
Abstract

Space Exploration stands as one of the most challenging endeavors of our time.
Extraterrestrial caves in particular have been identified by the scientific community
as of great interest. They could be suitable for allocating astronaut planetary sta-
tions, but little is known about them. In this paper, we describe and analyze robotic
cave exploration using internal simulation and SLAM technologies and provide ex-
perimental results. The experiments were performed in a lava tube selected due to
its representativeness as space analog. Expensive mission costs, communication
constraints and navigational challenges in space missions demand highly devel-
oped degrees of autonomy and safety on the robots. For this reason, our solution
incorporates methods for the validation of paths based on on-board, internal sim-
ulation. The methods provide the means to increase the confidence of successful
executions by simulating using physics models the planned path. A highly realistic
model of the robot and an on-line generated model of the environment are required.
Assuming the demands of the space robotics scenario, all software runs on-board.
keywords:Autonomous Navigation, Robotics Simulation, Path Planning, SLAM,
Exploration
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Figure 1: The Asguard V4 rover. A four leg-wheel hybrid robot designed for difficult
outdoor environments, equipped with an embedded quad core i7 CPU, a Velodyne Li-
DAR, Xsens IMU and a 360 degree camera. Additionally the rover can carry payloads
of up to 5 kg (e.g. a spectroscope or sampling drill) Image: Robbie Shone, ESA
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1 INTRODUCTION
Caves are an important cornerstone of human space exploration (Wynne,
2016). They can provide a natural shelter from radiation, extreme tempera-
ture cycles and small meteoroids, allowing the deployment of light-weight
habitats and reducing the overall costs. Caves might also provide access
to water ice deposits and protected underground environments that can re-
veal information about geological processes and potential extraterrestrial
life. Lava tubes have been identified in Moon and although they have not
yet been confirmed in Mars, there is significant evidence of their existence
(Daga et al., 2009). In fact, many cave-like features have been identified
on Mars and on Moon in the recent years.

To reduce the risks and to ensure the suitability of a cave for allocat-
ing astronauts or any other possible usage, robotic platforms can be used
to generate maps and analyze the state of the tubes. When going under-
ground, robotic systems must maintain a constant data-link to the surface,
usually done by a wire (Nesnas et al., 2012), or be able to explore the cave
autonomously. Although a wire link can be beneficial to reach the en-
trance, it will easily get entangled and limits the exploration range in the
tube. In this paper we focus on the internal simulation as a key element
that enables a robot equipped with a LiDAR to autonomous explore, map
and find it’s way back in a cave.

For performing the experiments and to analyse our software and hard-
ware, we selected the lava tube Cueva del Viento in Icod de los Vinos
(Spain). Cueva del Viento is the largest lava tube in Europe. It is located
at the volcanic island of Tenerife, an exceptional location for planetary
analog environments (Preston et al., 2012). For the exploration mission,
a 240 m long section of the tube was selected which is preserved without
any human modification and where the risks of collapse were very low. As
platform for our experiments we utilized the Asguard V4 rover shown in
Fig. 1.

The entrance to the cave is located in a cavity of the floor, with a height
of around 0.5 m and a width of approximately 0.75 m. After the entrance
through the small opening, follows an inclined and muddy surface. In a
real mission, this first section would have to be traversed by the robot with
the help of some rope or cable. In a multi-robot mission this objective
could be achieved.

Nowadays, planetary robotic missions rely heavily on the operations
center at earth for navigation. The paths that the robot executes are de-
signed on earth with human experts in the loop, based on the data acquired
in the previous days. This approach is safe, but makes planetary explo-
ration very slow. Furthermore, in the case of long caves, like the one des-
cribed in the experimental part, communication with earth for each path
execution implies entering and leaving the cave constantly. Thus, in order
to explore the cave in depth, an autonomous system which provides larger
exploration ranges is preferable. The proposed solution does not require
human intervention for the safe navigation and mapping of the cave.

One of the most important features of space robotic systems is safety.
In order to address this issue, our solution incorporates an on-board sim-
ulator. The internal simulator enables the system to predict what the con-
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sequences of the potential path plan executions would be. The concept is
based on ideas from the Simulation Cognition Theory (Hesslow, 2012).
(Marques and Holland, 2009) propose a framework which includes the
minimal requirements, components, a taxonomy of architectures and ex-
amples of these. The internal simulator has been previously identified as a
useful approach for decision taking and path planning in space robotics in
(Roßmann et al., 2014; Domı́nguez et al., 2015) and for planning and nav-
igation in indoor environments (Rockel et al., 2014; Rockel et al., 2015;
Chella and Macaluso, 2009).

