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Preface

This third workshop on Semantic Deep Learning (SemDeep-3) invited researchers and professionals in
computational linguistics to report results and systems on the possible contributions of Deep Learning
to classical problems in semantic applications, such as meaning representation, dependency parsing,
semantic role labeling, word sense disambiguation, semantic relations extraction, statistical relation
learning, knowledge base completion, or semantically grounded inferences.

There are notable examples of contributions leveraging either deep neural architectures or distributed
representations learned via deep neural networks in the broad area of Semantic Web technologies, such
as ontology learning or prediction. Ontologies, on the other hand, have been repeatedly utilized as
background knowledge for machine learning tasks. This interplay between structured knowledge and
corpus-based approaches has given way to knowledge- rich embeddings, which in turn have proven
useful for tasks such as hypernym discovery, collocation discovery and classification, word sense
disambiguation, and many others.

This workshop consists of five papers with oral presentations (three of which also present a poster in
a joint session) and two invited talks. Steven Schockaert from Cardiff University gives an invited talk
entitled “Knowledge Representation with Conceptual Spaces”, which will focus on learning Gärdenfors’
conceptual spaces as an alternative to entity embeddings. Christos Christodoulopoulos from Amazon
Research Cambridge talks about “Knowledge Representation and Extraction at Scale”, which will
detail methods for building and maintaining a knowledge base for Alexa as well as fact extraction and
verification techniques.
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Hinrich Schütze2

Abstract

The goal of our industrial ticketing system is to retrieve a relevant solution for an input query, by
matching with historical tickets stored in knowledge base. A query is comprised of subject and
description, while a historical ticket consists of subject, description and solution. To retrieve a
relevant solution, we use textual similarity paradigm to learn similarity in the query and historical
tickets. The task is challenging due to significant term mismatch in the query and ticket pairs of
asymmetric lengths, where subject is a short text but description and solution are multi-sentence
texts. We present a novel Replicated Siamese LSTM model to learn similarity in asymmetric text
pairs, that gives 22% and 7% gain (Accuracy@10) for retrieval task, respectively over unsuper-
vised and supervised baselines. We also show that the topic and distributed semantic features for
short and long texts improved both similarity learning and retrieval.

1 Introduction

Semantic Textual Similarity (STS) is the task to find out if the text pairs mean the same thing. The
important tasks in Natural Language Processing (NLP), such as Information Retrieval (IR) and text
understanding may be improved by modeling the underlying semantic similarity between texts.

With recent progress in deep learning, the STS task has gained success using LSTM (Mueller and
Thyagarajan, 2016) and CNN (Yin et al., 2016) based architectures; however, these approaches model
the underlying semantic similarity between example pairs, each with a single sentence or phrase with
term overlaps. In the domain of question retrieval (Cai et al., 2011; Zhang et al., 2014), users retrieve
historical questions which precisely match their questions (single sentence) semantically equivalent or
relevant. However, we investigate similarity learning between texts of asymmetric lengths, such as short
(phrase) Vs longer (paragraph/documents) with significant term mismatch. The application of textual
understanding in retrieval becomes more challenging when the relevant document-sized retrievals are
stylistically distinct with the input short texts. Learning a similarity metric has gained much research
interest, however due to limited availability of labeled data and complex structures in variable length
sentences, the STS task becomes a hard problem. The performance of IR system is sub-optimal due to
significant term mismatch in similar texts (Zhao, 2012), limited annotated data and complex structures
in variable length sentences. We address the challenges in a real-world industrial application.

Our ticketing system (Figure 1(a)) consists of a query and historical tickets (Table 1). A query (re-
porting issue, q) has 2 components: subject (SUB) and description (DESC), while a historical ticket (t)
stored in the knowledge base (KB) has 3 components: SUB, DESC and solution (SOL). A SUB is a short
text, but DESC and SOL consist of multiple sentences. Table 1 shows that SUB P q and SUB P t are
semantically similar and few terms in SUB P q overlap with DESC P t. However, the expected SOL P t
is distinct from both SUB and DESC P q. The goal is to retrieve an optimal action (i.e. SOL from t) for
the input q.

To improve retrieval for an input q, we adapt the Siamese LSTM (Mueller and Thyagarajan, 2016)
for similarity learning in asymmetric text pairs, using the available information in q and t. For instance,

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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QUERY pqq

SUB: GT Trip - Low Frequency Pulsations
DESC: GT Tripped due to a sudden increase in Low Frequency Pulsations. The machine has been restarted and is now
operating normally. Alarm received was: GT XXX Low Frequency Pulsation.

HISTORICAL TICKET ptq

SUB: Narrow Frequency Pulsations
DESC: Low and Narrow frequency pulsations were detected. The peak value for the Low Frequency Pulsations is ## mbar.
SOL: XXXX combustion support is currently working on the issue. The action is that the machine should not run until resolved.

Table 1: Example of a Query and Historical Ticket
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Figure 1: (a): Intelligent Ticketing System (ITS) (b): High-level illustration of Siamese LSTM for
cross-level pairwise similarity. (c): Replicated Siamese with multi-channel (SumEMB, LSTM and topic
vectors) and multi-level (SUB, DESC and/or SOL) inputs in the objective function, g. y: similarity score.
The dotted lines indicate ITS output. (d): Symbols used.

we compute multi-level similarity between (SUB P q, SUB P t) and (DESC P q, DESC P t). However,
observe in Table 1 that the cross-level similarities such as between (SUB P q, DESC P t), (DESC P q,
SUB P t) or (SUB P q, SOL P t), etc. can supplement IR performance. See Figure 1(b).

The contributions of this paper are as follows: (1) Propose a novel architecture (Replicated Siamese
LSTM) for similarity learning in asymmetric texts via multi-and-cross-level semantics (2) Investigate
distributed and neural topic semantics for similarity learning via multiple channels (3) Demonstrate a gain
of 22% and 7% in Accuracy@10 for retrieval, respectively over unsupervised and supervised baselines
in the industrial application of a ticketing system.

2 Methodology

Siamese networks (Chopra et al., 2005) are dual-branch networks with tied weights and an objective
function. The aim of training is to learn text pair representations to form a highly structured space
where they reflect complex semantic relationships. Figure 1 shows the proposed Replicated Siamese
neural network architecture such that (LSTMSUB1+LSTMDESC1) = (LSTMSUB2+LSTMDESC2+LSTMSOL2), to learn
similarities in asymmetric texts, where a query (SUB1+DESC1) is stylistically distinct from a historical
ticket (SUB2+DESC2+SOL2).

Note, the query components are suffixed by “1” and historical ticket components by “2” in context of
the following work for pairwise comparisons.

2



gph,E, T,Wh,WE ,WT , V q �

exp
�
�

¸
p P tSUB1,DESC1u

¸
q P tSUB2,DESC2,SOL2u

Vtp,qu
�
Wh}hp � hq}1 �WE}Ep � Eq}1 �WT }Tp � Tq}1

�	 (1)

Figure 2: Multi-Channel Manhattan Metric

2.1 Replicated, Multi-and-Cross-Level, Multi-Channel Siamese LSTM

Manhattan LSTM (Mueller and Thyagarajan, 2016) learns similarity in text pairs, each with a single
sentence; however, we advance the similarity learning task in asymmetric texts pairs consisting of one
or more sentences, where similarity is computed between different-sized subject and description or so-
lution texts. As the backbone of our work, we compute similarity scores to learn a highly structured
space via LSTM (Hochreiter and Schmidhuber, 1997) for representation of each pair of the query (SUB1
and DESC1) or historical ticket (SUB2, DESC2 and SOL2) components, which includes multi-level
(SUB1-SUB2, DESC1-DESC2) and cross-level (SUB1-DESC2, SUB1-SOL2, etc.) asymmetric textual similari-
ties, Figure 1(b) and (c). To accumulate the semantics of variable-length sentences (x1, ..., xT ), recurrent
neural networks (RNNs) (Vu et al., 2016a; Gupta et al., 2016; Gupta and Andrassy, 2018), especially the
LSTMs (Hochreiter and Schmidhuber, 1997) have been successful.

LSTMs are superior in learning long range dependencies through their memory cells. Like the stan-
dard RNN (Mikolov et al., 2010; Gupta et al., 2015a; Vu et al., 2016b), LSTM sequentially updates a
hidden-state representation, but it introduces a memory state ct and three gates that control the flow of
information through the time steps. An output gate ot determines how much of ct should be exposed to
the next node. An input gate it controls how much the input xt be stored in memory, while the forget
gate ft determines what should be forgotten from memory. The dynamics:

it � σpWixt � Uiht�1q

ft � σpWfxt � Ufht�1q

ot � σpWoxt � Uoht�1q

c̃t � tanhpWcxt � Ucht�1q

ct � it d c̃t � ft d ct�1

ht � ot d tanhpctq

(2)

where σpxq � 1
1�e�x and tanhpxq � ex�e�x

ex�e�x . The proposed architecture, Figure 1(c) is composed of
multiple uni-directional LSTMs each for subject, description and solution within the Siamese framework,
where the weights at over levels are shared between the left and right branch of the network. Therefore,
the name replicated.

Each LSTM learns a mapping from space of variable length sequences, including asymmetric texts,
to a hidden-state vector, h. Each sentence (w1, ...wT ) is passed to LSTM, which updates hidden state
via eq 2. A final encoded representation (e.g. hSUB1, hSUB2 in Figure 1(c)) is obtained for each query or
ticket component. A single LSTM is run over DESC and SOL components, consisting of one or more
sentences. Therefore, the name multi-level Siamese.

The representations across the text components (SUB DESC or SOL) are learned in order to maxi-
mize the similarity and retrieval for a query with the historical tickets. Therefore, the name cross-level
Siamese.

The sum-average strategy over word embedding (Mikolov et al., 2010) for short and longer texts has
demonstrated a strong baseline for text classification (Joulin et al., 2016) and pairwise similarity learning
(Wieting et al., 2016). This simple baseline to represent sentences as bag of words (BoW) inspires us to
use the BoW for each query or historical ticket component, for instance ESUB1. We refer the approach
as SumEMB in the context of this paper.

3



We supplement the similarity metric (g) with SumEMB (E), latent topic (T ) (section 2.2) and hidden
vectors (h) of LSTM for each text component from both the Siamese branches. Therefore, the name
multi-channel Siamese.
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Figure 3: DocNADE: Neural Auto-
regressive Topic Model

Parameter Search Optimal
E [350] 350
T [20, 50, 100] 100
h [50, 100] 50
Wh [0.6, 0.7, 0.8] 0.7
WE [0.3, 0.2, 0.1] 0.1
WT [0.3, 0.2, 0.1] 0.2

VSUB1�SUB2 [0.3, 0.4 0.3
VDESC1�DESC2 [0.3, 0.4] 0.3
VSUB1�DESC2 [0.10, 0.15, 0.20] 0.20
VSUB1�SOL2 [0.10, 0.15, 0.20] 0.10
VDESC1�SOL2 [0.10, 0.15, 0.20] 0.10

Table 2: Hyperparameters in the Replicated Siamese
LSTM (experiment #No:22)

2.2 Neural Auto-Regressive Topic Model

Topic models such as Latent Dirichlet allocation (LDA) (Blei et al., 2003) and Replicated Softmax (RSM)
(Hinton and Salakhutdinov, 2009; Gupta et al., 2018c) have been popular in learning meaningful repre-
sentations of unlabeled text documents. Recently, a new type of topic model called the Document Neural
Autoregressive Distribution Estimator (DocNADE) (Larochelle and Lauly, 2012; Zheng et al., 2016;
Gupta et al., 2018a) was proposed and demonstrated the state-of- the-art performance for text document
modeling. DocNADE models are advanced variants of Restricted Boltzmann Machine (Hinton, 2002;
Salakhutdinov et al., 2007; Gupta et al., 2015b; Gupta et al., 2015c), and have shown to outperform LDA
and RSM in terms of both log-likelihood of the data and document retrieval. In addition, the training
complexity of a DocNADE model scales logarithmically with vocabulary size, instead linear as in RSM.
The features are important for an industrial task along with quality performance. Therefore, we adopt
DocNADE model for learning latent representations of tickets and retrieval in unsupervised fashion. See
Larochelle and Lauly (2012) and Gupta et al. (2018a) for further details, and Figure 3 for the DocNADE
architecture, where we extract the last hidden topic layer (h4) to compute document representation.

2.3 Multi-Channel Manhattan Metric

Chopra et al. (2005) indicated that using l2 instead of l1 norm in similarity metric can lead to undesirable
plateaus. Mueller and Thyagarajan (2016) showed stable and improved results using Manhattan distance
over cosine similarity.

Mueller and Thyagarajan (2016) used a Manhattan metric (l1-norm) for similarity learning in single
sentence pairs. However, we adapt the similarity metric for 2-tuple (SUB1, DESC1) vs 3-tuple (SUB2,
DESC2 and SOL2) pairs, where the error signals are back-propagated in the multiple levels and channels
during training to force the Siamese network to entirely capture the semantic differences across the query
and historical tickets components. The similarity metric, g P [0,1] is given in eq 1, where || � || is l1 norm.
Wh, WE and WT are the three channels weights for h, E and and T , respectively. The weights (V ) are
the multi-level weights between the ticket component pairs. Observe that a single weight is being used
in the ordered ticket component pairs, for instance VSUB1�DESC2 is same as VDESC2�SUB1.

3 Evaluation and Analysis

We evaluate the proposed method on our industrial data for textual similarity learning and retrieval tasks
in the ticketing system. Table 4 shows the different model configurations used in the following exper-
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Held-out Perplexity (100 topics)
Ticket M1: SUB+DESC M2: SUB+DESC+SOL

Component LDA DocNADE LDA DocNADE

DESC 380 362 565 351
SUB+DESC 480 308 515 289

SUB+DESC+SOL 553 404 541 322

(a)

Query Perplexity (100 topics)
Component DocNADE:M1 DocNADE:M2

|Q|L |Q|U |Q|L |Q|U

DESC1 192 177 132 118

SUB1+DESC1 164 140 130 118

(b)

Table 3: (a) Perplexity by DocNADE and LDA trained with M1: SUB+DESC or M2:
SUB+DESC+SOL on all tickets and evaluated on 50 held-out tickets with their respective components or
their combination. Observe that when DocNADE is trained with SUB+DESC+SOL, it performs better
when training with SUB+DESC+SOL and outperforms LDA. (b) Perplexity by DocNADE: M1 trained
on SUB+ DESC and M2 on SUB+DESC+SOL of the historical tickets.

