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Abstract. Hand pose tracking in 3D is an essential task for many virtual real-
ity (VR) applications such as games and manipulating virtual objects with bare
hands. CNN-based learning methods achieve the state-of-the-art accuracy by di-
rectly regressing 3D pose from a single depth image. However, the 3D pose esti-
mated by these methods is coarse and kinematically unstable due to independent
learning of sparse joint positions. In this paper, we propose a novel structure-
aware CNN-based algorithm which learns to automatically segment the hand
from a raw depth image and estimate 3D hand pose jointly with new structural
constraints. The constraints include fingers lengths, distances of joints along the
kinematic chain and fingers inter-distances. Learning these constraints help to
maintain a structural relation between the estimated joint keypoints. Also, we
convert sparse representation of hand skeleton to dense by performing n-points
interpolation between the pairs of parent and child joints. By comprehensive eval-
uation, we show the effectiveness of our approach and demonstrate competitive
performance to the state-of-the-art methods on the public NYU hand pose dataset.

Keywords: Hand pose · Depth image · Convolutional Neural Network (CNN).

1 Introduction

Markerless 3D hand pose estimation is a fundamental challenge for many interesting
applications of virtual reality (VR) and augmented reality (AR) such as handling of ob-
jects in VR environment, games and interactive control. This task has been extensively
studied in the past few years and great progress has been achieved. This is primarily
due to the arrival of low cost depth sensors and rapid advancements in deep learning.
However, estimating 3D hand pose from a single depth image is still challenging due to
self similarities, occlusions, wide range of articulations and varying hand shapes.

Hand pose estimation methods are classified into three main catagories namely
learning based methods (discriminative), model-based methods (generative) and com-
bination of the discriminative and generative methods (hybrid). Among these meth-
ods, CNN-based discriminative methods have shown the highest accuracy on the public
benchmarks. Despite of the fact that these methods achieve higher accuracy, they do
not well exploit the structural information of hands during the learning process [35, 34,
11]. Specifically, independent learning of sparse joint positions with no consideration
to joint connection structure and hand skeleton constraints leads to coarse predictions.
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This is the main reason these methods still generalize poorly on unseen hand shapes
[34] and consequently, not directly usable in practical VR applications.

Therefore, our main contribution for this paper is a novel structure-aware CNN-
based discriminative approach which incorporates the structural constraints of hand
skeleton and enhances the loss function for better learning of 3D hand pose. Our main
idea is to jointly learn the 3D joint keypoints and the hand structure parameters. Thereby,
facilitating the CNN to maintain a structural relation between the estimated joint key-
points. Our method is simple, efficient and effective. It optimizes a combined loss func-
tion of 3D joint positions and simple structural constraints of the hand skeleton. The
constraints comprise of fingers lengths, fingers inter-distances and distances of joints in
the kinematic chain of the hand skeleton (kinematic distances). These constraints are
easy to learn and guide the optimization process to estimate more refined and accurate
3D hand pose. Another contribution which helps to improve the accuracy is to convert
the sparse joints keypoints to dense representation. To this end, we perform n-points in-
terpolation between the pairs of parent and child ground truth joint positions along the
kinematic chain of hand skeleton. These simple strategies can be easily used to improve
the accuracy of any CNN-based discriminative method without additional cost.

Existing hand pose estimation methods assume already segmented hand region from
a raw depth image as input to their algorithms. The hand segmentation approaches are
mainly based on heuristics or ground truth annotation which make them difficult to use
in practical applications. The problem of hand segmentation is not well addressed in the
existing works. Hence, our second contribution is a new CNN-based hand segmentation
method to extract the hand region from a raw depth frame. For training over images with
varying backgrounds and camera noise, we combine several existing hand pose datasets
including a new dataset which we capture to include more variation in hand shapes. The
combined dataset will be public.

By performing exhaustive evaluation of our algorithm, we show the effectiveness
of our hand segmentation algorithm, n-points interpolation strategy and learning the
structural constraints jointly with the 3D hand pose. Experiments show that our method
performs better than several state-of-the-art hand pose estimation on the NYU public
benchmark. The main contributions for this paper are:

1. A novel structure-aware CNN-based algorithm for 3D hand pose estimation includ-
ing the structural constraints of hand skeleton; see Section 4.2.