As opposed to other works, our internal simulator runs on-board and
uses a simulated environment which was generated online by the rover
from its collected sensor data. To achieve this, our SLAM and our Sim-
ulator have been designed to share and work on the same environment
representation using the library Envire (Hidalgo Carrió et al., 2016).

Environment representation and navigation in cave missions impose
additional path planning and mapping requirements with respect to other
space robotics cases. In particular, lava tubes can form 3 dimensional
pathways which are not found in open areas. At this point, traditional 2
dimensional grid-based path planning algorithms become insufficient. Our
environment representation, path planner and exploration components are
able to represent, explore and find motion plans in such environments.
This is achieved by incorporating a third dimension on the grid map and
by building a bi-directional graph of connected traversable areas from it.

The proposed SLAM, Path Planning, Exploration and Internal Simula-
tion methodology are presented in Section 2. The result of its evaluation
with experimental cases is presented in Section 3. Conclusions are pre-
sented in Section 4 along with the next research goals.

2 METHODOLOGY
Our overall approach is shown in Fig. 2. The Exploration Behavior is in
charge of selecting the next target pose based on the known Multi-Level
Surface (MLS) map, the current pose and feedback from the internal sim-
ulator regarding previously attempted goal poses. SLAM is responsible
for the localization and for the construction and maintenance of the En-
vironment Representation in its different forms: MLS Maps for planning
and Polymeshes for internal simulation. The Internal Simulator replicates
the path planning components and its execution to identify whether the
traverse to a goal pose is feasible. Finally, the Path Planner executes the
motion plan in the real environment if the result of the prediction is a suc-
cess.

Although the Exploration Behavior is the directing component, it highly
depends on the inputs from the other modules. Thus, SLAM, Path Plan-
ning and the Internal Simulator are explained first.

2.1 SLAM
The SLAM solution used in this work is a graph SLAM approach in which
odometry, LiDAR and inclination based constraints are online modeled
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Figure 2: Approach for the Autonomous Cave Exploration: Explorer chooses a goal
pose in a travesable area close to an unknown region. Internal Simulator executes the
path planning on-board. If the result is successful, the planning in the real environment
is executed. Feedback is given to the Explorer.

and optimized. The state space consists of the robot poses, each associ-
ated with a 360 degree LiDAR scan and a bias state modeling the IMU to
LiDAR rotation error. The LiDAR has a vertical resolution of 1.25◦ cov-
ering the range from −30◦ to 10◦ and a horizontal resolution of 0.18◦. In
order to model the inclination of the IMU and the relative transformations
between the LiDAR scans together, the pose of the IMU with respect to
the LiDAR needs to be calibrated. Modeling the bias allows to associate
this calibration with an uncertainty and therefore avoids that the optimiza-
tion becomes overconfident. In case of a low accuracy calibration it also
allows refining the calibration by starting with a higher uncertainty.

In order to perform the graph optimization in real-time we reduce the
amount of constraints by modeling only the result of the ICP algorithm
based alignment between two LiDAR scans as a constraint. The tech-
nique relies on the Generalized-ICP (GICP) from (Segal et al., 2009). As
odometry constraint we apply the wheel rotation rates and the orientation
provided by the IMU to a skid-steer kinematics model of the robot. Mod-
eling the IMU based inclination constrains the error in roll and pitch and
therefore reduces the error in altitude.

Since we consider a 360 degree LiDAR scan with an acquisition time
of 0.1 seconds to be a static measurement of the environment we have to
convert the single measurements into the same frame. We apply interpo-
lated odometry based transformations to each of the 64K measurements in
order to convert them into the acquisition time of the first measurement.
This allows us to deal with motion distortions inside a full scan resulting
from fast (particularly roll/pitch) motion of the robot, due to the stiff and

5



unstructured surfaces usually found in lava tubes.
Each state xt ∈ SE(3) is associated with a point cloud measurement

of the surrounding environment. New states are added to the graph based
on the change in rotation and translation of the robot. The ICP based
measurement is defined as

zl,t, j = C−1
x j

Cxt � εl,t (1)

where Cxt is the transformation matrix of the state xt ∈ SE(3). ICP
based constraints are added for each state xt to the j states within the clos-
est Euclidean distance. εl is a Gaussian random variable modeling the ICP
measurement noise with zero mean and a covariance Ql . The constraint of
the ICP based edges is modeled as