Model Model Configuration
T (X1–X2) Compute Similarity using topic vector (T) pairs of a query (X1) and historical ticket (X2) components
E (X1–X2) Compute Similarity using embedding vector (E) pairs of a query (X1) and historical ticket (X2) components
X � Y � Z Merge text components (SUB, DESC or SOL), representing a single document
T (X1� Y 1–X2� Y 2� Z2) Compute Similarity using topic vector (T) pairs of a query (X1� Y 1) and historical ticket (X2� Y 2� Z2) components
S-LSTM (X1–X2) Compute Similarity using Standard Siamese LSTM on a query (X1) and historical ticket (X2) components
ML (X1–X2, Y 1–Y 2) Multi-level Replicated Siamese LSTM. Compute similarity in (X1–X2) and (Y 1–Y 2) components of a query and historical ticket
CL (X, Y, Z) Cross-level Replicated Siamese LSTM. Compute similarity in (X1–Y 2), (X1–Z2), (Y 1–X2) and (Y 1–Z2) pairs

Table 4: Different model configurations for the experimental setups and evaluations. See Figure 1(c) for
LSTM configurations.

imental setups. We use Pearson correlation, Spearman correlation and Mean Squared Error1 (MSE)
metrics for STS and 9 different metrics (Table 5) for IR task.

3.1 Industrial Dataset for Ticketing System

Our industrial dataset consist of queries and historical tickets. As shown in Table 1, a query consists
of subject and description texts, while a historical ticket in knowledge base (KB) consists of subject,
description and solution texts. The goal of the ITS is to automatically recommend an optimal action i.e.
solution for an input query, retrieved from the existing KB.

There are T � 949 historical tickets in the KB, out of which 421 pairs are labeled with their relat-
edness score. We randomly split the labeled pairs by 80-20% for train (Ptr) and development (Pdev).
The relatedness labels are: YES (similar that provides correct solution), REL (does not provide correct
solution, but close to a solution) and NO (not related, not relevant and provides no correct solution). We
convert the labels into numerical scores [1,5], where YES:5.0, REL:3.0 and NO:1.0. The average length
(#words) of SUB, DESC and SOL are 4.6, 65.0 and 74.2, respectively.

The end-user (customer) additionally supplies 28 unique queries (QU ) (exclusive to the historical
tickets) to test system capabilities to retrieve the optimal solution(s) by computing 28 � 949 pairwise
ticket similarities. We use these queries for the end-user qualitative evaluation for the 28� 10 proposals
(top 10 retrievals for each query).

3.2 Experimental Setup: Unsupervised

We establish baseline for similarity and retrieval by the following two unsupervised approaches:
(1) Topic Semantics T: As discussed in section 2.2, we use DocNADE topic model to learn document

representation. To train, we take 50 held-out samples from the historical tickets T. We compute per-
plexity on 100 topics for each ticket component from the held-out set, comparing LDA and DocNADE
models trained individually with SUB+DESC (M1) and SUB+DESC+SOL texts2 (M2). Table 3a shows
that DocNADE outperforms LDA.

1http://alt.qcri.org/semeval2016/task1/
2+: merge texts to treat them as a single document
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#No Model (Query-Historical Ticket) Similarity Task Retrieval Task
r ρ MSE MAP@1 MAP@5 MAP@10 MRR@1 MRR@5 MRR@10 Acc@1 Acc@5 Acc@10

1 T (SUB1–SUB2) (unsupervised baseline) 0.388 0.330 5.122 0.08 0.08 0.07 1.00 0.28 0.10 0.04 0.19 0.30
2 T (SUB1–DESC2) 0.347 0.312 3.882 0.09 0.07 0.07 0.00 0.05 0.08 0.04 0.13 0.21
3 T (DESC1–SUB2) 0.321 0.287 3.763 0.08 0.09 0.09 0.00 0.05 0.11 0.03 0.20 0.31
4 T (DESC1–DESC2) 0.402 0.350 3.596 0.08 0.08 0.08 0.00 0.04 0.10 0.03 0.19 0.33
5 T (SUB1–SUB2+DESC2) 0.413 0.372 3.555 0.09 0.09 0.08 0.00 0.05 0.11 0.04 0.20 0.32
6 T (SUB1+DESC1–SUB2) 0.330 0.267 3.630 0.09 0.10 0.09 0.00 0.26 0.12 0.04 0.23 0.35
7 T (SUB1+DESC1–DESC2) 0.400 0.350 3.560 0.07 0.08 0.08 0.00 0.00 0.10 0.03 0.19 0.35
8 T (SUB1+DESC1–SUB2+DESC2) 0.417 0.378 3.530 0.05 0.07 0.08 0.00 0.07 0.11 0.03 0.22 0.37
9 T (SUB1+DESC1–SUB2+DESC2+SOL2) 0.411 0.387 3.502 0.09 0.09 0.08 0.00 0.06 0.12 0.04 0.20 0.40

11 E (SUB1–SUB2) (unsupervised baseline) 0.141 0.108 3.636 0.39 0.38 0.36 0.00 0.03 0.08 0.02 0.13 0.24
12 E (DESC1–DESC2) 0.034 0.059 4.201 0.40 0.40 0.39 0.00 0.10 0.07 0.03 0.12 0.18
13 E (SUB1+DESC1–SUB2+DESC2) 0.103 0.051 5.210 0.16 0.16 0.15 0.00 0.03 0.11 0.07 0.16 0.20
14 E (SUB1+DESC1–SUB2+DESC2+SOL2) 0.063 0.041 5.607 0.20 0.17 0.16 0.00 0.03 0.13 0.05 0.13 0.22

15 S-LSTM(SUB1–SUB2) (supervised baseline) 0.530 0.501 3.778 0.272 0.234 0.212 0.000 0.128 0.080 0.022 0.111 0.311
16 S-LSTM (DESC1–DESC2) 0.641 0.586 3.220 0.277 0.244 0.222 0.100 0.287 0.209 0.111 0.3111 0.489
17 S-LSTM (SUB1+DESC1–SUB2+DESC2) 0.662 0.621 2.992 0.288 0.251 0.232 0.137 0.129 0.208 0.111 0.342 0.511
18 S-LSTM (SUB1+DESC1–SUB2+DESC2+SOL2) 0.693 0.631 2.908 0.298 0.236 0.241 0.143 0.189 0.228 0.133 0.353 0.548
19 ML-LSTM (SUB1–SUB2, DESC1–DESC2) 0.688 0.644 2.870 0.290 0.255 0.234 0.250 0.121 0.167 0.067 0.289 0.533
20 + CL-LSTM (SUB, DESC, SOL) 0.744 0.680 2.470 0.293 0.259 0.238 0.143 0.179 0.286 0.178 0.378 0.564
21 + weighted channels (h*0.8, E*0.2) 0.758 0.701 2.354 0.392 0.376 0.346 0.253 0.176 0.248 0.111 0.439 0.579
22 + weighted channels (h*0.7, E*0.1, T*0.2) 0.792 0.762 2.052 0.382 0.356 0.344 0.242 0.202 0.288 0.133 0.493 0.618

Table 5: Results on Development set: Pearson correlation (r), Spearmans rank correlation coefficient
(ρ), Mean Squared Error (MSE), Mean Average Precision@k (MAP@k), Mean Reciprocal Rank@k
(MRR@k) and Accuracy@k (Acc@k) for the multi-level (ML) and cross-level (CL) similarity learn-
ing, and retrieving the k-most similar tickets for each query (SUB1+DESC1). #[1-14]: Unsupervised
baselines with DocNADE (T) and SumEMB (E). #[15-18]: Supervised Standard Siamese baselines.
#[19-22]: Supervised Replicated Siamese with multi-channel and cross-level features.

Model Similarity Task Retrieval Task
r ρ MSE MAP@1 MAP@5 MAP@10 MRR@1 MRR@5 MRR@10 Acc@1 Acc@5 Acc@10

T (SUB1-SUB2) 0.414 0.363 5.062 0.04 0.03 0.03 0.29 0.24 0.10 0.01 0.17 0.28
T (SUB1-DESC2) 0.399 0.362 3.791 0.04 0.03 0.03 0.00 0.05 0.07 0.03 0.12 0.19
T (DESC1-SUB2) 0.371 0.341 3.964 0.05 0.06 0.05 0.25 0.07 0.11 0.04 0.21 0.33
T (DESC1-DESC2) 0.446 0.398 3.514 0.05 0.05 0.04 0.00 0.04 0.10 0.04 0.18 0.34
T (SUB1-SUB2+DESC2) 0.410 0.370 3.633 0.05 0.04 0.04 0.00 0.12 0.08 0.04 0.13 0.20
T (SUB1+DESC2-SUB2) 0.388 0.326 3.561 0.06 0.06 0.05 0.25 0.29 0.13 0.05 0.22 0.38
T (SUB1+DESC1-DESC2) 0.443 0.396 3.477 0.04 0.04 0.04 0.00 0.00 0.10 0.03 0.17 0.37
T (SUB1+DESC1, SUB2+DESC2) 0.466 0.417 3.460 0.05 0.05 0.04 0.00 0.06 0.11 0.03 0.24 0.37
T (SUB1+DESC1, SUB2+DESC2+SOL2) 0.418 0.358 3.411 0.07 0.06 0.06 0.00 0.09 0.14 0.05 0.20 0.39

Table 6: DocNADE (M2) performance for the queries QL P pPtr � Pdevq in the labeled pairs in unsu-
pervised fashion.

Next, we need to determine which DocNADE model (M1 or M2) is less perplexed to the queries.
Therefore, we use M1 and M2 to evaluate DESC1 and SUB1+DESC1 components of the two sets of
queries: (1) QL is the set of queries from labeled (421) pairs and (2) QU is the end-user set. Table 3b
shows that M2 performs better than M1 for both the sets of queries with DESC1 or SUB1+DESC1
texts. We choose M2 version of the DocNADE to setup baseline for the similarity learning and retrieval
in unsupervised fashion.

To compute a similarity score for the given query q and historical ticket t where (q, t)P Pdev, we first
compute a latent topic vector (T) each for q and t using DocNADE (M2) and then apply the similarity
metric g (eq 1). To evaluate retrieval for q, we retrieve the top 10 similar tickets, ranked by the similarity
scores on their topic vectors. Table 5 (#No [1-9]) shows the performance of DocNADE for similarity
and retrieval tasks. Observe that #9 achieves the best MSE (3.502) and Acc@10 (0.40) out of [1-9],
suggesting that the topic vectors of query (SUB1+DESC1) and historical ticket (SUB2+DESC2+SOL2)
are the key in recommending a relevant SOL2. See the performance of DocNADE for all labeled pairs
i.e. queries and historical tickets (Ptr � Pdev) in the Table 6.

(2) Distributional Semantics E: Beyond topic models, we establish baseline using the SumEMB
method (section 2.1), where an embedding vector E is computed following the topic semantics approach.
The experiments #11-14 show that the SumEMB results in lower performance for both the tasks, sug-
gesting a need of a supervised paradigm in order to learn similarities in asymmetric texts. Also, the
comparison with DocNADE indicates that the topic features are important in the retrieval of tickets.
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Figure 4: Evaluation on End-user Queries (sub-sample). UNK: Unknown. (Left) Gold Data: The count
of similar (YES) and relevant (REL) tickets for each query (q1-q17). (Middle) ITS Results: For each
query, ITS proposes the top 10 YES/REL retrievals. The plot depicts the count of YES/REL proposals
matched out of the top 10 gold proposals for each q. UNK may include YES, REL or NO, not annotated
in the gold pairs. (Right) Success Rate: YES: percentage of correct similar(YES) proposal out of the top
10; YES+REL: percentage of correct similar (YES) and relevant(REL) proposals out of the top 10.

3.3 Experimental Setup: Supervised

For semantic relatedness scoring, we train the Replicated Siamese, using backpropagation-through-time
under the Mean Squared Error (MSE) loss function (after rescaling the training-set relatedness labels
to lie P [0, 1]). After training, we apply an additional non-parametric regression step to obtain better-
calibrated predictions P [1, 5], same as (Mueller and Thyagarajan, 2016). We then evaluate the trained
model for IR task, where we retrieve the top 10 similar results (SUB2+DESC2+SOL2), ranked by
their similarity scores, for each query (SUB1+DESC1) in the development set and compute MAP@K,
MRR@K and Acc@K, where K=1, 5, and 10.

We use 300-dimensional pre-trained word2vec3 embeddings for input words, however, to generalize
beyond the limited vocabulary in word2vec due to industrial domain data with technical vocabulary,
we also employ char-BLSTM (Lample et al., 2016) to generate additional embeddings (=50 dimen-
sion4).The resulting dimension for word embeddings is 350. We use 50-dimensional hidden vector, ht,
memory cells, ct and Adadelta (Zeiler, 2012) with dropout and gradient clipping (Pascanu et al., 2013) for
optimization. The topics vector (T) size is 100. We use python NLTK toolkit5 for sentence tokenization.
See Table 2 for the hyperparameters in Replicated Siamese LSTM for experiment #No:22.

3.4 Results: State-of-the-art Comparisons

Table 5 shows the similarity and retrieval scores for unsupervised and supervised baseline methods. The
#9, #18 and #20 show that the supervised approach performs better than unsupervised topic models.
#17 and #19 suggest that the multi-level Siamese improves (Acc@10: 0.51 vs. 0.53) both STS and IR.
Comparing #18 and #20, the cross-level Siamese shows performance gains (Acc@10: 0.55 vs. 0.57).
Finally, #21 and #22 demonstrates improved similarity (MSE: 2.354 vs. 2.052) and retrieval (Acc@10:
0.58 vs. 0.62) due to weighted multi-channel (h, E and T ) inputs.

The replicated Siamese (#22) with different features best results in 2.052 for MSE and 0.618 (= 61.8%)
for Acc@10. We see 22% and 7% gain in Acc@10 for retrieval task, respectively over unsupervised (#9
vs. #22: 0.40 vs. 0.62) and supervised (#18 vs. #22: 0.55 vs. 0.62) baselines. The experimental results
suggest that the similarity learning in supervised fashion improves the ranking of relevant tickets.