2. A novel CNN-based algorithm to effectively segment the hand region from a raw
depth image; see Section 4.1.

3. A simple and effective interpolation strategy for improved hand pose estimation;
see Section 4.2.

2 Related Work

3D hand pose estimation using a depth sensor has been widely studied in the past few
years. For detailed overview, we refer the reader to the survey papers [24, 34]. Here we
limit our discussion to the most related works.
Depth-based hand segmentation methods: Tompson et al. [27] introduce a per-pixel
classification of the hand region using random decision forest (RDF) based method.
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However, the per-pixel manual labeling of large number of training frames is cumber-
some. Oberweger et al. [16] apply depth-thresholding thereby, computing the center
of mass of hand region. Then, crop the hand using the center of mass. Recently, [15]
propose a CNN-based refinement network to further refine the segmented hand depth
image by [16] to achieve better localization. In contrast, we convert the raw depth image
to RGB by applying simple JET colormap and use a CNN to predict the 2D position of
the hand palm center. Then, using the predicted palm center, depth value can easily be
obtained from input depth frame. The proposed approach is simple and effective.
Discriminative methods: RDF-based discriminative works [20, 30, 32, 10, 23] are lag-
ging behind recent CNN-based methods such as [12, 1, 31, 6, 5, 19] in accuracy of the
estimated hand pose. Some works have employed either RGB or RGB-D data to es-
timate 3D joint positions [36, 18, 21, 13]. In [5], Ge et al. effectively regress 3D pose
using a single 3D-CNN. Recently, [12] propose a voxel-to-voxel pose predictor which
takes voxelised input depth image and outputs 3D joint heatmaps. [6, 31] introduce a
region ensemble (REN) strategy which concatenates features from multiple networks
to regress the 3D pose. Chen et al. [1] extend [31] by an iterative pose-guided REN
strategy. All of the above methods optimize only for the 3D pose without incorporating
any structural relations between the joint positions. In contrast, we extend the loss func-
tion defined on the joint positions only by including several hand structural constraints.
Thereby, improving the accuracy of the estimated pose.
Hybrid methods: [27] predict 2D heatmaps using a single CNN. After that they use
inverse kinematics to recover the 3D pose. Ge et al. [4] use a 3D-CNN for 2D heatmaps
estimation and then recover 3D joint positions. Oberweger et al. [17] train a complex
feedback loop to regress 3D joint positions. Wan et al. [28] learn a shared latent space,
between an encoder and a decoder, to reconstruct the depth image using generative ad-
versarial network(GAN) and refine the 3D pose. The above mentioned works optimize
only for the joints positions and do not explicitly account for the hand geometric con-
straints. Dibra et al. [3] propose a complex end-to-end framework to indirectly recover
the 3D pose from reconstructed depth image. Zhou et al. [35] implement a forward kine-
matics layer inside the CNN and train an end-to-end pipeline. Malik et al. [11] extend
this work to generalize over varying hand shapes. However, these methods suffer from
low accuracy because regressing joint angles (for rotation matrices) is cumbersome.

3 Method Overview

The goal of our pipeline is to estimate more stable and accurate 3D joint positions J ,
given a raw depth input Do. To this end, we simultaneously optimize for J , fingers
lengths FL, fingers inter-distance FD and kinematics distances KD to facilitate the
learning of 3D joint positions in a structured manner. Our pipeline is shown in Figure 1.
Do is resized and then colorized (using the JET colormap) by a function g. The output
RGB image Di is of size 227 x 227 x 3. Di is passed as input to the PalmCNN to
directly regress hand palm center (u,v) in image coordinates. Then, a cropping function
f is applied to segment the 3D hand region Ds from the raw depth frame Do. The
colorization step is simple and helps to improve the accuracy; see Section 5.2. Finally,
the PoseCNN takes Ds as input and estimates 3D joint positions J , fingers lengths FL,
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Fig. 1: Our pipeline for hand segmentation and pose estimation. The raw depth frame
Do is given as input to a function g which resizes Do to 227 x 227 x 3 dimension and
colorizes it using the JET colormap. The output of g (Di) is fed to the PalmCNN to
regress 2D hand palm center (u,v). LPC is the loss for the PalmCNN. The function f
crops the hand region Ds given (u,v). Ds is fed to PoseCNN which outputs 3D joint
positions J, fingers lengths FL, fingers inter-distances FD, and kinematic distances KD.

fingers inter-distance FD and kinematics distances KD. The PoseCNN comprises of a
CNN and a regressor; see Section 4.2 for details. The PalmCNN and the PoseCNN are
trained separately.