(zl,t, j �C−1
x j

Cxt )
>Q−1

l,t (zl,t, j �C−1
x j

Cxt ) (2)

where zl,t, j ∈ SE(3) is the result of point cloud alignment of the ICP al-
gorithm. The � operator adds a local perturbation ε ∈ IR3 to a manifold
element x ∈ SE(3): ε 7→ x� ε and � is the corresponding reverse opera-
tor � : SE(3)×SE(3)→ IR3. For more mathematical details we refer the
reader to (Hertzberg et al., 2013).

The odometry measurement is defined as

zo,t = C−1
xt−1

Cxt � εo,t (3)

where εo is a Gaussian random variable modeling the odometry measure-
ment noise with zero mean and a covariance Qo. Odometry based con-
strains are only added between successive states xt−1 to xt . The constraint
of the odometry based edges is modeled as

(zo,t �C−1
xt−1

Cxt )
>Q−1

o,t (zo,t �C−1
xt−1

Cxt ) (4)

where zo,t ∈ SE(3) is the measurement of the skid-steer kinematics model
from t−1 to t.

The measurement of the inclination is defined as

zh,t = R−1
b R−1

xt k̂� εh,t (5)

where Rxt is the rotation matrix of the state xt , Rb is the rotation matrix
of the bias state b and k̂ is the unit vector [0,0,1]>. The bias b ∈ SO(3)
describes the error in the IMU to LiDAR rotation. εh is a Gaussian random
variable modeling the inclination measurement noise with zero mean and
a covariance Qh. The constraint of the inclination edges is modeled as

(zh,t �R−1
b R−1

xt k̂)>Q−1
h (zh,t �R−1

b R−1
xt k̂) (6)

where zh,t ∈ S2 is the measurement of inclination from an IMU.
The graph optimization minimizes the squared error of all constraints

given all measurements (zl,1:t ,zo,1:t ,zh,1:t ) to find the best solution for the
states x1:t and b.

argmax
x1:t ,b

p(x1:t ,b|zl,1:t ,zo,1:t ,zh,1:t) (7)
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Figure 3: Left: Multi-Level Surface map of a section of the cave with a cell size of
10 cm. Right: Polygon mesh of the same scene. The color indicates the change in
altitude, one meter equals one color cycle.

We use the g2o framework (Kümmerle et al., 2011) as back-end in order
to model and optimize the graph.

The result of the SLAM are the aligned poses of the robot and their
associated LiDAR scans. As a next step the scans are projected into map
formats in order to fulfill the requirements of the planning and the internal
simulation. The planning needs to distinguish between traversable and
non-traversable regions, requires fast access to the local height information
and the ability to represent multiple levels. While the internal simulation
requires a very accurate representation of the surfaces.

Fig. 3 shows the two map types that are created on request of the path
planning and the internal simulation. The planning uses a Multi-Level
Surface (MLS) (Triebel et al., 2006) map since it allows to represent mul-
tiple levels while accurately encoding height information and uncertainty.
It is a 2D grid managing a list of entries providing height, occupancy and
uncertainty information for each cell.

In order to create an accurate representation of the surface of the en-
vironment for the simulation we extract a polygon mesh from an interme-
diate map format. The intermediate map format is a voxel grid holding
the estimated truncated signed distance to the closest surface and uncer-
tainty in each cell. Modeling truncated signed distance functions (TSDF)
(Curless and Levoy, 1996) with the goal of accurate surface reconstruction
have been recently used especially in the context of RBGD-camera based
SLAM (Newcombe et al., 2011). We show that it can also be applied
successfully on LiDAR based SLAM. Each measurement is ray-traced on
the line from the sensor origin to the measurement in the range [−δ,+δ]
around the measurement (δ is the truncation parameter). The CPU based
ray tracing is implemented based on the work from (Amanatides et al.,
1987). In order to extract the surface from the TSDF volume we use the
Marching Cubes algorithm (Lorensen and Cline, 1987).

The generation of those maps from the LiDAR measurements is expen-
sive and not real time capable, therefore they are created on demand by the
Internal Simulator. Usually, after the robot has reached the goal position
and a new trajectory needs to be planned and evaluated.