3.5 Success Rate: End-User Evaluation

We use the trained similarity model to retrieve the top 10 similar tickets from KB for each end-user query
QU , and compute the number of correct similar and relevant tickets. For ticket ID q6 (Figure 4, Middle),

3Publicly available at: code.google.com/p/word2vec
4Run forward-backward character LSTM for every word and concatenate the last hidden units (25 dimension each)
5http://www.nltk.org/api/nltk.tokenize.html
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Query Recommendation 1 Recommendation 2 Recommendation 3

SUB:
GT Trip - Low Frequency Pulsations

DESC:
GT Tripped due to a sudden

increase in Low Frequency

Pulsations. The machine has been

restarted and is now operating

normally. Alarm received was:

GT XXX Low Frequency Pulsation

SUB:
Narrow Frequency Pulsations

DESC:
Low and Narrow frequency

pulsations were detected.

The peak value for the Low

Frequency Pulsations is

## mbar.

SOL:
XXXXX combustion support is

currently working on the issue.

The recommended action for

now is that the machine XXXX

at load XXXX ## MW.

SUB:
Low frequency pulsations

DESC:
High level low frequency

pulsations were detected

when active load is XXXX.

SOL:
Since the machine is running

with XXXX, the XXX be

changed in the register. After

adjustment is complete, monitor

the machine behavior between

## MW to ## load.

SUB:
GT3 - High Low Frequency Pulsation alarms after trip

DESC:
Yesterday, after Steam Turbine tripped, GT-3

experienced high Low Frequency Pulsation alarm.

Theload of GT-3 was ## MW and

went up as high as ## MW. During the time,

Low Frequency Pulsation for 3 pulsation

devices went up as high as ##. The Low

frequency pulsation was a XXX.

SOL:
A load XXXX from ## MW to ## MW is an

event XXX the unit XXXX trip. The XXXX to

low frequency pulsation during similar event,

should be XXXX. Check that XXXX from after

the XXXX (XX005/XX01) into combustion chamber

(XX030/XX01), XXXX should be XXXX. Repeat

until XXXX is within the range of ## -##.

(Rank, Similarity Score) (1, 4.75) (2, 4.71) (3, 4.60)

#Topics {#83, #7, #30} {#83, #16, #30} {#7, #83, #19} {#7, #83, #19}

Table 7: Top-3 Tickets Retrieved and ordered by their (rank, similarity score) for an input test query.
#Topics: the top 3 most probable associated topics. SOL of the retrieved tickets is returned as recom-
mended action. Underline: Overlapping words; XXXX and ##: Confidential text and numerical terms.

3 out of 10 proposed tickets are marked similar, where the end-user expects 4 similar tickets (Figure 4,
Left). For ticket ID q1, q13 and q17, the top 10 results do not include the corresponding expected tickets
due to no term matches and we find that the similarity scores for all the top 10 tickets are close to 4.0
or higher, which indicates that the system proposes more similar tickets (than the expected tickets), not
included in the gold annotations. The top 10 proposals are evaluated for each query by success rate
(success, if N/10 proposals supply the expected solution). We compute success rate (Figure 4, Right) for
(1 or more), (2 or more) and (3 or more) correct results out of the top 10 proposals.

4 Qualitative Inspections for STS and IR

Table 7 shows a real example for an input query, where the top 3 recommendations are proposed from
the historical tickets using the trained Replicated Siamese model. The recommendations are ranked by
their similarity scores with the query. The underline shows the overlapping texts.

We also show the most probable topics (#) that the query or each recommendation is associated with.
The topics shown (Table 8) are learned from DocNADE model and are used in multi-channel network.
Observe that the improved retrieval scores (Table 5 #22) are attributed to the overlapping topic semantics
in query and the top retrievals. For instance, the topic #83 is the most probable topic feature for the query
and recommendations. We found terms, especially load and MW in SOL (frequently appeared for other
Frequency Pulsations tickets) that are captured in topics #7 and #83, respectively.

5 Related Work

Semantic Textual Similarity has diverse applications in information retrieval (Larochelle and Lauly,
2012; Gupta et al., 2018a), search, summarization (Gupta et al., 2011), recommendation systems, etc.
For shared STS task in SemEval 2014, numerous researchers applied competitive methods that utilized
both heterogeneous features (e.g. word overlap/similarity, negation modeling, sentence/phrase composi-
tion) as well as external resources (e.g. Wordnet (Miller, 1995)), along with machine learning approaches
such as LSA (Zhao et al., 2014) and word2vec neural language model (Mikolov et al., 2013). In the do-
main of question retrieval (Cai et al., 2011; Zhang et al., 2014), users retrieve historical questions which
precisely match their questions (single sentence) semantically equivalent or relevant.

Neural network based architectures, especially CNN (Yin et al., 2016), LSTM (Mueller and Thya-
garajan, 2016), RNN encoder-decoder (Kiros et al., 2015), etc. have shown success in similarity learning
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ID Topic Words (Top 10)
#83 pulsation, frequency, low, load, high, pulsations, increase, narrow, XXXX, mw

#7 trip, turbine, vibration, gas, alarm, gt, time, tripped, pressure, load

#30 start, flame, unit, turbine, combustion, steam, temperature, compressor, XXXX, detector

#16 oil, XXXX, XXXX, pressure, kpa, dp, level, high, mbar, alarm

#19 valve, XXXX, fuel, valves, gas, bypass, check, control, XXXX, XXXX

Table 8: Topics Identifier and words captured by DocNADE

task in Siamese framework (Mueller and Thyagarajan, 2016; Chopra et al., 2005). These models are
adapted to similarity learning in sentence pairs using complex learners. Wieting et al. (2016) observed
that word vector averaging and LSTM for similarity learning perform better in short and long text pairs,
respectively. Our learning objective exploits the multi-channel representations of short and longer texts
and compute cross-level similarities in different components of the query and tickets pairs. Instead of
learning similarity in a single sentence pair, we propose a novel task and neural architecture for asymmet-
ric textual similarities. To our knowledge, this is the first advancement of Siamese architecture towards
multi-and-cross level similarity learning in asymmetric text pairs with an industrial application.

6 Conclusion and Discussion

We have demonstrated deep learning application in STS and IR tasks for an industrial ticketing system.
The results indicate that the proposed LSTM is capable of modeling complex semantics by explicit
guided representations and does not rely on hand-crafted linguistic features, therefore being generally
applicable to any domain. We have showed improved similarity and retrieval via the proposed multi-and-
cross-level Replicated Siamese architecture, leading to relevant recommendations especially in industrial
use-case. As far we we know, this is the first advancement of Siamese architecture for similarity learning
and retrieval in asymmetric text pairs with an industrial application.

We address the challenges in a real-world industrial application of ticketing system. Industrial assets
like power plants, production lines, turbines, etc. need to be serviced well because an unplanned outage
always leads to significant financial loss. It is an established process in industry to report issues (via
query) i.e. symptoms which hint at an operational anomaly to the service provider. This reporting
usually leads to textual descriptions of the issue in a ticketing system. The issue is then investigated by
service experts who evaluate recommended actions or solutions to the reported issue. The recommended
actions or solutions are usually attached to the reported issues and form a valuable knowledge base on
how to resolve issues. Since industrial assets tend to be similar over the various installations and since
they don’t change quickly it is expected that the issues occurring over the various installations may be
recurring. Therefore, if for a new issue similar old issues could be easily found this would enable service
experts to speed up the evaluation of recommended actions or solutions to the reported issue. The chosen
approach is to evaluate the pairwise semantic similarity of the issues describing texts.

We have compared unsupervised and supervised approach for both similarity learning and retrieval
tasks, where the supervised approach leads the other. However, we foresee significant gains with the
larger amount of similarity data as the amount of labeled similarity data grows and the continuous feed-
back is incorporated for optimization within the industrial domain, where quality results are desired. In
future work, we would also like to investigate attention (Bahdanau et al., 2014) mechanism and depen-
dency (Socher et al., 2012; Gupta et al., 2018b) structures in computing tickets’ representation.
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network based language model. In Eleventh Annual Conference of the International Speech Communication
Association, page 3.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems, pages
3111–3119, Lake Tahoe, USA.

G.A. Miller. 1995. Wordnet: A lexical database for english. Communications of the ACM, 38(11):3941.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese recurrent architectures for learning sentence similarity. In
the thirtieth AAAI conference on Artificial Intelligence, volume 16, pages 2786–2792, Phoenix, Arizona USA.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural net-
works. In Proceedings of the International Conference on Machine Learning, pages 1310–1318, Atlanta, USA.

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. 2007. Restricted boltzmann machines for collaborative
filtering. In Proceedings of the 24th International Conference on Machine learning, pages 791–798, Oregon,
USA. Association for Computing Machinery.

Richard Socher, Brody Huval, Christopher D Manning, and Andrew Y Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceedings of the 2012 joint conference on empirical methods
in natural language processing and computational natural language learning, pages 1201–1211, Jeju Island,
Korea. Association for Computational Linguistics.

Ngoc Thang Vu, Heike Adel, Pankaj Gupta, and Hinrich Schütze. 2016a. Combining recurrent and convolutional
neural networks for relation classification. In Proceedings of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 534–539, San Diego, California USA.
Association for Computational Linguistics.

Ngoc Thang Vu, Pankaj Gupta, Heike Adel, and Hinrich Schütze. 2016b. Bi-directional recurrent neural network
with ranking loss for spoken language understanding. In Proceedings of the Acoustics, Speech and Signal
Processing (ICASSP), pages 6060–6064, Shanghai, China. IEEE.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2016. Towards universal paraphrastic sentence
embeddings. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto
Rico.

Wenpeng Yin, Hinrich Schuetze, Bing Xiang, and Bowen Zhou. 2016. Abcnn: Attention-based convolutional
neural network for modeling sentence pairs. Transactions of the Association for Computational Linguistics,
4:259–272.

Matthew D Zeiler. 2012. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Kai Zhang, Wei Wu, Haocheng Wu, Zhoujun Li, and Ming Zhou. 2014. Question retrieval with high quality
answers in community question answering. In Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management, pages 371–380, Shanghai, China. Association for
Computing Machinery.

Jiang Zhao, Tiantian Zhu, and Man Lan. 2014. Ecnu: One stone two birds: Ensemble of heterogenous measures
for semantic relatedness and textual entailment. In Proceedings of the 8th International Workshop on Semantic
Evaluation (SemEval 2014), pages 271–277, Dublin, Ireland.

Le Zhao. 2012. Modeling and solving term mismatch for full-text retireval. ACM SIGIR, pages 117–118.

Yin Zheng, Yu-Jin Zhang, and Hugo Larochelle. 2016. A deep and autoregressive approach for topic modeling of
multimodal data. IEEE transactions on pattern analysis and machine intelligence, 38(6):1056–1069.

11



Proceedings of SemDeep-3, the 3rd Workshop on Semantic Deep Learning, pages 12–22
Santa Fe, New Mexico, USA, August 20, 2018.

Word-Embedding based Content Features for Automated Oral
Proficiency Scoring

Su-Youn Yoon, Anastassia Loukina, Chong Min Lee,
Matthew Mulholland, Xinhao Wang and Ikkyu Choi

Educational Testing Service
660 Rosedale Road, Princeton, NJ, USA

syoon,aloukina,clee001,xwang002,mmulholland,ichoi001@ets.org

Abstract

In this study, we develop content features for an automated scoring system of non-native En-
glish speakers’ spontaneous speech. The features calculate the lexical similarity between the
question text and the ASR word hypothesis of the spoken response, based on traditional word
vector models or word embeddings. The proposed features do not require any sample training
responses for each question, and this is a strong advantage since collecting question-specific data
is an expensive task, and sometimes even impossible due to concerns about question exposure.
We explore the impact of these new features on the automated scoring of two different question
types: (a) providing opinions on familiar topics and (b) answering a question about a stimulus
material. The proposed features showed statistically significant correlations with the oral profi-
ciency scores, and the combination of new features with the speech-driven features achieved a
small but significant further improvement for the latter question type. Further analyses suggested
that the new features were effective in assigning more accurate scores for responses with serious
content issues.

1 Introduction

This study aims to develop new features to score the content of non-native speakers’ spontaneous speech
as a part of an automated oral proficiency scoring system. The system provides holistic proficiency
scores using audio files and their transcriptions generated by an automated speech recognition (ASR)
system. Previously, studies in automated speech scoring have mainly focused on assessment of fluency
(Cucchiarini et al., 2000; Zechner et al., 2009), pronunciation (Witt and Young, 1997), and intonation
and rhythm (Lai et al., 2013; Wang et al., 2015). More recently, researchers started exploring assessment
of grammar (Chen and Zechner, 2011; Bhat and Yoon, 2015) and vocabulary(Yoon et al., 2012).

To date, limited studies have explored approaches to evaluating the content of spoken responses. Xie
et al. (2012) explored content features based on the lexical similarity between the response and a set
of sample responses for each question. A content-scoring component based on word vectors was also
part of the automated scoring engine described by Cheng et al. (2014). In both of these studies, content
features were developed to supplement other features measuring various aspects of speaking proficiency.
Neither study reported the relative contributions of content and speech features to the system perfor-
mance. Loukina et al. (2017) considered a content-scoring engine based on many sparse features such
as unigrams and bigrams and trained on a large corpus of existing responses. They showed that this
approach achieved performance comparable to that based on fluency and pronunciation, but there was
only little improvement from combining the two sets of features.

Approaches like those above require a sizable amount of response data for each question, and collect-
ing question-specific data is an expensive and difficult task. Furthermore, for high-stakes assessment this
can be impossible due to concerns about question exposure. A content feature that does not require any
test takers’ responses for new questions has a strong advantage when scoring a large scale operational
assessment.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.
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To address this issue, Higgins et al. (2006) developed a system for scoring off-topic essays without the
need for question-specific responses; the system was based on similarity features between the question
text and the test response. The performance of this system was lower than the benchmark system trained
on question-specific responses, but it achieved a substantial improvement over a majority-based baseline.
Louis and Higgins (2010) further improved this system by expanding question texts to include synonyms,
inflected forms, and distributionally similar words to the question content. The performance of Louis and
Higgins (2010) showed a substantial improvement for questions consisting of only a small amount of
text. More recently, Evanini et al. (2013) developed a set of content features based on both the questions
and listening and reading materials for automated speech scoring and reported significant correlations
between these content features and the proficiency scores.