4 Hand Segmentation and Pose Estimation
In this section, we explain the individual components of the pipeline shown in Figure
1. The function g, the PalmCNN and the crop function f are described in Section 4.1.
In Section 4.2, we explain the main component of our pipeline i.e. the PoseCNN.

4.1 CNN-based Hand Segmentation

The function g simply resizes and colorizes Do to be fed as input to the PalmCNN. The
output Di of g is an RGB image of size 227 x 227 x 3. The task of the PalmCNN is
to estimate the pixel coordinates of the center of the hand region i.e. palm center (u,v).
The CNN architecture of the PalmCNN is similar to the AlexNet [9] except that the
final fully connected layer regresses the palm center. The softmax loss layer is replaced
by euclidean loss layer. The euclidean 2D palm center loss is given as:

LPC =
1

2
‖PC− PCGT ‖

2 (1)

Where LPC is the palm center loss and PCGT is the ground truth palm center. To train
the PalmCNN, we combine four of the publicly available hand pose datasets (i.e NYU
[27], ICVL [26], MSRA-2015 [23] and Dexter-1 [22]) with a new dataset which we cap-
tured using creative senz3D camera [2]. This additional small scale dataset is captured
because the public datasets lack in hand shape variation [11]. To obtain the ground truth
palm center, we employ the generative method proposed by [25]. We captured depth
images from five different subjects. Our dataset contains 8000 original depth images.
Notably, the variation in hand position should cover the whole image space. Therefore,
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Fig. 2: The left figure shows the graphical representation of two of the structural con-
straints i.e. Fingers lengths and Fingers inter-distances. The hand skeleton on the right
shows the interpolated points (n = 2) between the sparse ground truth joint positions.

we create around 10 augmented copies of every depth frame in the combined dataset by
translating it around the whole image using the ground truth hand palm center position.
The total number of training and testing frames are 4.55M and 200K respectively. We
fine-tune the AlexNet (pre-trained on ImageNet dataset) with the combined dataset. The
crop function f takes the estimated (u,v) and Do as inputs and segments the 3D hand
region; see Section 5.1 for details about f. The resultant image Ds is of size 224 x 224.

4.2 Structure-aware 3D Hand Pose Estimation

In our pipeline, the PoseCNN aims to jointly estimate the hand joint keypoints J and
additional constraints (i.e. fingers lengths FL, fingers inter-distance FD, kinematic dis-
tances FD). During training, these constraints help to maintain a structural relation be-
tween the joints positions. The ground truth for the constraints can easily be obtained
from the ground truth joint positions. The euclidean 3D joint positions loss LJ is given
as:

LJ =
1

2
‖J− JGT ‖

2 (2)

Where JGT ∈ RP x3 is a vector of 3D ground truth joint positions. P is the number of
joint keypoints. The constraints are explained as follows:
Fingers lengths: We first calculate J-1 hand bone-lengths from the ground truth joint
positions using the standard 3D euclidean distance formula. To obtain a finger’s length
fl, we add the bone-lengths from the base joint (mcp) to the finger-tip joint (tip) as
shown in Figure 2. The equation for fl can be written as:

fl = blmcp−pip + blpip−dip + bldip−tip (3)

Where blx−y is the bone-length from a parent joint x to a child joint y. Therefore, a set
FLGT is represented as:

FLGT = {flpinky, f lring, f lmiddle, f lindex, f lthumb} (4)
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The euclidean fingers lengths loss LFL is:

LFL =
1

2
‖FL− FLGT ‖

2 (5)

Where FL is the vector of estimated fingers lengths.
Fingers inter-distances: The distances between the mcp joints of consecutive fingers
for a particular hand mostly remain fixed. However, the distances between pip, dip
and tip joints between fingers can vary depending on the pose of the hand. The inter-
distances between neighboring fingers can easily be obtained by calculating 3D eu-
clidean distances between respective joints of the fingers; see Figure 2. For example,
the inter-distances between index and middle fingers are evaluated as:

fd(index,middle) = {d(mcpindex,mcpmiddle), d(pipindex, pipmiddle),
d(dipindex, dipmiddle), d(tipindex, tipmiddle)}