2.2 Path Planning
Caves are complex and unpredictable environments that may contain mul-
tiple overlapping levels. We approach path planning in such environments
by developing a robust algorithm able to cope with multiple 2D levels em-
bedded in a 3D world. Our multi level path planner assumes that the target
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scenario does not incorporate dynamic obstacles. A reasonable assump-
tion in exploration of extraterrestrial caves.

Path planning in unstructured environments has been thoroughly ex-
plored and several solutions have been proposed, e. g., (Daily et al., 1988;
Lacroix et al., 2002; Howard and Kelly, 2007; Rekleitis et al., 2013). How-
ever, those solution are in general limited to 2D or 2.5D planning and are
not suitable for multi path level planning.

Multi level solutions have been proposed in (Kümmerle et al., 2009)
and in (B. Rusu et al., 2009). The solution of (Kümmerle et al., 2009) is
probably the closest to our implementation. Their solution is also based
on MLS maps and uses motion primitives. However they employ a two-
steps planning approach where the first step returns a coarse result that is
improved by a local planning step, whereas we implemented a one-step
solution that yields good results.

In order to plan efficiently, the MLS map provided by the SLAM is
converted into a traversability map (TravMap). Our TravMap encodes
knowledge about the local traversability using four different patch types:
traversable, obstacle, unknown and explorable.

A patch is marked traversable if enough support exists in the region for
the robot to stand on and there are no obstacles that would hinder the robots
traversal. Thus to asses if a patch is traversable, first a surface analysis is
performed and second an obstacle check.

In the surface analysis the overall slope of the support plane must not
exceed a predefined slope limit and there must not exist steps within the
plane that exceed the maximum step height of the robot. If these two
requirements are met, the patch is initially considered traversable and ob-
stacle check is performed.

A 3D obstacle check is performed against the MLS using a robot model-
based bounding box which ignores the orientation of the system. Thus,
patches where the robot won’t collide with obstacles when standing in at
least one orientation are marked as traversable. This approach pursues to
find any possible path on the TravMap, by marking as obstacle patches
only those that are guaranteed to be non-traversable in all robot orienta-
tions.

The obstacle check improves performance during the posterior plan-
ning steps by performing and initial prune of the search space. Never-
theless, during path planning a more detailed obstacle check is done that
incorporates the orientation of the robot.

The local support plane is calculated using RANSAC (Fischler and
Bolles, 1981) plane fitting. Patches are marked as unknown in case insuf-
ficient data is available to find such a plane (i. e., less than 5 inliers support
the plane). Such places usually indicate a lack of data in the map and are
natural targets for further exploration. However since critical knowledge is
missing in order to assess the traversability of unknown patches, they can-
not be the target of a planning process. Therefore, we select traversable
patches nearby and mark them explorable. The robot should be able to
attain more information of the environment by driving onto these patches.

Generating the TravMap is a computationally expensive process that
was not compatible with stop-free navigation on our system. Thus, it is
performed as less as possible, i. e., only when the robot has reached a goal
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position while waiting for the next target pose. Due to the static nature of
the target environment map re-generation of the TravMap is in our case
seldom needed.

(a) MLS map (b) Traversability map

Figure 4: For exploration and path planning, the Traversabilty Map (b) is generated
from the Multi-Level Surface map (a). The coordinates axis describe the current pose
of the robot, the background grid has a resolution of 1 m, the resolution of the MLS
and the traversability map are 0.1 m. In (b): Green cells represent traversable surfaces,
red ones obstacles, magenta are unknown and blue are explorable areas. Yellow arrows
mark the target candidates for the path planning.

An MLS map and the TravMap that was generated from it are pre-
sented in Fig. 4. The map is created by growing from the current robot
position. Expansion stops at patches marked as unknown or border, result-
ing in a 3D representation of all the places that the robot can reach from
its current position. Each patch in the map is linked to its neighbors. Thus,
it is equivalent to a double connected graph structure that can be searched
efficiently for traversable paths.

Path planning is done using SBPL (Cohen et al., 2010; Likhachev et al.,
) and the ARA* algorithm (Likhachev et al., 2004). ARA* was chosen due
to it’s anytime characteristics. It can provide a suboptimal solution quickly
and refine it until an optimal solution is found.