Various approaches based on deep-neural networks (DNN) and word-embeddings trained on large
corpora have showed promising performance in various NLP tasks, such as document similarity detection
(Kusner et al., 2015; Mueller and Thyagarajan, 2016; Neculoiu et al., 2016). In contrast to traditional
similarity features, which are limited to a reliance on exact word matching, these new approaches have
the advantage of capturing topically relevant words that are not identical. Yoon et al. (2017) and Rei and
Cummins (2016) applied this approach to the task of off-topic detection in spoken responses and essays,
respectively, and achieved substantial improvements over systems that only use word-matching.

In this study, we combine the approach suggested by Evanini et al. (2013) and with more recent
advances in word embeddings and develop a new set of low-resource content features: these features
are trained using the prompt text expanded with word-embeddings without relying on any pre-existing
responses to a given question. We conducted the following research:

• Using the prompt texts included in each question, we developed two sets of content features: fea-
tures based on the traditional content vector analysis (CVA) approach and features based on word
embeddings.

• We trained automated scoring models using traditional speech-driven features and new content fea-
tures and compared the performance of the models.

• We investigated the impact of question types on the performance of the content features and the
automated scoring models. We provided an in-depth discussion about what aspects of the content
can be assessed by these new content features.

2 Data

We used a large collection of spoken responses from an assessment of English proficiency for academic
purposes1. The speaking section of the assessment was composed of 6 questions in which speakers were
prompted to provide responses lasting between 45 and 60 seconds per question, resulting in approxi-
mately 5.5 minutes of speech per speaker. All questions extracted spontaneous speech.

Among the 6 questions, two questions (hereafter, Independent questions) asked examinees to provide
information or opinions on familiar topics based on their personal experience or background knowledge.
These questions were short and typically consisted of just a few sentences. The questions were designed
to elicit responses based on personal experience or views on specific topics. Thus, the responses differed
widely in their content. For the four remaining questions (hereafter, Integrated questions), test takers
read and/or listened to stimulus materials and then answered a question relevant to the passage. We used
49 Independent questions and 98 Integrated questions in this study.

All responses were scored by trained raters using a 4-point scoring scale, where 1 indicates low speak-
ing proficiency and 4 indicates high speaking proficiency. The rubrics consist of three major perfor-
mance categories: delivery (pronunciation, intonation, rhythm, and fluency), language use (diversity,
sophistication, and precision of vocabulary, and range, complexity, and accuracy of grammar), and topic
development (progression of ideas, the degree of elaboration and completeness). We used the TOEFL
iBT Speaking Test Rubrics, which provide descriptions about the typical characteristics of candidate

1The data is not publicly available.

13



performance for each score level. Approximately 10% of data set was double-scored, and an estimation
of the inter-rater agreement was obtained from this dobule-scored sub-set. Both Pearson correlation and
weighted kappa were 0.54 for Independent questions and 0.61 for Integrated questions.

We used 103, 868 and 49, 281 responses for training and evaluation of automated scoring models,
respectively. In addition, 154, 992 responses were used to obtain an inverse-document frequency (idf )
model for content features. The proposed features in this study did not use any question-specific sample
responses for content model training, and thus, the idf Train set did not contain any responses answering
the questions used in the scoring models. Finally, we used 73, 500 responses to train question-specific
content models as a benchmark. The size of the data sets is summarized in Table 1.

Dataset N. of questions
N. of responses Responses

per questionIntegrated Independent Total
Scoring Model Train 147 34,426 69,442 103,868 706.6
Scoring Model Evalua-
tion

147 16,298 32,983 49,281 335.2

idf Train 438 53,323 101,669 154,992 353.9
Question-specific Content
Model Train

147 (same ques-
tions as Scoring
Model partition)

73,500 24,500 49,000 500

Table 1: Number of questions, and responses for each partition

There were no overlaps among all datasets. There was a strong bias towards the middle scores (score
2 and 3); the most frequent score was 3 (50%) and followed by 2 (37%) with approximately 87% of the
responses belonging to these two score levels. The percentages of responses with score 4 and score 1
were 9% and 4%, respectively.

3 Features

3.1 Content features

We developed two sets of content features using the prompt texts. The prompt texts consisted of the
question sentences and optional listening and reading materials.

The first feature was a tf − idf (term frequency - inverse document frequency) weighted cosine simi-
larity score between the prompt text and the response (hereafter, prompt-based CVA). First, we obtained
an idf model using the idf Train set which covered a wide range of questions except the 147 questions
used in Scoring Model Train and Evaluation set. For each word in the idf Train set, we calculated the
total number of responses divided by the number of responses containing it. Next, we built a question-
specific tf model for each question. We converted the prompt text into a single vector and counted the
number of the occurrences for each word.

The second set of features were features based on word-embeddings. Using the publicly available
word embedding vectors trained on the Google News corpus by Mikolov et al. (2013), we developed the
following two features used for the off-topic essay detection in Rei and Cummins (2016):

• averaged word embeddings: we created a vector for each question by mapping each word in the
question text to a corresponding word embedding vector and averaging them. Next, we created
a vector for a test response using the same process. Finally, we calculated the cosine similarity
between the question vector and the response vector.

• idf weighted word embeddings: we calculated an idf weighted word embedding feature by scaling
each word embedding vector by the corresponding idf weight and averaging the scaled vectors for
the prompt and the response, separately. We calculated the cosine similarity between these two
weighted vectors.

14



As a benchmark, we compare the proposed features, which are based only on the prompt materials,
to a feature trained on the test takers’ sample responses to the 147 questions (hereafter, response-based
CVA). First, we obtained the ASR-based transcriptions for responses in the Question-specific Content
Model Train set. All responses that answer the same question were converted into a single vector and
a question-specific tf was built from this vector using the same process as the prompt-based tf model.
Finally, we calculated a tf − idf weighted cosine similarity score between a test response vector and the
question-specific tf vector.

3.2 Speech-driven features
We used 35 features generated by an automated proficiency scoring system for non-native speakers’
spontaneous speech. For a given spoken response, the system performs speech processing, including
speech recognition, forced-alignment, pitch and power analysis, and generates a word hypotheses and
time stamps. Given the word hypotheses and descriptive features of pitch/power, it generates the follow-
ing five groups of features that capture information relevant to fluency and pronunciation. The numbers
in parentheses are the number of features that belong to each group.

• Speech rate features (3): These features compute the words spoken per minute with and without
trailing and leading pauses. Speech rate has been consistently identified as one of the major co-
variates of language proficiency and the features in this group have some of the highest correlations
with the overall human score.

• Segmental quality features (6): These features measure how much the pronunciation of individual
segments deviates from the pronunciation that would be expected from a proficient speaker. Features
are derived from the confidence scores of the ASR system or acoustic scores of the forced alignment
system. For instance, the normalized confidence score of the ASR system belongs to this group.

• Pause pattern features (9): These features capture pausing patterns in the response, such as mean
duration of pauses, mean number of words between two pauses, and the ratio of pauses to speech.

• Prosody features (11): These features measure patterns of variation in the time intervals between
stressed syllables as well as the number of syllables between adjacent stressed syllables (Zechner et
al., 2011).

• Timing features (6): These features capture variation in the duration of vowels and consonants.
This category includes features such as relative proportion of vocalic intervals or variability in ad-
jacent consonantal intervals (Lai et al., 2013) as well as features which compare vowel duration to
reference models trained on native speakers (Chen et al., 2009).

4 Experiment 1

4.1 Feature Generation
We first generated word hypotheses for each response in Table 1 using an ASR system. A gender in-
dependent acoustic model (AM) was trained on 800 hours of spoken responses extracted from the same
English proficiency test using the Kaldi toolkit (Povey et al., 2011). The AM training dataset consisted of
52,200 spoken responses from 8,700 speakers. It was based on a 5-layer DNN with p-norm nonlinearity
using layer-wise supervised backpropagation training. The language model (LM) was a trigram model
trained using the same dataset used for AM training. This ASR system achieved a Word Error Rate of
23% on 600 held-out responses. Detailed information about the ASR system is provided in (Tao et al.,
2016).

Next, we normalized both the prompt texts and the ASR-based transcriptions of the responses; all
words were tokenized, and stop words and disfluencies were removed from the texts. The length of the
original and the processed texts after removing stop words and disfluencies are summarized in Table 2.

The average lengths of the Independent prompts and the Integrated prompts were 41.0 and 341.6 words
respectively; thus the Integrated prompts were approximately 8 times longer than Independent prompts.
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Question
type

Text normalization
Prompts Responses

mean STD max min mean STD max min
Independent tokenized 41.0 15.5 100 20 97.3 22.1 173 11

+stop word and disflu-
ency removal

27.5 10.9 72 14 40.4 10.35 85 0

Integrated tokenized 341.6 37.5 446 249 129.5 31.11 248 11
+stop word and disflu-
ency removal

230.3 26.1 302 168 53.1 13.7 107 0

Table 2: Descriptive analysis of the number of words in prompt texts and responses

After removing stop words and fillers, the texts were approximately 2/3 of the original texts. The re-
sponses contained an average of 97 words for the Independent responses and 129 words for Integrated re-
sponses, but there were large variations across different responses. After the normalization process, the
length of the responses was 40% of the original responses on average. The responses were shortened
in larger proportion than the prompts because the responses contained disfluencies such as ‘uh’, ‘um’,
which were removed.

From these normalized transcriptions, we created four content features as described in Section 3. In
addition, 35 speech-driven features were generated using the original wave files and the same ASR word
hypotheses.

4.2 Results

First, we conducted correlation analyses between features and human scores using the Scoring Model
Train set. Table 3 presents Pearson correlation coefficients. For speech-driven features, the minimum
and maximum for each group are presented.

Independent Integrated
Benchmark

Response-based CVA 0.175 0.426
Prompt-based content features

Prompt-based CVA 0.173 0.366
Averaged embedding 0.193 0.449
idf weighted embedding 0.240 0.455

Speech-based features
Speech rate (0.262, 0.524) (0.315, 0.561)
Segmental quality (0.168, 0.546) (0.200, 0.586)
Pause pattern (0.237, 0.494) (0.243, 0.523)
Prosody (0.147, 0.525) (0.145, 0.558)
Timing (0.248, 0.500) (0.268, 0.527)

Table 3: Pearson Correlation Coefficients between features considered in this study and human scores
for Independent and Integrated questions.

The correlations of content features were largely influenced by the question types. In general, the
correlations for Integrated questions were substantially higher than those for Independent questions. The
best performing feature was idf weighted embedding, and the correlation coefficients were 0.240 and
0.455, respectively.

In contrast to the content features, the differences between Independent questions and Integrated ques-
tions among the speech-based features were relatively small. There were large variations in the corre-
lations among the features, and the lowest performing features in each group showed weak correlations
with human scores, while the best performing features showed correlations over 0.50 with the exception
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of pause pattern group (0.494 for Independent questions). Among all features, the normalized acoustic
model score in the Segmental quality group showed the best correlation with human scores with coeff-
cients of 0.546 for Independent and 0.586 for Integrated.

We next considered whether adding content features to speech features improves performance of the
automated scoring model. We trained multiple linear regression (MLR) models using both speech-driven
and content features as the independent variables and the human score as the dependent variable. In
order to compare the performance of the new features with the speech-driven features and investigate the
impact of adding them to the existing model, we trained three models: speech (model based on 35 speech-
driven features), content (model based on 3 prompt-based content features), and combination (model
based on both speech-driven and content features, 38 features in total). In order to investigate the impact
of the question types on the performance of content features, we trained each model for Independent and
Integrated questions separately, yielding a total of 6 models. The models were trained on the Scoring
Model Train partition using RSMTool (Madnani et al., 2017). Table 4 shows the performance of all
models in terms of agreement between automated and human scores.

Independent Integrated
corr wtkappa RMSE corr wtkappa RMSE

Speech 0.612 0.483 0.536 0.655 0.543 0.531
Content 0.270 0.150 0.653 0.522 0.413 0.600
Combination 0.613 0.483 0.536 0.663 0.551 0.526

Table 4: Correlations, weighted kappas and root mean squared error (RMSE) between the automated
scores and human scores

We observed the following points:

• The performance of content models was strongly influenced by question type; the model perfor-
mance for the Integrated questions was consistently better than that for the Independent questions.

• The speech models outperformed the content models for both question types.

• The combination of content features and speech-driven features (feature-level fusion) achieved a
further improvement for Integrated questions; both correlations and weighted kappas increased ap-
proximately 0.008 in absolute value. Based on the Steigers Z-test for dependent correlations, this
improvement was statistically significant at 0.01 level (p < 0.01).

4.3 Discussion

While adding content features lead to a statistically significant improvement in model performance for
Integrated questions, this improvement was small and the scores from the two models were highly cor-
related with r = 0.986. Content features also received very low coefficients in the linear regression.
However, the result is consistent with previous studies; Loukina and Cahill (2016) observed that con-
tent features such as unigrams or bigrams trained on question-specific sample responses achieved little
improvement when combined with speech-driven features. They further argued that the majority of
speakers who perform well along one dimension of language proficiency are also likely to perform well
along other dimensions (see also Xi (2007), who reports similar results for human analytic scores). Con-
sequently, the gain in performance from combining different systems is small or non-existent.

To explore this further, we conducted a further analysis using responses to Integrated questions and
explored what types of responses benefited from the addition of content features. First of all, we ob-
served that the content features were best at differentiating between low proficiency responses and the
other responses. Figure 1 shows that the automated scores generated by the speech model consistently
make distinctions across all score points as assigned by human raters. While for content models, the
distinctions were clear for score points 1 and 2, but not for score points 3 and 4. The average automated
scores for score point 3 and 4 were 2.73 and 2.88 respectively, and the difference was small.
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Figure 1: Average score predicted by the model based on speech features (blue) and content features
(orange) for responses with different human scores.

Human score 1.0 2.0 3.0 4.0 All
N 1,548 12,721 16,054 2,661 32,984
Speech 0.860 0.523 0.387 0.925 0.531
Combination 0.836 0.518 0.389 0.912 0.526
Difference -0.024 -0.005 0.002 -0.013 -0.005

Table 5: RMSE between the human scores and automated scores generated by the ‘Speech’ model,
RMSE between the human scores and automated scores generated by the ‘Combination’ model, and the
difference in RMSE between the two models.