(6)

Where fd(.) is a set of inter-distances between the joints of two adjacent fingers and
d(.) represents 3D euclidean distance between two joints. Likewise, inter-distances for
remaining finger pairs i.e. (middle, ring), (ring, pinky) and (thumb, index) can be
obtained using Equation 6. Hence, a set FDGT can be expressed as:

FDGT = {fd(index,middle), fd(middle, ring),
fd(ring, pinky), fd(thumb, index)} (7)

The fingers inter-distances loss LFD can be written as:

LFD =
1

2
‖FD− FDGT ‖

2 (8)

Where FD is the vector of estimated fingers inter-distances.
Kinematic distances: Hand skeleton bears an inherent kinematic structure which should
not be ignored in the pose estimation task. Otherwise, the resultant pose could be kine-
matically unstable [35, 11]. In this work, we add a much needed loss function which
incorporates kinematic distances of all the joints in the hand skeleton. Given the set of
parents joints Spj

of a joint pj in JGT , the kinematic distance kdj from the root joint to
pj can be calculated as:

kdj =

M−1∑
i=0

d(JGT i
, JGT i+1

) (9)

Where i ∈ Spj and M is the size of the set Spj . Using Equation 9, the kinematic
distances of each joint in JGT can be obtained. Hence, the loss LKD can be written as:

LKD =
1

2
‖KD− KDGT ‖

2 (10)

Where KD and KDGT are the vectors of estimated and ground truth kinematic dis-
tances.
Total loss: Including the additional constraints (mentioned above) help to improve the
accuracy of hand pose estimation task and maintain the structure of the hand skeleton;
see Section 5.2. The final loss equation for the PoseCNN can be written as:

LT = LJ + LFL + LFD + LKD. (11)
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Interpolation: In order to get a dense representation of hand skeleton, we linearly in-
terpolate n joints between each pair of parent and child joints in the kinematic hierarchy
of the hand skeleton; see Figure 2. We try different number of interpolated points n and
study their effects on the accuracy of the estimated pose; see Section 5.2. As an exam-
ple, the formulas for interpolating two 3D points P1 and P2 between two 3D points Pa

and Pb are:

P1 = 0.7 ∗ Pa + 0.3 ∗ Pb , P2 = 0.3 ∗ Pa + 0.7 ∗ Pb (12)

Architecture and iterative regression: The architecture of CNN in the PoseCNN is
similar to the ResNet-50 [7] except that final fully connected (FC) layer which outputs
the features ϕ ∈ R1024. The features ϕ are concatenated with an initial estimate of E =
{J , FD, FL andKD} i.e. φ = {ϕ,E}. Initial estimate ofE is obtained using the mean
values of {J , FD, FL andKD} from the NYU ground truth annotations. This estimate
is kept fixed during the training and the testing. φ is fed to a regressor which comprises
of two FC layers with 1024 neurons each. Both the FC layers use dropout layers with
ratio of 0.3. The last FC layer containsM neurons. WhereM = 2P (n+1)+10n+21.
The regressor aims to refineE in an iterative feedback manner i.e.Et+1 = Et+δEt. In
our implementation, we use at least three iterations. Directly regressingE is challenging
therefore, we observe that inclusion of the regressor is beneficial.

5 Experiments

In this section, we provide the implementation details, evaluation of our framework
and comparison with the state-of-the-art hand pose estimation methods. The evaluation
metrics are 3D joint location error and number of frames within certain thresholds. All
the error metrics are reported in mm.