In the TravMap, x and y are the coordinates of the patch the robot is
standing on and z is the patches height. The state space is discretized
and consists of (x,y,z,θ) where x,y and θ are discretized while z remains
continuous.
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To keep the number of possible state transitions low, two-dimensional
spline based motion primitives are used to model the robot motions. For
distance calculation the primitives are projected onto the 3D surface the
robot is driving on. Because the primitives are distorted when projected
on a non-flat surface, the final trajectory may contain motions that slightly
deviate from the motion primitives.

The time it would take the robot to follow the shortest path on the
TravMap is used as heuristic. The cost function consists of the actual time
it would take the robot to follow the selected motion primitive as projected
onto the 3D surface. Optionally, a term representing the closeness to ob-
stacles can be factored in to favor trajectories that stay well clear of obsta-
cles. The robot’s forward, backward and turning speeds can be configured
separately and are used to calculate the travel time.

While searching, only collision free motion primitives are considered.
To achieve this, a 3D bounding box check against the MLS is computed for
every discretized pose that can occur on a given primitive. These checks
are the most CPU intensive part of the path planning algorithm. Thus, the
overall performance depends largely on the number of motion primitives
that need to be checked at each step. However, the obstacle checks can
be parallelized, i. e., for a given state all possible successors can be found
at the same time as long as enough processing time is available. For this
reason, we are able to use a very detailed set of motion primitives and yield
good results without any further optimization.

2.3 Internal Simulator
The internal simulation has in this context the task of predicting the prob-
ability of a path traverse execution to be successful. Ideally, the accuracy
of the prediction is well known. This accuracy is dependent of many fac-
tors: Some can be grouped into biases from the simulation (e.g. wrong
surface friction estimation, errors in the robot model), others related to the
path’s complexity (e.g. length, curves, orientation changes) and others due
to a certain level of intrisic indeterminism in the simulated and in the real
execution.

The internal simulator incorporates running clones of the components
from which the results we intend to validate and of the ones they depend
on, except for the sensor drivers. The sensor drivers are replaced in this
copy of the components network by modules that produce analog data
based on the robotics physics engine, or in the case of the cameras, by
the graphical engine used to render it. In this case, the cloned compo-
nents are the path planning, the execution layer and all subcomponents
on which they depend, except for the SLAM which is connected to both
the original components and their clones. Nevertheless, the SLAM has a
different role in the internal simulator: It provides the surfaces of the envi-
ronment. The surfaces are required to compute physical interactions with
the robot model. SLAM is not used for localization of the cloned compo-
nents interacting with the simulated environment and it does not maintain
any environment representation based on simulated sensor data.

The cloned components and their interactions take place on the same
Robotic Control Operating System than the original components and on-
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board the system. Thus, their interactions and resulting behavior are highly
similar. We consider this an important feature because delays in the com-
munication layer between components can have consequences more diffi-
cult to predict outside the system itself.

The validation process of a goal position in the internal simulation is
the following: (1) The internal simulation requests to the SLAM module
a polygon mesh. The mesh is generated from the aligned point cloud that
SLAM maintains and it has a resolution of 5 cm. (2) With the mesh, the
simulated environment, in which the physical model of the robot is also
placed according to its estimated pose, is updated. (3) A TravMap is gen-
erated based on the MLS map of the environment which is also provided
by the SLAM. (4) The path planning uses the TravMap to plan a path. (5)
The plan execution is simulated on-board. (6) If the target is reached, the
goal pose is considered validated and the goal pose is passed to the execu-
tive layer. Otherwise, feedback is provided to the Exploration Module, so
that another target pose is selected.

The internal simulation is complex and requires high computational
costs. Thus, it must be carefully decided in which situations it should be
used. Furthermore, depending on the hardware available, its integration
might be unfeasible or only possible after a careful adaptation of the dif-
ferent process priorities. In fact, this is the first application know to the
authors where the robotics simulator runs on-board along with the rest of
the components. A requirement for scenarios where access to external
computational resources is not possible like the one targeted.

In order to minimize the computational costs and increase the reli-
ability of the approach, a new environment representation library (Hi-
dalgo Carrió et al., 2016) has been developed. The library lies both at
the core of SLAM and the Internal Simulation. Using the same environ-
ment representation in both components has at least two advantages: (1)
It reduces the number of dependencies of the software and (2) minimizes
the conversions between representation models. To the best of the authors
knowledge, this is the first case of a robotic setup in which the simulated
scenes are generated on-board based on the environment representation
that the system itself constructs, instead of using pre-designed simulated
scenes with little or no change.