We calculated RMSE between human scores and automated scores and averaged them for each human
score level (see Table 5). Adding content features to speech features improved the model performance
on low-proficiency responses: the decrease in RMSE was largest for score point 1 where it decreased
from 0.86 to 0.84. Since less than 5% of the responses received score 1, this improvement had very little
impact on overall model performance.

5 Experiment2

In Experiment 1, we found that new content features could reduce the automated score errors for the
lowest score point. Based on this observation, we hypothesized that the new features could identify
responses with substantial content issues and assign more accurate scores than the model based only on
the speech-driven features for these responses. In order to examine this hypothesis, we artificially created
a dataset with content issues by pairing responses with mismatched prompts for feature calculation.

5.1 Data

We first randomly selected 438 questions that did not overlap with the 147 questions used for the Scoring
Model Train and Evaluation sets. Each question in our assessment was designed to elicit content that was
substantially different from other questions, and therefore, mismatched responses have substantial con-
tent issues. For each question in the set of 147, we randomly selected 100 responses from the responses
to the 438 questions. A total of 14, 700 responses (4, 900 responses for Independent questions and 9, 800
responses for Integrated questions) were selected (hereafter, content-abnormality dataset). The average
of the original human scores was 2.73 for Independent questions and 2.66 for Integrated questions. We
did not re-score these responses as answers for the new question we randomly assigned. However, re-
sponses contained content inappropriate for the new questions, and the holistic proficiency scores were
expected to be lower than the original scores due to this content issue.
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5.2 Method

For each response in the content-abnormality dataset, we generated both speech-driven features and con-
tent features. For the content features, we did not use the original prompt text that elicited the response,
but instead we used the new prompt text that was one of the 147 questions randomly selected as de-
scribed in Section 5.1. Next, we generated three automated scores using the automated models described
in Section 4.

5.3 Results

Table 6 presents the average of the automated scores of the content abnormality dataset.

Independent Integrated
Speech 2.70 2.63
Content 2.38 1.70
Combination 2.67 2.37

Table 6: Comparison of the automated scores for responses with content abnormality

The average scores of the speech models were 2.70 for Independent questions and 2.63 for Inte-
grated questions, and they were similar to the average of the original human scores. In contrast, the
average scores of the content models were lower than those of the speech models, and this trend was par-
ticularly salient for the Integrated questions. Finally, the models based on both features assigned lower
scores than speech models on average, but the differences were relatively small; it was 0.03 for Inde-
pendent questions and 0.26 for Integrated questions. This may be due to the low coefficients assigned
to the content features in the linear regression models; the coefficients for Independent questions were
lower than Integrated questions, and the difference of Independent questions was even smaller than that
of Integrated questions.

Next, we further analyzed the automated scores for Integrated questions. Figure 2 shows the relation-
ships between the automated scores and the original human scores.

Figure 2: Average predicted scores of the models based on speech features (blue), content features
(orange), and both feature sets (gray) conditioned by human scores.

In general, the automated scores of the content model were consistently lower than those of the other
two models across all human score points. As the original human scores increased, the content scores
also slightly increased, but the average scores for all score points were lower than 2.0. In contrast, as the
original human scores increased, the scores of the speech model increased substantially, and the average
scores except score point 1 were higher than 2.0. The high scores of the speech model was expected
since it did not include any features to capture the content abnormality, and the automated scores may be
inflated when the responses demonstrated good delivery skills (e.g., pronunciation and fluency) in spite of
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the content abnormality. In contrast, the content model consistently assigned lower scores for responses
with the content abnormality. This result supports that the new content features are sensitive to the severe
content issues and predict a more accurate score, which penalizes the content issues appropriately.

5.4 Discussion

Experiment 1 showed that the new content features improved the scoring accuracy for the responses
with the lowest proficiency score. Furthermore, experiment 2 showed that these features could prevent
the inflation of automated scores for responses with the critical content abnormality that caused a severe
mismatch between delivery and content. However, we did not uncover evidence that new content features
can improve score accuracy for responses with subtle and complicated content issues. These results
are expected considering the nature of the proposed content features. The features were based on word
unigrams and therefore may be able to make distinctions between responses with or without key concepts.
However, they would not be able to differentiate whether the combination of these individual words
conveys an appropriate meaning or not, which may be a key point for differentiating proficiency levels
between the intermediate and advanced learners. Further qualitative review of a small set of responses
was consistent with this conclusion: the scores of the content model were more accurate than those of the
speech model when scoring responses with good coverage of the key words but low fluency. However,
both models assigned high scores to responses that could be described as a continuous stream of mostly
intelligible and relevant words but incoherent in terms of the content.

The holistic proficiency scores were not only based on the content, but raters also took into account
other aspects of speaking proficiency, such as pronunciation, fluency, grammar, and vocabulary. How-
ever, if a test taker has comparable skills across all performance categories, then the score based on only
one performance category may be comparable to the holistic proficiency score. For instance, if a re-
sponse shows comparable skills for both the delivery and content, then the delivery-based score may be
similar to the holistic proficiency score. If the majority of responses belong to this type, automated scores
only measuring limited performance categories may show strong correlations with the experts’ holistic
proficiency scores. In this study, correlations between the automated scores based solely on speech fea-
tures and the scores based on the combination of the content and speech features were very high, and two
scores were seemingly identical. However, when scoring responses with severe content abnormality, the
two scoring models showed different behaviors, and the scores based on both content and speech features
correctly reflected the content abnormality. This result illustrates the importance of the coverage of the
performance categories that automated scoring models assess; when scoring responses with mismatched
proficiency levels in different performance categories, automated scoring systems assessing with limited
coverage may show sub-optimal performance.

6 Conclusions

In this study, we proposed content features for an automated scoring system of non-native speakers’
spontaneous speech. The content features calculated the similarity between the prompt texts and the ASR
hypothesis of test responses, and therefore do not require any sample responses for each item during the
training. The inclusion of new features achieved a small but statistically significant improvement for
Integrated questions over the existing model based on speech-driven features solely assessing delivery
skill. A further experiment using responses with artificially induced content abnormality showed that the
inclusion of the new features may increase the validity of the automated scores by preventing the system
from generating inflated scores for responses with good delivery skills but severe content issues.
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Abstract

Automatically learnt word sense embeddings are developed as an attempt to refine the capabilities
of coarse word embeddings. The word sense representations obtained this way are, however,
sensitive to underlying corpora and parameterizations, and they might be difficult to relate to
word senses as formally defined by linguists. We propose to tackle this problem by devising a
mechanism to establish links between word sense embeddings and lexical resources created by
experts. We evaluate the applicability of these links in a task to retrieve instances of Swedish
word senses not present in the lexicon.

1 Introduction

Word embeddings have boosted performance in many Natural Language Processing applications in re-
cent years (Collobert et al., 2011; Socher et al., 2011). By providing an effective way of representing
the meaning of words, embeddings facilitate computations in models and pipelines that need to analyze
semantic aspects of language.

Based on their success, an effort has been concentrated in improving embedding models, from devising
more computationally effective models to extending them to cover other semantic units beyond words,
such as multi-word expressions (Yu and Dredze, 2015) or word senses (Neelakantan et al., 2014). Being
able to represent word senses solves the problem of conflating several meanings of one polysemic word
into a single embedding (Li and Jurafsky, 2015). Furthermore, having complete and accurate word sense
representations brings embedding models closer to a range of existing, expert-curated resources such as
lexica. Bridging the gap between these two worlds arguably opens a road to new methods that could
benefit well-established, widely used resources (Faruqui et al., 2015; Speer et al., 2017).

This is the focus of the work we present in this article. We propose an automatic way of creating a
mapping between entries in a lexicon and word sense representations learned from a corpus. By having
an identification between a manual inventory of word senses and word sense embeddings, the lexicon
obtains capabilities by which its entries can be manipulated as mathematical objects (vectors), while the
vector space model receives support from a linguistic resource. Furthermore, by analyzing the disagree-
ments between the lexicon and the embedding model, we can acquire insight into the shortcomings of
their respective coverage. For instance, unlinked lexicon entries evidence those instances that the vector
model is unable to learn, while unlinked word sense embeddings may suggest new usages of words found
in the corpora. Being able to locate these cases opens the way towards improving lexica and embedding
models. Automatic discovery of novel senses has been shown as a feasible and productive endeavor
(Lau et al., 2012). In our evaluation we provide some insight into these situations: we use a mapping to
calculate the probability that a word in a sentence from a corpus is an instance of an unlisted sense (i.e.,
not present in the lexicon.)

This mapping process, and some of its potential applications, are explained in detail in the following
sections. Section 2 contains a description of the mapping mechanism Section 3 goes on to evaluate the
performance of this mapping on finding instances of unlisted senses. We present our conclusions in
Section 4.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

23



2 Model

2.1 Lexicon
A lexicon which lists word senses and provides relations between them is required; for instance, a re-
source that encodes these relations in a graph architecture, such as WordNet (Fellbaum, 1998).

We need to retrieve word senses related to any given target word sense in order to obtain a set of
neighbors which put the target sense in context. This context will be used to compare it with sets of
neighbors extracted from a word sense vector space for senses of the same lemma, and thus find the best
match to establish a link.

In our experiments on Swedish data we use SALDO (Borin et al., 2013) as our lexicon. It is encoded
as a network: nodes encode word senses, which are connected by edges defined by semantic descriptors:
the meaning of a sense is defined by one or more senses, its descriptors. Among others, each sense
has one primary descriptor (PD) and, in turn, it may be the primary descriptor of one or more senses.
E.g., the PD of the musical sense of rock would be music, which would be the PD of hard rock. The
PD network of SALDO traces back to a root node (which does not have a PD) and, thus, it has a tree
topology. In general, senses with more abstract meanings are closer to the root, while more concrete
ones are located closer to the leaves.

2.2 Word Sense Embeddings
Word sense embeddings allow us to create an analogy between semantic relatedness among words and
geometric distance between their representations in a vector space. In particular, a word sense embedding
model assigns multiple representations to any given word, each of which is related to a distinct word
sense. For our purposes, we make use of Adaptive Skip-gram (Bartunov et al., 2016), an adaptation of
the hierarchical softmax Skip-gram (Mikolov et al., 2013).

The hierarchical softmax model is described by its training objective: to maximize the probability of
context words v given a target word w and the model’s parameters θ:

p(v|w, θ) =
∏

n∈path(v)

1

1− e−ch(n)x>
wyn

, (1)

where xw are the input representations of the target words w, and the original output representations of
context words yn are associated with nodes in a binary tree which has all possible vocabulary words v as
leaves; θ is the set of these representations as weights of the vector model. In this context, path(v) are
the nodes n in the path from the tree’s root to the leaf v, identified by ch(n) being -1 or 1 depending on
whether n is a right or left child.

The Adaptive Skip-gram (AdaGram) model expands this objective to account for multiple word senses
to be represented in the input vocabulary X . It does so by introducing a latent variable z that determines
a concrete sense k of word w. The output vocabulary Y remains unchanged. This model uses a Dirichlet
process (stick-breaking representation) to automatically determine the number of senses per word. They
define a prior over the multiple senses of a word as follows:

p(z = k|w,β) = βwk

k−1∏

r=1

(1− βwr),

p(βwk|α) = Beta(βwk|1, α),
where β is a set of samples β from the Beta distribution and α is a hyperparameter. By combining this
prior with a pre-specified maximum number of prototypes and a threshold probability, the model is able
to automatically determine the number of word senses any given word is expected to have. The objective
function that defines the AdaGram model is defined as follows:

p(Y,Z,β|X,α, θ) =
V∏

w=1

∞∏

k=1

p(βwk|α)
N∏

i=1


p(zi|xi,β)

C∏

j=1

p(yij |zi, xi, θ)


 , (2)
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Lexicon Vector space
rock-1 ‘jacket’ rock-b (clothing)
rock-2 ‘rock music’ rock-a, rock-c,

rock-d, rock-e (music)

Table 1: Example mapping for rock.

where V is the word vocabulary size, N is the size of the training corpus, C is the size of the context
window, and p(βwk|α) is the prior over multiple senses obtained via the Dirichlet process described
above. The granularity in the distinction between word senses is controlled by α. A trained model
produces representations for word senses in a D-dimensional vector space where those with similar
meanings are closer together than those with dissimilar ones.

For the purposes of this work, we trained a word sense embedding model on a Swedish corpus (cf.
Section 3.1) using the default parameterization of AdaGram: 100-dimension vectors, maximum 5 pro-
totypes per word, α = 0.1, and one training epoch. (See AdaGram’s documentation for a complete
list.)

2.3 Lexicon-Embedding mapping

Our goal is to establish a mapping between lexicographic word senses and embeddings that represent the
same meanings. The approach we take is to generate a set of related word senses for each sense of any
given word, both from the lexicon (via relations encoded in its graph’s edges) and from the vector space
(via cosine distance), to measure their relatedness and define mappings.

To obtain sets of neighbors from the lexicon, given any target word sense, any senses directly con-
nected by an edge to the target’s node is selected as a neighbor. In the vector space, nearest neighbors
based on cosine distance are selected.

In order to measure relatedness using geometric operations we need to assign provisional embeddings
to lexicographic neighbors in order to measure their distance to vector space neighbors. We do this by
using AdaGram’s disambiguation tool: given a target word and a set of context words, it calculates the
posterior probability of each sense of the target word given the context words according to the hierarchi-
cal softmax model (Equation 1). The word in context is disambiguated by selecting the its sense with the
highest posterior probability. (In our case, for any given sense, the rest of senses in the set act as context.)

We expect some lexicon-defined senses to not be present in the vector space and some word senses
captured by the embedding model to not be listed in the lexicon. Additionally, the AdaGram model may
create two or more senses for one word which relate to the same lexicographic sense. We address this
by making the mapping 1-to-N to allow a lexicon sense to be linked to more than one sense embedding
if necessary. Additionally, in order to make it possible for lexicon senses to be left unlinked, we propose
to use a false sense embedding that acts as an attractor for those lexicon senses with weak links to real
embeddings.

