd order regres-
sion sounded noise like distorted while data points significantly
below the regression mostly did not show noise like speech
degradations. Apparently the effect of noise like speech signal
degradations is not modeled correctly by POLQA-intelligibility
regarding their impact on the WER.

3



Figure 1: Linear fit to predict WER using subjective intelligibil-
ity scores. l(x) = 115.7− x, R2 = 0.951, RMSE = 1.49.

Figure 2: Second-order polynomial fit to predict WER using
POLQA-intelligibility values. qP intell(x) = 22.1 − 26.3x +
5.1x2, R2 = 0.834, RMSE = 2.75.

6.3. Prediction from POLQA

The ASR WER can also be predicted by objective quality es-
timations, that is, MOS derived by the POLQA model. The
best fit with a second-order function yields R2 = 0.843,
RMSE = 2.67 (Figure 3). As also imposed for the POLQA-
intelligibility–WER fit, the curve is monotonically decreasing.

An expert listening analysis showed that data points that
are significantly above the optimal 2nd order regression (Speex-
NB@2.15 and Speex-WB@23.8) sounded noise like distorted
while the data point below the regression (AMR-NB@4.75)
does not show this noise like speech degradations. The effect of
noise like speech degradations seems to be different for WER

Figure 3: Second-order polynomial fit to predict WER using
POLQA MOS values. qPMOS(x) = 65.7 − 21.3x + 2.3x2,
R2 = 0.843, RMSE = 2.67.

compared to speech quality, for which POLQA is optimized.
The fit with POLQA MOS is marginally better than that

obtained when employing POLQA-intelligibility as predictor,
while the fit that describes the relation between subjective in-
telligibility and POLQA-intelligibility is marginally better than
that obtained with POLQA. Currently we have no explanation
for this counter intuitive result.

The presented fits in Figures 2 and 3 can be advantageous
when a channel codec has to be selected for communications
and its merits need to be evaluated. If the objective scores are at
hand, the costs of conducting ASR experiments can be saved in
terms of time and resources.

7. Conclusions
This work has examined the relationships between ASR per-
formance, speech quality, and intelligibility, considering distor-
tions in three different bandwidths. It has been shown that ASR
accuracy, intelligibility, and quality benefit from the transition
from NB to WB, yet no meaningful improvement of SWB over
WB could be observed.

Polynomial models have been fitted to data points corre-
sponding to NB, WB, and SWB channels, which enable the
prediction of the ASR accuracy from intelligibility subjective
or objective scores (R2 = 0.951 and R2 = 0.834, respec-
tively) or from MOS given by POLQA (R2 = 0.843). Given
the efforts and costs required to run ASR experiments, network
planners can be assisted by these polynomial models involving
instrumental measures to select among different configurations
in the communication channel design process.

The low ASR performance reached in this study is not rep-
resentative of today’s state-of-the-art ASR systems trained with
copious amounts of speech data. A future study involving an
improved ASR system and SWB codecs is subject to the avail-
ability of clean speech databases of sufficient bandwidth. Also,
a greater number of speakers and languages would be neces-
sary to explore the generalization of our results and possibly to
create more precise estimation models.
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