Another tool shared by different components is the Flexible Collision
Library from (Lee et al., 2017), which is used in the collision check of the
path planning and to determine the collisions between the robot model and
the simulated surfaces.

2.4 Exploration
Relying on the previously described components, the following explo-
ration behavior has been implemented and tested: First, each explorable
patch on the map is evaluated based on its proximity to the current robot
pose, number of unexplored patches nearby and proximity to a specified
target position.

A path is planned to the most promising patch. If no path could be
found or its simulation execution determines a failure, the next candidates
are analyzed until a safe path is found.
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Figure 5: A map of the cave with some geo-referenced points on it (crosses). These
points were marked with magenta spheres when taking the data logs in order to use
them as ground truth to estimate the accuracy of our localization and mapping. Image:
Courtesy of Geodata air S.A.

Once a path has been found, the robot starts following the Trajectory
and once the target position is reached, the current MLS is updated and a
new TravMap map is generated. The process repeats until the desired area
has been explored or another criteria (e. g., a time limit or low battery con-
dition) is fulfilled, at which point the robot returns to its starting pose. The
return is relevant for cave scenarios because the system needs to recharge
and establish communication after the exploration.

Terrain conditions inside the cave are unknown and most likely com-
plex. The robot might get stuck, slip or skid at random locations. Thus the
robot might deviate from the planned trajectory while moving. To avoid
leaving the traversable map and running into obstacles we continuously
monitor the current robot position and stop the motion if the robot is about
to leave the traversable part of the map. If this happens the maps are up-
dated and the exploration process repeats.

In certain situations, borders of the currently explored map cannot be
distinguished from actual down-hill cliffs, e. g., if the LiDAR is not able
to see any surface after the cliff. This would result in the exploration strat-
egy repeatedly trying to explore already visited places. To avoid this, we
implemented a simple coverage map, which accumulates the areas around
the robot positions. Patches which are covered by this map, will not be
considered as candidates for exploration.

3 RESULTS
In this section we summarize experiments performed to test the different
modules and its interactions in an analog scenario to a Martian or Lunar
lava tube. The experiments were conducted with the Asguard V4 rover in
a 240 meter long section of the Cueva del Viento lava tube in November
of 2017. The covered section starts at the entrance Breveritas and goes to
the South. In Fig. 5 a cartographic representation of the cave produced by
a topographic company is shown. It represents the different elevations and
some geo-referenced positions which were used as ground truth.
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Figure 6: Shows an artificial landmark (magenta colored sphere) placed on a position
for which ground truth information was available. The Apriltag in the background was
used to distinguish between different landmarks.

The rover is equipped with a Xsens IMU, a Velodyne HDL-32E LiDAR
and two cameras with super fish eye lenses. Each camera has a horizontal
opening angle of 220°, fully covering 360° around the rover.

3.1 Cave Mapping
In this section we show that the accuracy of the pose graph of our SLAM
solution is within a mean position difference of 0.4 m to the ground truth.

In order to evaluate the accuracy of our SLAM solution eleven globally
referenced landmarks in the 240 m long subsection of the lava tube were
used as ground truth. Prior to our experiments those survey markers (≈
5mm metal pins) had been located within an independent geodetic survey.
The ground truth positions are associated with an uncertainty of 0.05 m.

In order to later identify the landmarks in the camera images, we placed
magenta colored spheres with a diameter of 8 cm on top of the survey
markers. The landmarks were not integrated in the SLAM to improve the
positioning or map construction, we only compared the expected position
of the landmarks in the SLAM with their known ground truth positions.

The positions of the spheres in the camera images were detected by ap-
plying a HSV (Hue, Saturation, Value) based color segmentation followed
by a circle Hough Transformation. Since the only source of light inside of
the cave were the lights of the rover, the detection was prone to strongly
changing light conditions, reflections on the surface of the spheres and
outliers (Fig. 6). Therefore, especially the detected size of the sphere in
the image needed to be associated with a higher uncertainty.

For collecting this data set the rover was first manually driven, from a
starting point above one of the landmarks, 240 m into the cave and then
back to the starting point. Fig. 7 shows the trajectory (blue line) of the
robot during the mission in North/East and North/Altitude direction. The
starting point is at the origin of the local coordinate frame. The red crosses
show the known positions of the landmarks in the local frame and the green
crosses show their expected positions in the SLAM.