The mapping mechanism is shown in Algorithm 1. For each word in the vocabulary, a set of neighbors
is generated for each of its senses in the lexicon and in the vector space. The vector representations
of these neighbors are averaged, since averaging embeddings has been proven an efficient approach to
representing multi-word semantic units (Mikolov et al., 2013; Kenter et al., 2016). A probability matrix
p ∈ [0, 1]n×m is calculated by applying the softmax function to pairs of vectors. An extra column is
added with scores generated by the softmax on zero-valued vectors to account for the false sense. A row
in p represents the probability that each sense in the vector model corresponds to that row’s lexicon sense,
from which the maximum is obtained to establish a link. (A threshold ρ exists to avoid low-probability
links.)

An example of the linking performed by this mechanism is shown on Table 1. According to the lexicon
SALDO, the noun rock has two senses in Swedish: (1) ‘jacket’ and (2) ‘rock music’. The word sense
embedding model finds five different meanings for rock; upon inspection of their nearest neighbors,
which give an indication of the closest senses to any particular meaning, four of them relate to the music
sense (linked to rock-2) and one to items of clothing (linked to rock-1). As can be seen in Table 1, the
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Algorithm 1 Mapping algorithm.

1: for all words w do
2: /* Lexicon neighbors */
3: n← #lexical senses of w
4: si← ith lexical sense of w, i ∈ [1, n]
5: for all si do
6: ai← set of neighbors of si
7: for all neighbor k in ai do
8: v(aik)← embedding for aik
9: end for

10: end for
11: /* Vector space neighbors */
12: T ← max #senses per word
13: m← #nearest neighbors (NN) per sense
14: zj← jth sense embedding ofw, j ∈ [1, T ]
15: for all zj do
16: bjl ← lth NN of bj , l ∈ [1,m]
17: end for
18: /* Average neighbors */
19: for all i, j do
20: v(ai)← avg. vector over k

21: end for
22: for all j do
23: v(bj)← avg. vector over l
24: end for
25: /* Mapping probabilities */
26: for all i, j do
27: pij ← softmax(v(ai) · v(bj))
28: piN+1← softmax(

−→
0 )

29: end for
30: /* Mapping */
31: for j ∈ [1, T ] do
32: if prior(sj) > ρ then
33: r← indmaxi(pij)
34: if r 6= N + 1 then
35: map sr to zj
36: end if
37: end if
38: end for
39: end for

clothing-related meaning is linked to the sense meaning ‘jacket’, while the four music-related ones is
linked to the sense meaning ‘rock music’.

3 Evaluation

3.1 Training Corpus

For training the AdaGram model, we created a mixed-genre corpus of approximately 1 billion words of
contemporary Swedish downloaded from Språkbanken, the Swedish language bank.1 The texts were pro-
cessed using a standard preprocessing chain including tokenization, part-of-speech-tagging and lemma-
tization. Compounds were segmented automatically and when the lemma of a compound word was not
listed in SALDO, we used the lemmas of the compound parts instead. For instance, golfboll ‘golf ball’
would occur as a single lemma in the corpus, while pingisboll ‘ping-pong ball’ would be split into two
separate lemmas.

3.2 Benchmark Dataset

For evaluation, we annotated a benchmark dataset. We selected five target lemmas for which we knew
that the corpus contains occurrences of word senses that are unlisted in the lexicon. In addition, we
selected four target lemmas that do not strictly have new word senses, but that tend to be confused with
tokenization artifacts, named entities, or foreign words. Table 2 shows the selected lemma, an overview
of the senses that are listed in the lexicon, as well as the most important unlisted senses.

For each of these nine target lemmas, we selected 1,000 occurrences randomly from the corpus. Two
annotators went through the selected occurrences and determined which of them are instances of the
senses present in the lexicon, and which of them are unlisted senses. A small number of occurrences
were discarded because they were difficult for the annotators to understand.

1http://spraakbanken.gu.se
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Lemma Listed Main unlisted
fet ‘fat’; ‘thick’ ‘cool’; emphasis
klient ‘client’ (customer) ‘client’ (application)
klubb ‘club’ (night) ‘club’
pirat ‘pirate’ ‘pirate’ (e.g. music)
sida ‘side’; ‘page’ ‘web page’
fil ‘file’; ‘row’; ‘lane’; ‘yogurt’ e.g. in fil. dr. ‘PhD’
get ‘goat’ foreign words
mus ‘mouse’; ‘pussy’ a cosmetic brand
sur ‘sour’; ‘grumpy’; ‘soaked’ foreign words

Table 2: Selected target lemmas.

3.3 Experimental Settings

Given a mapping between lexicographic word senses and automatically discovered senses in a corpus,
sentences from the benchmark dataset can be scored by their probability of containing an out-of-lexicon
instance. A score is calculated using the linking probability between lexicographic sense yj and vector
model sense xi, P (yj |xi), and the probability of the AdaGram sense xi in the context of the sentence
ctx, P (xi|ctx):

P (yj |ctx) =
T∑

i=1

P (yj |xi)P (xi|ctx),

thus obtaining the probability of a particular lexicographic sense yj given context ctx. The sum of all
p(yj |ctx), j ∈ [1, T ], yields the probability that an instance contains one of the listed word senses. Our
score, then, is calculated as the inverse probability:

score = 1−
n∑

j=1

P (yj |ctx). (3)

The human annotations of the sentences are interpreted as the gold standard, and the scores as our model’s
classification output that can be used to rank the sentences from most to least probably containing an out-
of-lexicon instance of a target word. We evaluate this classification using the Area Under the Receiver
Operating Characteristic Curve (AUC). For reference, recall that the expected AUC of a random ranking
is 0.5.

The potential of the automated mapping between a lexicon and an embedding model to help retrieve
instances of word senses unlisted in the lexicon gives us a certain measure of the quality of this mapping.
The recovery of instances of unlisted senses can only succeed if the mapping has successfully identi-
fied listed lexicon senses in the embedding model, leaving unlisted ones unlinked. On the other hand,
failure to recover instances of unlisted senses can expose weaknesses in the automated mapping. (See
Section 3.4 for an analysis of unsuccessful cases.)

3.4 Results

We apply the scoring and evaluation process explained above on the sets of sentences for each of the
words selected for the benchmark dataset. Table 3 summarizes the results obtained. We observe a clear

Word n AUC
fet 976 0.76
klient 959 0.02
klubb 985 0.74
pirat 907 0.53
sida 985 0.69
Sub-avg. 0.55

(a) Unlisted senses.

Word n AUC
fil 982 0.87
get 954 0.98
mus 972 0.83
sur 967 0.96
Sub-avg. 0.91
Total avg. 0.73

(b) Spurious senses.

Table 3: AUC scores.

27



difference between the two types of lemmas: the model’s performance is notably higher when the lemmas
may be confused with tokenization artifacts, named entities or foreign words (Table 3b) than when the
lemmas have meanings not listed in the lexicon (Table 3a). This is arguably due to the ability of the word
sense embedding model to isolate spurious meanings in the vector space since these occurrences tend to
be distributionally quite distinct from the standard uses. However, note that also for the case of unlisted
meanings, the model generally improves over a random baseline.

The exception to this is the case of klient, where the listed sense is ‘customer’ and the new sense is
‘client application’. Here, the ranking is upside down, as can be seen from the very low AUC value. The
cause of this issue can be traced to the inability of the mapping algorithm to successfully link the only
lexicographic sense to its corresponding vector space embedding. The neighbors of the AdaGram sense
corresponding to the ‘customer’ sense tend to be legal terms, which are not connected to this sense in the
lexicon. (Arguably, the legal use of ‘client’ could be seen as a separate sense.) Compare this to the case
of pirat, which performs roughly at random (AUC ≈ 0.5), suggesting simply that the AdaGram model
has not picked up the distinction between the senses, which makes it hard to solve the problem by simply
changing the link, as would be the case with klient.

A straightforward way to address those cases in which the mapping fails to correctly establish a link
would be to refine the way in which the word senses are represented at the time of linking. Our approach
is to do this by averaging the embeddings of nearest neighbors, due to the simplicity and usual robustness
of this operation. However, more complex approaches to combining embeddings have been demonstrated
using, for example, weighted averaging (Arora et al., 2017), which could be adapted for our needs in this
work.

4 Conclusion

We have presented an approach to automatically link lexicographic word senses with word sense em-
beddings by retrieving sets of senses related to the different meanings of a lemma and measuring the
similarity between their vector representations. We argue that potential applications of such a system
resides on those embeddings that cannot be linked to a lexicographic sense, as this could serve to sug-
gest potential new entries to the lexicon, or to filter unlisted instances from a corpus. To illustrate this
point, the evaluation of our system has been focused on its ability to retrieve instances assumed to belong
to unlisted senses. Our system is able to identify such instances in many cases, as its performance in
terms of AUC is above that of a random baseline. The performance is specially high in cases where
the target lemma can be confused in the corpus with spurious meanings such as foreign words. In sum-
mary, our results indicate that establishing links between existing resources and embedding models has
potential applications in NLP tasks which require formal lexicographic knowledge. In the future, we
propose to examine ways to improve the current mapping system with improved neighbor representation
approaches, as well as to investigate further possible uses, such as improving existing resources with data
obtained from corpora.
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Abstract

Existing NLP models are mostly trained with data from well-resourced languages. Most minor-
ity languages face the challenge of lack of resources - data and technologies - for NLP research.
Building these resources from scratch for each minority language will be very expensive, time-
consuming and amount largely to unnecessarily re-inventing the wheel. In this paper, we applied
transfer learning techniques to create Igbo word embeddings from a variety of existing English
trained embeddings. Transfer learning methods were also used to build standard datasets for
Igbo word similarity and analogy tasks for intrinsic evaluation of embeddings. These projected
embeddings were also applied to the diacritic restoration task. Our results indicate that the pro-
jected models not only outperform the trained ones on the semantic based tasks of analogy,
word-similarity and odd-word identifying, but they also achieve enhanced performance on the
diacritic restoration with learned diacritic embeddings.

1 Background

Most NLP systems are modelled with English data. One major challenge to adapting these systems for
low resource languages is lack of good quality data. Such languages often rely on poor quality web-
crawled data. In our case the target language is Igbo, a language spoken by over 30 million indigenes
who live mainly in the south-eastern part of Nigeria but also in different parts of the world.

Inspite of the relatively large number of speakers, Igbo is critically low-resourced in terms of NLP
research (Onyenwe et al., 2018). Recent efforts to develop resources for Igbo include the design of
Igbo POS tagset (Onyenwe et al., 2014), and the tagset refinement (Onyenwe et al., 2015) as well as the
development of Igbo POS-tagger (Onyenwe, 2017). Works are also on-going with its automatic diacritic
restoration and lexical disambiguation (Ezeani et al., 2016) (Ezeani et al., 2017) and morphological
segmentation (Enemouh et al., 2017).

1.1 Embedding Models

Word embeddings are generic semantic representations from corpus. It enhances the concept of distri-
butional hypothesis (Harris, 1954) and count-based distributional vectors (Baroni and Lenci, 2010) and
provides an alternative to the one task, one model approach. Their application areas span most NLP
tasks and other fields such as biomedical, psychiatry, psychology, philology, cognitive science and social
science (Altszyler et al., 2016). There are many approaches to training embedding models, however
predictive (Mikolov et al., 2013a) and count-based (Pennington et al., 2014) models are very commonly
used.

Ideally, a model trained in one language should capture similar semantic distribution in other lan-
guages. Since the large amount of data required to train such a model are not often available for low
resource languages, transfer learning techniques could be used to project learned knowledge from one
language to another.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

30



1.2 Transfer and Cross-lingual Learning

Transfer learning generally refers to the transfer of knowledge acquired in one domain in solving a
problem in another domain. It is commonly applied when the target domain training data is limited
(Weiss et al., 2016). With transfer learning we could take advantage of a parallel data that exist across
languages in the form of word-aligned data, sentence-aligned data (e.g. Europarl corpus), document-
aligned data (e.g. Wikipedia), lexicon (bilingual or cross-lingual dictionary) or even zero-shot learning
with no parallel data.

In a survey of cross-lingual embedding models (Ruder, 2017), four different approaches were iden-
tified, monolingual mapping (Mikolov et al., 2013b; Faruqui and Dyer, 2014; Guo et al., 2015) which
trains embeddings on large monolingual corpora and then linearly maps a target language word to its
corresponding source language embedding vectors; pseudo-cross-lingual (Duong et al., 2016; Gouws
and Søgaard, 2015; Xiao and Guo, 2014) which trains embeddings with a pseudo-cross-lingual corpus
i.e mixing contexts from different languages; cross-lingual (Hermann and Blunsom, 2013; Hermann and
Blunsom, 2014; Kočiskỳ et al., 2014) trains embeddings on a parallel corpus constraining similar words
to be close to each other in a shared vector space; joint optimization (Klementiev et al., 2012; Luong et
al., 2015; Gouws et al., 2015) trains models on parallel or monolingual data but jointly optimise a com-
bination of monolingual and cross-lingual losses. In this paper, we will adopt the projection approach
described in (Guo et al., 2015).

2 Experimental Setup

Our experimental data consists of a collection of Igbo texts from the Igbo Bible and the translation of
the Universal Declaration of Human Rights, two short novels: an Igbo version of Eze Goes to School
and another Igbo novel Mmadu. Ka A Na Ari.a. The pipeline has three stages. It starts with building
the embedding models using training or projection methods (section 2.1). The next stage enhances the
diacritic words with the embeddings of the its co-aligned English words (section 3.4.2). Lastly, the
diacritic restoration is implemented as laid out in section 3.4.3.

In this experiment, we used only the Igbo-English parallel bible corpora, available from the Jehova
Witness website1, for the word alignment and projection of embedding models. The parallel data consist
of 32,416 aligned lines of text. Additional data from the novels (3179 lines) and official documents (90
lines) make up the rest of the 35,685 lines of text with token sizes of 962,747 (without punctuations)2

and vocabulary length 16,586 we used.
Although only 34% (328,591) of all tokens have diacritics, 54.8% (9,090) of vocabulary words are

diacritic marked. There are 795 ambiguous wordkeys. A wordkey is a word stripped of its diacritics if it
has any. Wordkeys could have multiple diacritic variants, one of which could be the same as the wordkey
itself. Over 97% of the ambiguous wordkeys have 2 or 3 variants.