Since the ground truth information is only available when spheres are
detected in the camera images, the difference to the ground truth can only
be observed for the corresponding robot poses at those times. We assume
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Figure 7: Top: North-East trajectory of the robot. Bottom: North-Altitude trajectory
of the robot. The red crosses show the globally referenced landmarks used as ground
truth and the green crosses show the mean of their expected position.
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Figure 8: Blue: Position difference from ground truth and associated standard devia-
tion for each landmark. Red: Difference in altitude from ground truth and associated
standard deviation.

that the error grows approximately linear during the time between observ-
ing different landmarks.

To compute the mean position difference we applied a bundle adjust-
ment of the expected positions of the landmarks to the ground truth. As
a result the mean position difference to the ground truth is within 0.4 m
over the whole trajectory. The mean difference in altitude direction is
within 0.17 m, due to modeling the IMU based inclination constraints in
the SLAM (Eq. 6).

Fig. 8 shows the mean position difference to the ground truth and as-
sociated standard deviation for each single landmark. The landmarks are
arranged from ID 1 at the origin of the mission up to ID 11 at the furthest
area inside the cave. The diversity and magnitude of deviations is due to
the challenges in the sphere detection. The amount of measurements to
compute the means and standard deviations variates between 7 (ID 6) and
41 (ID 5, ID 11) with a mean of 24 observations per landmark. It can
be seen that the position difference is higher in the North/East direction
since we are able to reduce the error in altitude direction by modeling the
inclination constraints.

Fig. 9 shows the polygon mesh generated from the LiDAR measure-
ments projected into a TSDF voxel grid with a resolution of 5 cm.
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Figure 9: Polygon mesh of the cave, generated from a TSDF voxel grid with a resolu-
tion of 5 cm. The cave diameter at this section is approx. 4m.

Figure 10: Path planning test in a simulated oversized parking garage.

3.2 Path Planning
We tested several simulated as well as real scenarios to benchmark the path
planner. All tests were done on an Intel Core i7-6700 using all available
cores. The set of motion primitives used for all tests consists of 850 prim-
itives. In order to reduce the friction of the wheels and the chances of
damage on the rough lava tube surfaces, point turns where not included in
the motion primitives.

The multi level planning capability is first shown in a simulated parking
garage as the accessible part of the cave on Tenerife does not have multiple
levels. The TravMap of the garage consists of 128478 patches covering
1284.78 m2 at a grid resolution of 0.1 m while the TravMap of the cave

Figure 11: Planning a trajectory of 43.48m length in a cave.
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Figure 12: Path planning test in the cave with a lot of obstacles. The cyan trajectory
is optimal, the magenta trajectory is a suboptimal solution. The wireframe boxes show
the robot’s bounding box. The coordinate systems show the start and end pose of the
robot.

consists of 59083 patches covering 590.83 m2.
Planning of a trajectory from lowest to the highest level of the garage

as seen in Fig. 10 took 80.39 s of CPU time or 40.13 s of real time. Fig. 11
represents a standard case: planning of a trajectory of 43.48 m length in
the cave. Planning took 426.78 s of CPU time and 65.88 s of real time.
A more complex case is shown in Fig. 12. Here the impact of lots of
obstacles can be observed. Two trajectories were computed, the optimal
solution took 2276.87 s of CPU time or 343.6 s of real time while a sub-
optimal solution was found in 102.21 s of CPU time or 27.365 s of real
time. The trajectories are 12.12 m and 11.62 m long respectively. This
case especially shows the value of using the ARA* algorithm, which can
be parametrized whether to decide to wait for the optimal path or just use
a suboptimal one to get on with the task as soon as possible.

3.3 Internal Simulation
Among all the navigation experiments performed in the cave, we have se-
lected one trajectory to analyze the accuracy of the internal simulation.
The initial and target position of the robot and the traversed paths are
shown in Fig. 13, along with the correspondent visualization of the gen-
erated simulation. The path has two sections, the first one is a straight
trajectory and the second a curve started after a direction change. Our path
planning has been configured to avoid point turns in the rough surfaces of
the lava tube. In other surfaces, a point turn and a straight trajectory would
have been more efficient.

We analyzed the distance between the most accurate estimation of the
position that was available for the robot and the positions in the simulated
execution. The poses from the simulation are directly provided by the
physical engine. While the estimation of the real poses of robot were
obtained offline after an expensive ICP-based pose graph relaxation on
the collected pointclouds.

In order to analyze how different the real path and the simulated path
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(a) Internally simulated trajectory execution (b) Trajectory performed by the real robot

Figure 13: The internal simulation (a) is produced from sensor data taken by the real
robot. It can run on-board the system and has been used for path execution validation
before real execution (b) is done.

Figure 14: Measurement of the error between the two path executions, points from the
simulation path are sub-sampled according to the time stamps at which the poses of the
real execution are available.

are, a distance function is defined. The distance function must take into
account the positions where the robot went as well as the time relative to
the beginning of the path traverse. We compare the positions of the robot
and the simulated robot at the same time stamps relative to the time stamp
when the movement starts.

Fig. 14 shows the distances measured between poses at same relative
time stamps since the beginning of the motion. The SLAM-based pose es-
timation updates are less frequent than the simulation pose updates. Thus,
in order to apply the error estimation function, first a sub-sampling of the
pose samples of the simulation was done.

In Fig. 15 the error is shown with respect to time. The average of the
Root Mean Squared Error (RMSE) between simulated and real poses was
0.419 m for this path execution. During the first section of the trajectory
execution, positions do not accumulate a large error, but the error increases
during the turn. Finally, when both reach the end of the trajectory the error
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Figure 15: Error between real position estimation and simulated position during inter-
nal simulation and posterior execution of the trajectory. Error increases during a turn
and because the final position is reached faster in the simulation.

decreases again. One of the main causes of the error in the second section
of the trajectory is that the robot reaches the goal position already at 14th
second in simulation while the real one takes 4 seconds more. The delay
in the real execution is caused by a lack of accuracy in the surface friction
model as well as in the robot model (e.g. simulated motors).

Another insight that we found interesting when analyzing the results
is shown in Fig. 16. Due to the lower frequency at which ICP can run on
the system with respect to the wheel odometry, errors in the position esti-
mation generated by the wheel odometry can be identified as spikes in the
on-board pose estimation. We have identified the possibility of correcting
online the pose estimation by using the poses from the internal simulated
path execution. Especially, if higher accuracy is achieved through better
parametrization and modeling of the simulation.

3.4 Exploration
In Fig. 17 we show an example how the cave gets explored successively.
Targets near the current robot pose are preferred, as long as they are ex-
pected to result in newly observed areas. We did not put much effort into
refining or optimizing the exploration behavior, as our ad-hoc implemen-
tation gave sufficient results for our purposes.

4 CONCLUSIONS
A novel approach for safe autonomous exploration of lava tubes in a space
scenario composed of SLAM, Internal Simulation, Path Planning and Ex-
ploration modules has been described. This methodology is based on a
graph-SLAM. Models with associated uncertainty for both planning (the
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Figure 16: The poses of the executed trajectory in simulation and real execution are
displayed together. In this case, the simulation predicts a successful path execution.

Figure 17: Sequence of traversability maps, showing the exploration behavior

MLS map) and Internal Simulation (an accurate polygon mesh) are gener-
ated on demand.

The experiment performed in the lava tube shows an accuracy of posi-
tion in average of 0.6 m. The ground truth was calculated by identifying
geo-referenced markers and performing bundle adjustment of the collected
sensor data with the correct position of the markers.

The proposed Path Planning uses specific robot motion primitives to
efficiently search in the space of solutions offered by the graph of con-
nected traversable patches which was generated from the MLS map. The
planner is different from previous approaches since it only uses one path
for the complete traverse achieving successful results and it is able to find
solutions in environments with multiple unstructured traversable surfaces.
In the cave experiments our path planning was able to provide traversable
paths of 12.12 m in highly unstructured areas in 27.365 s. In areas of the
tube with less obstacles, planning of a long trajectory is achieved in 65.88 s
for 43.48 m.

The first on-board robotic simulator which relies on the environment
representation of the robot to update the simulated environment was pre-
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sented. It is used to accurately replicate the path planning and execution
modules of the robot for validation of potential goal poses. In the experi-
mental section, a procedure to analyze the error in the trajectory execution
was presented. The methodology is useful to better estimate the prediction
horizon in which the simulation can be considered realistic. While error
in the prediction of straight trajectories is low, turns are more difficult to
predict accurately. Further executions of the simulated and the real path
executions are envisioned to provide more statistical significant results in
the future. It has as well been identified that the results of the simulated
executions could be useful as a correcting vector for the pose estimation.

The exploration behavior allows for the mapping of unknown regions.
It selects traversable goal poses for which navigation from the current pose
has been predicted as successful by the internal simulator.
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