2.1 Building Igbo Embedding Models

In this work, we used both trained and projected embeddings for our tasks. We built the igBible em-
bedding from the data using the Gensim word2vec Python libraries (Řehůřek and Sojka, 2010) with its
default parmeters. We also used the igWiki, a pre-trained Igbo model from fastText Wiki project (Bo-
janowski et al., 2016), but it was removed due to its unstable performance across tasks which we could
not resolve at the time of submission of this paper.

For the embedding transfer, we applied an alignment-based projection method (Guo et al., 2015). An
Igbo-English alignment dictionary AI|E uses a function f(wI

i ) that maps each Igbo word wI
i to all its

co-aligned English words wE
i,j and their counts ci,j as defined in Equation 1. |V I | is the vocabulary size

of Igbo and n is number of co-aligned English words.

1jw.org
2There will be 1,138,036 in total with punctuations, symbols and digits
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Model Igbo Vocabs Dimensions Eng Vocabs Train data
igBible 4968 300 – 902.5k
igEnBbl 4057 300 6.3k 881.8k
igGglNews 3046 300 3m 100bn
igWkNews 3460 300 1m 16bn
igWkSbwd 3460 300 1m 16bn
igWkCrl 3510 300 2m 600bn

Table 1: Igbo and English models: vocabulary, vector and training data sizes

AI|E = {< wI
i , f(wI

i ) >}; i = 1..|V I |
f(wI

i ) = {< wE
i,j , ci,j >}; j = 1..n

(1)

The projection is formalised as assigning the weighted average of the embeddings of the co-aligned
English words wE

i,j to the Igbo word embeddings vec(wI
i ) (Guo et al., 2015):

vec(wI
i )←

1

C

∑

wE
i,j ,ci,j∈f(wI

i )

vec(wE
i,j) · ci,j (2)

where C ←
∑

ci,j∈f(wI
i )

ci,j

Using this projection method, we built 5 additional embedding models for Igbo:

• igEnBbl from a model we trained on the English bible.

• igGNews from the pre-trained Google News3 word2vec model.

• igWkNews from fastText Wikipedia 2017, UMBC webbase corpus and statmt.org news dataset.

• igWkSbwd from same as igWkNews but with subword information.

• igWkCrl from fastText Common Crawl dataset

Table 1 shows the vocabulary lengths (vocabs), and the dimensions (vectors) of each of the models
used in our experiments.

3 Model Evaluation

We evaluate the models on their performances on the following NLP tasks: odd-words, analogy and
word similarity and diacritic restoration. As there are no standard datasets for these tasks in Igbo, we had
auto-generate them from our data or transfer existing ones from English. Igbo native speakers were used
to refine and validate instances of the dataset or methods used.

3.1 The odd word
In this task, the model is used to identify the odd word from a list of words e.g. breakfast, cereal, dinner,
lunch→ “cereal”. We created four simple categories of words Igbo words (Table 2) that should naturally
be mutually exclusive. Test instances were built by randomly selecting and shuffling three words from
one category and one from another e.g. o. kpara, nna, o. garanya, nwanne→ o. garanya.

3.2 Analogy
This is based on the concept of analogy as defined by (Mikolov et al., 2013a) which tries to find y2 in
the relationship: x1 : y1 as x2 : y2 using vector arithmetic e.g king −man + woman ≈ queen. We
created pairs of opposites for some common noun and adjectives (Table 3) and randomly combined them
to build the analogy data e.g. di (husband) – nwoke (man) + nwaanyi.(woman) ≈ nwunye(wife) ?

3https://code.google.com/archive/p/word2vec/
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category Igbo words
nouns(family) e.g. father, mother ada, o. kpara, nna, nne, nwanna, nwanne, di, nwunye
adjectives e.g. tall, rich o. cha, o. garanya, ogbenye, ogologo, oji, o. jo. o. , okenye, o. ma
nouns(humans) e.g. man, woman nwaanyi., nwoke, nwata, nwataki.ri., agbo. gho. , okorobi.a
numbers e.g. one, seven otu, abu. o. , ato. , ano. , ise, isii, asaa, asato. , itoolu, iri

Table 2: Word categories for odd word dataset

category opposites
oppos-nouns nwoke:nwaanyi., di:nwunye, okorobi.a:agbo.gho. , nna:nne, o.kpara:ada
oppos-adjs agadi:nwata, o. cha:oji, ogologo:mkpu. mkpu. , o. garanya:ogbenye

Table 3: Word pair categories for analogy dataset

3.3 Word Similarity

We created Igbo word similarity dataset by transferring the standard wordsim353 dataset (Finkelstein et
al., 2001). Our approach used Google Translate to translate the individual word pairs in the combined
dataset and return their human similarity scores. We removed instances with words that could not be
translated (e.g. cell→cell & phone→ekwenti. ,7.81) and those with translations that yield compound
words (e.g. situation→o. no. du. & conclusion→nkwubi okwu,4.81)4.

3.4 Diacritic restoration

The absence of proper diacritics in Igbo words causes ambiguities and may affect MT systems (Ezeani
et al., 2016; Ezeani et al., 2017) (see Table 4). There are word-, grapheme-, and tag-based techniques
(Francom and Hulden, 2013) for this task involving a huge amount of annotated data (Yarowsky, 1994;
Yarowsky, 1999) which Igbo does not have. Techniques for low-resource languages (Mihalcea, 2002;
Wagacha et al., 2006; De Pauw et al., 2011) but were not applied to Igbo. So far, works on Igbo used
either too little data (Scannell, 2011), non-generic methods (Ezeani et al., 2016; Ezeani et al., 2017).

Table 4: Translation challenge for Google Translate (Ezeani et al., 2017)

3.4.1 Building the baseline n-grams

As our baseline, we used standard n-gram models with back-off and 10-fold cross validations. We
focused on restoring only the ambiguous sets with a fair distribution of variants. To achieve this, we set a
maximum threshold of 70% for any of the variants in a set i.e. if choosing the most common variant from
a set gets 70% accuracy on that set, it is disqualified, leaving us with 215 (27%) of all 795 ambiguous
wordkeys. Figure 2 shows that there is no significant improvement after the bigram model.

4An alternative considered is to combine the word e.g. nkwubi okwu → nkwubi-okwu and update the model with a projected
vector or a combination of the vectors of constituting words.
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Figure 1: Average accuracy scores for all n-gram models: Thresholds [0.5 .. 1.0]

3.4.2 Deriving diacritic embedding models
The word akwa without context could mean àkwá(egg), ákwà(cloth), ákwá(cry/wail),
àkwà(bed/bridge). The task is to ensure that the embedding for each of the variants of akwa ex-
ists in the model and is represented by the weighted combination of each of the most co-occurring
words, mcwv.

diacvec ←
1

|mcwv|
∑

w∈mcwv

vec(w) ∗ wc (3)

where wc is the ‘weight’ of w i.e. the count of w in mcwv.

3.4.3 Diacritic restoration process
The restoration process computes the cosine similarity of the variant and context vectors and chooses
the most similar candidate. For each wordkey, wk, candidate vectors, Dwk = {d1, ..., dn}, are extracted
from the embedding model on-the-fly. C is defined as the context words (i.e. all the words in the same
sentence) and vecC is the context vector of C (Equation (4)).

vecC ←
1

|C|
∑

w∈C
vecw (4)

diacbest ← argmax
di∈Dwk

sim(vecC, di) (5)

4 Results and Discussion

Our results on the odd-word, analogy and word-similarity tasks indicate that the projected embeddings
(Table 5, Figure 3) capture better general concepts and their relationships. This is not surprising as
the trained model, igBible, and the one from its parallel English data, igEnBbl are too little and cover
only religious data. Although igWkSbwd includes subword information which should be good for an
agglutinative language like Igbo, these subword patterns are different from the patterns in Igbo. Generally
the models from the news data, igGNews, igWkNews, did well on these tasks.

On the diacritic restoration task 6, the results compare the basic model (i.e. as trained or projected)
with the diac (i.e. with variant vectors enhanced with the embeddings of their most co-occuring words.
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Figure 2: N-Gram accuracy scores for Threshold=0.7 (215) ambiguous sets

These models with semantic information, generally out-performed the n-gram models that capture more
of syntactic details.

Also, compared to other projected models, IgBible and its parallel, IgEnBbl clearly did better on this
task possibly it was originally trained with the same dataset and language of the task and its vocabulary
directly aligns with that of IgEnBbl.

Clearly, the learned diacritic embeddings improved the performances of all the models which is ex-
pected as each variant is pulled to the center of its most co-occurring words.

Odd-word Similarity Analogy
Models Accuracy Correlation nouns adjectives
igBible 78.27 48.02 23.81 06.67
igGNews 84.24 60.00 64.29 56.67
igEnBbl 75.26 58.96 54.76 13.33
igWkSbwd 84.18 58.56 64.29 50.00
igWkCrl 80.72 62.07 78.57 21.37
igWkNews 81.51 59.69 80.95 50.00

Table 5: Trained and Project Embeddings on odd-word prediction

5 Conclusion and Future Research Direction

This work is part of the IgboNLP5 (Onyenwe et al., 2018) project which aims at build a framework that
can adapt, in an effective and efficient manner, existing NLP tools to support the development of NLP
resources for Igbo. In this paper, we showed that, projected embedding models can outperform the one
built with small language data on a variety of tasks. We also introduced a technique for learning diacritic
embeddings which could be applied to the diacritic restoration task. Our next focus is to refine our tech-
niques and datasets and train models with subword information as well as consider sense disambiguation
task.

5See igbonlp.org
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Figure 3: Worst-to-Best Word Similarity Correlation Performance

Baselines: n-gram models
Unigram Best N-gram
65.81% 66.02%

Embedding models
Accuracy Precision Recall F1

Basic Diac Basic Diac Basic Diac Basic Diac
igBible 69.28 82.26 61.37 77.96 61.90 82.28 57.19 76.16
igEnBbl 64.72 78.71 59.60 75.18 59.65 79.52 50.51 72.93
igGNews 57.57 74.14 32.20 72.50 49.00 74.56 19.06 62.47
igWkSbwd 62.10 73.83 13.82 73.81 47.64 74.03 10.65 66.62
igWkCrl 60.78 73.30 40.07 78.02 49.16 76.24 25.36 68.62
igWkNews 61.07 72.97 14.16 76.04 46.10 75.14 8.31 65.20

Table 6: Performances of Basic and Diacritic versions of the Trained and Projected embedding models
on diacritic restoration tasks
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tion in Gĩkũyũ. In In Proceedings of the fifth international conference on language resources and evaluation.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A survey of transfer learning. Journal of Big
Data, 3(1):9.

Min Xiao and Yuhong Guo. 2014. Distributed word representation learning for cross-lingual dependency parsing.
In Proceedings of the Eighteenth Conference on Computational Natural Language Learning, pages 119–129.

D. Yarowsky. 1994. A Comparison of Corpus-based Techniques for Restoring Accents in Spanish and French
Text. In Proceedings, 2nd Annual Workshop on Very Large Corpora, pages 19–32, Kyoto.

D. Yarowsky, 1999. Corpus-based Techniques for Restoring Accents in Spanish and French Text, pages 99–120.
Kluwer Academic Publishers.

38



Proceedings of SemDeep-3, the 3rd Workshop on Semantic Deep Learning, pages 39–44
Santa Fe, New Mexico, USA, August 20, 2018.

Towards Enhancing Lexical Resource and Using Sense-annotations of
OntoSenseNet for Sentiment Analysis

Sreekavitha Parupalli, Vijjini Anvesh Rao and Radhika Mamidi
Language Technologies Research Center, Kohli Center on Intelligent Systems,

International Institute of Information Technology, Hyderabad, India
{sreekavitha.parupalli, vijjinianvesh.rao}@research.iiit.ac.in

radhika.mamidi@iiit.ac.in

Abstract

This paper illustrates the interface of the tool we developed for crowd sourcing and we explain the
annotation procedure in detail. Our tool is named as ‘Parupalli Padajaalam1’ which means web
of words by Parupalli. The aim of this tool is to populate the OntoSenseNet, sentiment polarity
annotated Telugu resource. Recent works have shown the importance of word-level annotations
on sentiment analysis. With this as basis, we aim to analyze the importance of sense-annotations
obtained from OntoSenseNet in performing the task of sentiment analysis. We explain the fea-
tures extracted from OntoSenseNet (Telugu). Furthermore we compute and explain the adverbial
class distribution of verbs in OntoSenseNet. This task is known to aid in disambiguating word-
senses which helps in enhancing the performance of word-sense disambiguation (WSD) task(s).

1 Introduction

OntoSenseNet is a lexical resource developed on the basis of Formal Ontology proposed by (Otra, 2015).
The formal ontology follows approaches developed by Yaska, Patanjali and Bhartrihari from Indian lin-
guistic traditions for understanding lexical meaning and by extending approaches developed by Leibniz
and Brentano in the modern times. Based on this proposed formal ontology, a lexical resource for Telugu
language has been developed (Parupalli and Singh, 2018) - OntoSenseNet for Telugu. The resource con-
sists of words tagged with a primary and a secondary sense-types of verbs and sense-classes of adverbs.
The sense-identification in OntoSenseNet for Telugu is manually done by experts in the field.

Sentiment analysis deals with the task of determining the polarity of text. To distinguish positive and
negative opinions in simple texts such as reviews, blogs, and news articles, sentiment analysis (or opinion
mining) is used. There are three ways in which one can perform sentiment analysis : document-level,
sentence-level, entity or word-level. These determine the polarity value considering the whole document,
sentence-wise polarity, word-wise in some given text respectively (Naidu et al., 2017).

2 Related Work

Extensive work has been done in the domain of sentiment analysis for English. We discuss few novel
and relevant approaches here. (Esuli and Sebastiani, 2005) determines a new method for identifying
the opinionated words (subjective terms) in the text based on the quantitative analysis of the glosses of
such terms. (Gamon et al., 2005) present a prototype system for mining topics and sentiment orientation
jointly from free text customer feedback. (Hatzivassiloglou and Wiebe, 2000) studies the role of adjec-
tives in understanding the subjectivity. (Kaji and Kitsuregawa, 2007) aims at building a polarity lexicon
from massive HTML documents. They propose a model to build a word-level polarity lexicon from the
sentence-level polarity annotations.

(Gangula and Mamidi, 2018) created corpus ”Sentiraama” for different domains like movie reviews,
song lyrics, product reviews and book reviews in Telugu. Furthermore, his work aims to determine
the performance of multi-domain sentiment analysis using reviews from several domains in Sentiraama

1https://github.com/Shreekavithaa/crowd-sourcing
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://

creativecommons.org/licenses/by/4.0/.
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corpus. (Naidu et al., 2017) utilizes Telugu SentiWordNet on the news corpus to perform the task of
Sentiment Analysis. (Mukku and Mamidi, 2017) developed a polarity annotated corpus where positive,
negative, neutral polarities are assigned to 5410 sentences in the corpus collected from several sources.

(Abburi et al., 2016) proposes an approach to detect the sentiment of a song based on its multi-modality
natures (text and audio). The textual lyric features are extracted from the bag of words. By using these
features, Doc2Vec generates a single vector for every song. Support Vector Machine (SVM), Naive
Bayes (NB) and a combination of both these classifiers are developed to classify the sentiment using the
textual lyric features as a part of this work.

3 Crowd-sourcing Platform

Crowd-sourcing is an online, distributed problem-solving and production model that has emerged in
recent years. Early user input can substantially improve the interaction design. Collecting input from
only a small set of participants is problematic in many design situations. To address the above discussed
problems, crowd-sourcing is widely adopted by research groups.

3.1 Add a Word
Any user can add a word to the resource. The user is prompted to enter the word, it’s gloss and a sample
sentence which shows the usage of the word. List of words received through this page are manually
reviewed before adding to our resource.

3.2 User Profiling
As shown in Figure 1, any new user who wants to do the annotations must request the login credentials.
This is necessary to control the access and avoid unauthentic annotations of the resource. Users are
requested to submit their information such as name, email ID, profession, educational background and
a score is assigned to the user based on his/her proficiency in Telugu. Score is assigned based on their
responses to few questions asked in the request credentials form. This score is used in resolving the
conflicts that may arise during annotation. For example, if any word has different tags given by different
annotators, the tag given by the annotator with higher score is considered to be accurate. Once the profile
is verified, the login credentials are sent to the user through an email.

Figure 1: Login page
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3.3 Annotations

We use this tool to perform two kinds of annotations that are discussed as the part of this thesis.

3.3.1 Ontological Sense Annotations
After logging in, all the users are requested to go through the annotation guidelines before performing the
task. These annotation guidelines clearly explain the sense-types and sense-classes proposed. The user is
shown a word, its meanings and is prompted to choose the appropriate primary and secondary sense-type
of the verbs through the list of options available in the drop down menu as shown in figure 2. Along
with the 7 sense-type tags, the user has the liberty to tag a word(verb) as ‘uncertain’ in case of an unclear
judgment. The list of uncertain words are added to the list of the word to-be annotated. Words which
are tagged to be uncertain consistently are reviewed and removed from the resource. Similar scheme is
followed for the adjectives. In case of adjectives, the user could choose to tag the word as any of the 6
defined sense-types or tag the word as ‘uncertain’.

Figure 2: Verb annotation interface with options given to the user

3.3.2 Sentiment Polarity Annotations
In case of polarity annotations, sentiment polarities are classified into 4 labels : positive, negative, neutral
and uncertain. Positive and negative labels are given in case of positive and negative sentiments in the
word respectively. Uncertain/ambiguous label is given to words which acquire sentiment based on the
words it is used along with or it’s position in a sentence. Neutral label is given when the word has no
sentiment in it.

4 Adverbial Class Distribution of Verbs

We have extracted all the Verb-Adverb and Adverb-Verb pairs from the Telugu Wikipedia. In order to
acquire these patterns we performed the task of POS tagging2 on Wikipedia corpus. From the extracted
pairs, we noticed that there are comparatively more Adverb-Verb pairs than Verb-Adverb pairs which
align with the structure of Telugu language(RJ et al., 2008). 400 verbs and 445 adverbs are annotated
according to the formal ontology that is discussed in (Parupalli and Singh, 2018). These words formed

2https://bitbucket.org/sivareddyg/telugu-part-of-speech-tagger
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about 2000 Verb-Adverb and Adverb-Verb pairs. Our aim is to study the adverbial class distribution of
verbs in Telugu. (Otra, 2015) proves that such annotations help in disambiguating the word senses thus
result in improved word-sense disambiguation (WSD) task(s). This is one of the major applications of
OntoSenseNet.

In table 1, we show the adverbial class distribution of verbs in Verb-Adverb and Adverb-Verb pairs.
Adverbial sense-classes are labeled as columns and sense-types of verbs are labeled as rows. Any cell
in the table represents the percentage of a ‘sense-class’ of adverbs that modify a particular ‘sense-type’
of verbs. For example : Column-1 of 1 means 20.0% of ‘spatial’; 13.6% of ‘temporal’; 18.8% of
‘force’ and 24.4% of ‘measure’ sense-classed of adverbs modify ‘to know’ sense-type of verbs. This
shows that majority of the ‘to know’ verbs are primarily modified by adverbs with ‘measure’ sense-
class. For example : cl anipicidi (feel immensely). ‘To move’, ‘to do’ verbs are primarily modified by
‘spatial’, ‘force’ sense-class of adverbs respectively. Examples are nerug mlutu(talk in a straight forward
manner), emoanalg locistu (think emotionally). ‘Temporal’ sense-class of adverbs can modify all the
sense-types of verbs. ‘To be’ sense-type of verbs is also significantly modified by ‘force’ sense-class of
adverbs. However, ‘temporal’ and ‘measure’ sense-classes also seem to show comparable performance
in modifying ‘to be’ sense-type. We can find many such examples in Telugu language.

To Know To Move To Do To Have To Be To Cut To Bound
Spatial 20.0 % 28.5% 20 % 9.5 % 9.5 % 8.5% 4.0 %

Temporal 13.6 % 22.0 % 14.6% 20.5% 20.5 % 4.4% 4.4 %
Force 18.8 % 21.5 % 22.2% 7.2% 22.9% 6.0% 4.1%

Measure 24.4% 16.5 % 19.5% 5.2% 20.3 % 7.5% 3.8%

Table 1: Adverb Sense-Class Distribution in Verb-Adverb pairs

5 Validating Importance of Sense-annotations from OntoSenseNet on Sentiment
Analysis.

In an attempt to understand how the sense-type classification of verbs and sense-classes for adverbs could
affect sentiment analysis, we perform experiments using sense-annotations from OntoSenseNet(Telugu)
as additional features to an existing system as discussed in (Parupalli et al., 2018). We develop a bench-
mark Word2Vec approach which utilizes averaged word vectors generated from all the words in a review,
adopted from Sentiraama corpus(Gangula and Mamidi, 2018). The constructed review vector is used to
determine the benchmark accuracy for sentiment classification. To validate the importance of word-level
annotations, the following features are added to our review vectors:

5.1 Word-level Polarity Features
SentiWordNet(Das and Gambäck, 2012; Das and Bandyopadhyay, 2010; Amitava and Bandyopadhyay,
2011) is a lexical resource with sentiment polarity annotations. It has 4076 negative and 2135 positive
unigrams. (Parupalli et al., 2018) shows the importance of word-level annotations on sentiment analysis
task. The features they consider are number of positive unigrams from SentiWordNet + their anno-
tated data, number of negative unigrams from SentiWordNet + their annotated data, number of positive
bigrams, number of negative bigrams from Sentiraama (Gangula and Mamidi, 2018).

5.2 Additional Features from OntoSenseNet
Utilizing the sense-annotations from OntoSenseNet resource, we added the following features to our
review vectors:

• Verbs from OntoSenseNet are annotated with 7 sense-type tags namely- To Know, To Move, To Do,
To Have, To Be, To Cut, To Bound. We add the frequency of these sense-types in the review, to
the averaged word vector of the review. This results in addition of 7 features to the review (feature)
vector.
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• Adverbs from OntoSenseNet are annotated with 4 sense-class tags namely- Spatial, Temporal,
Force, Measure adverbs in the review. We add the frequency of these sense-class tags to the re-
view vector. Along with features from obtained from verbs, we add these 4 features. On the whole,
we get 11 additional features from OntoSenseNet resource.

5.3 Results
2 shows results of our experiments with various classifiers. K-Nearest neighbor (KNN) classifier shows
a huge drop in accuracy after inclusion of the new features. This might be because KNN doesn’t dif-
ferentiate between the features and holds all with equal importance for classification. Hence, it fails to
ignore the probable noisy features among the newly added ones. On the other hand, Random Forest
(RF) classifier keeps learning from additional features and is good at ignoring the noisy ones. We ob-
serve an interesting trend in the accuracies i.e. performance of Linear SVM keeps decreasing and at the
same time performance of Gaussian SVM keeps increasing. This shows loss of linear separability. On
the whole, we find Neural Network (NN) to be best performing classifier when averaged over repeated
trials. However, repeated trials of the experiment show high variance. 3 shows in detail the precision,
recall, and f1-scores of Neural Network’s performance with two hidden layers of size 100 and 25 and
input vectors of 200 dimensions without additional features. The increment in accuracy over addition of
features extracted from OntoSenseNet validate our hypothesis that OntoSenseNet does contain semantic
knowledge valuable to the task of sentiment analysis.

Word2Vec +word-level + OntoSenseNet + Both
polarity features features

Linear SVM 81.59 % 70.64% 78.10 % 76.11 %
Gaussian SVM 48.25 % 67.66 % 66.16% 73.63%
Random Forest 74.62 % 75.12 % 77.61% 75.62%
Neural Network 81.09% 75.62 % 83.08% 81.09%

K-Nearest Neighbor 81.09% 62.68 % 65.17% 68.15%

Table 2: Accuracy for various classifier with different features.

Word2Vec +word-level + OntoSenseNet + Both
polarity features features

Precision 0.820 0.760 0.833 0.811
Recall 0.813 0.753 0.829 0.811

F-Measure 0.810 0.753 0.829 0.810

Table 3: Precision, Recall and F1-scores for Neural Network with different features.

6 Conclusion

This paper presents the tool developed for crowd-sourcing the annotations that are yet to-be done. In
the development of OntoSenseNet only 1673 adjectives out of 11,000 were annotated. Rest of these
adjectives will be annotated through crowd-sourcing approach. Additional verbs extracted from WordNet
also need annotations to be done. In sentiment analysis task, most of the unigram annotations are done
through crowd-sourcing approach. Before this tool is developed, annotations are crowd-sourced using
Amazon Mechanical Turk (MTurk) 3. The bigrams (verb, adverb pairs) discussed in section 4 are yet
to be annotated through the tool. The adverbial class distribution of verbs is extracted from Telugu
Wikipedia that is aimed to improvise WSD tasks. We present the insights obtained from the statistics.
We validate our hypothesis that features extracted from OntoSenseNet carry relevant information that is
useful for sentiment analysis through machine learning approaches.

3https://www.mturk.com
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Abstract

Entity embeddings are vector space representations of a given domain of interest. They are typically
learned from text corpora (possibly in combination with any available structured knowledge), based on
the intuition that similar entities should be represented by similar vectors. The usefulness of such entity
embeddings largely stems from the fact that they implicitly encode a rich amount of knowledge about the
considered domain, beyond mere similarity. In an embedding of movies, for instance, we may expect all
movies from a given genre to be located in some low-dimensional manifold. This is particularly useful
in supervised learning settings, where it may e.g. allow neural movie recommenders to base predictions
on the genre of a movie, without that genre having to be specified explicitly for each movie, or without
even the need to specify that the genre of a movie is a property that may have predictive value for
the considered task. In unsupervised settings, however, such implicitly encoded knowledge cannot be
leveraged.

Conceptual spaces, as proposed by Grdenfors, are similar to entity embeddings, but provide more
structure. In conceptual spaces, among others, dimensions are interpretable and grouped into facets, and
properties and concepts are explicitly modelled as (vague) regions. Thanks to this additional structure,
conceptual spaces can be used as a knowledge representation framework, which can also be effectively
exploited in unsupervised settings. Given a conceptual space of movies, for instance, we are able to an-
swer queries that ask about similarity w.r.t. a particular facet (e.g. movies which are cinematographically
similar to Jurassic Park), that refer to a given feature (e.g. movies which are scarier than Jurassic Park
but otherwise similar), or that refer to particular properties or concepts (e.g. thriller from the 1990s with
a dinosaur theme). Compared to standard entity embeddings, however, conceptual spaces are more chal-
lenging to learn in a purely data-driven fashion. In this talk, I will give an overview of some approaches
for learning such representations that have recently been developed within the context of the FLEXILOG
project.
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Abstract

These days, most general knowledge question-answering systems rely on large-scale knowledge bases
comprising billions of facts about millions of entities. Having a structured source of semantic knowledge
means that we can answer questions involving single static facts (e.g. “Who was the 8th president of the
US?”) or dynamically generated ones (e.g. “How old is Donald Trump?”). More importantly, we can
answer questions involving multiple inference steps (“Is the queen older than the president of the US?”).

In this talk, I’m going to be discussing some of the unique challenges that are involved with building
and maintaining a consistent knowledge base for Alexa, extending it with new facts and using it to serve
answers in multiple languages. I will focus on three recent projects from our group. First, a way of
measuring the completeness of a knowledge base, that is based on usage patterns. The definition of the
usage of the KB is done in terms of the relation distribution of entities seen in question-answer logs.
Instead of directly estimating the relation distribution of individual entities, it is generalized to the “class
signature” of each entity. For example, users ask for baseball players’ height, age, and batting average,
so a knowledge base is complete (with respect to baseball players) if every entity has facts for those three
relations.

Second, an investigation into fact extraction from unstructured text. I will present a method for creating
distant (weak) supervision labels for training a large-scale relation extraction system. I will also discuss
the effectiveness of neural network approaches by decoupling the model architecture from the feature
design of a state-of-the-art neural network system. Surprisingly, a much simpler classifier trained on
similar features performs on par with the highly complex neural network system (at 75x reduction to the
training time), suggesting that the features are a bigger contributor to the final performance.

Finally, I will present the Fact Extraction and VERification (FEVER) dataset and challenge. The
dataset comprises more than 185,000 human-generated claims extracted from Wikipedia pages. False
claims were generated by mutating true claims in a variety of ways, some of which were meaning-
altering. During the verification step, annotators were required to label a claim for its validity and also
supply full-sentence textual evidence from (potentially multiple) Wikipedia articles for the label. With
FEVER, we aim to help create a new generation of transparent and interprable knowledge extraction
systems.
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