5.1 Implementation Details

We use Caffe [8], an open-source deep learning framework, to train the PalmCNN and
the PoseCNN in our pipeline (see Figure 1). The networks run on a desktop using
Nvidia Geforce GTX 1080 Ti GPU. The PalmCNN is trained on the combined dataset;
see Section 4.1. The learning rate is set to 0.0001 with a batch size of 256 and 0.9 SGD
momentum. One forward pass in the PalmCNN takes 4.5ms. We train the PoseCNN
on the NYU hand pose dataset [27]. The NYU dataset has 72, 757 images for training
and 8252 frames for testing. In order to segment the hand region from the raw depth
input Do, we use the estimated palm center from the PalmCNN. Given (u,v) and Do,
the hand region is cropped in 3D using a bounding box of size 300 and the camera
focal length. The pre-processed image is of size 224 x 224 and the depth values are
normalized to [−1, 1]. The 3D joints annotations JGT in camera coordinates are also
normalized to range [−1, 1]. We obtain FLGT , FDGT andKDGT from the normalized
JGT . For training the PoseCNN, we use 0.001 learning rate with 0.9 SGD momentum
and a batch size of 128. The forward pass for the PoseCNN takes 35ms.
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Method Implementations 3D Joint Location Error
J

PoseCNN(J) 15.2mm
PoseCNN(J ∪ FL) 14.7mm
PoseCNN(J ∪ FD) 13.6mm
PoseCNN(J ∪KD) 13.9mm
PoseCNN(J ∪ FL ∪ FD ∪KD) 12.9mm

Table 1: We evaluate five different implementations of our PoseCNN on the NYU hand
pose dataset. The PoseCNN(J) is the baseline which is trained for estimating joint
positions only. The PoseCNN(J ∪ FL ∪ FD ∪ KD) performs the best and shows an
error improvement of 15.13% on the estimated J over the baseline.

n-points Interpolation 3D Joint Location Error
J

PoseCNN(1-point Interp.) 12.80mm
PoseCNN(2-point Interp.) 12.63mm
PoseCNN(3-point Interp.) 12.38mm
PoseCNN(4-point Interp.) 12.17mm
PoseCNN(5-point Interp.) 11.9mm

Table 2: We observe the effects of n-points interpolation between the pairs of parent
and child joints in the kinematic hierarchy of the hand skeleton. The value of n varies
from 1 to 5. 5-point interpolation shows 5.5% improvement in accuracy. For n > 5, we
do not observe notable error improvement.

5.2 Method Evaluation

In this subsection, we comprehensively evaluate the PoseCNN and the PalmCNN. We
first observe the effects of the proposed structural constraints on the accuracy of the
estimated joint positions J . Second is to study the effects of interpolating n-points
between the sparse joint positions.
Structural constraints: To this end, we train the following implementations of the
PoseCNN on the NYU hand pose dataset which learns:

1. Joint positions J only.
2. Fingers lengths FL with J (i.e. J ∪ FL).
3. Fingers inter-distances FD with J (i.e. J ∪ FD).
4. Kinematic distances KD with J (i.e. J ∪KD).
5. KD, FD and FL with J (i.e. J ∪ FL ∪ FD ∪KD).

Table 1 shows the quantitative results of the these implementations. In simplest
form, the PoseCNN is trained to estimate 3D joint keypoints J only, we call this im-
plementation as our baseline (PoseCNN(J)). On top of the baseline, we include the
structural constraints one by one to observe the effects on the accuracy of estimated
joints J . By including fingers lengths FL with J (i.e. PoseCNN(J ∪ FL)), we observe
a small increase (3.28%) in accuracy of J . Inclusion of fingers inter-distances FD
(PoseCNN(J ∪ FD)) and kinematic distances KD (PoseCNN(J ∪ KD)) improves
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Fig. 3: Qualitative evaluation of our PoseCNN. The top row shows the predicted hand
joint positions overlaid on the preprocessed NYU depth images from our baseline im-
plementation (i.e. PoseCNN(J)). The bottom row shows the corresponding images with
corrected joint positions from our PoseCNN(all) implementation.

Methods 3D Joint Loc. Error 3D Palm Center Loc. Error

CoM 14.83mm 28.1mm
Ours (wo/colorization) 13.05mm 15.1mm
Ours (w/colorization) 11.9mm 10.2mm

Table 3: Influence of hand segmentation: Our hand segmentation method without
colorization (wo/colorization) improves the joints prediction error by more than 1mm
over center of hand mass (CoM) calculation method. Our method with colorization
(w/colorization) further improves the accuracy by 19.75% over CoM.

the accuracy of the estimated J by 10.5% and 8.55% over the baseline, respectively.
The best accuracy is achieved by the architecture which includes all the constraints
(PoseCNN(J ∪ FL ∪ FD ∪KD). It shows 15.13% improvement over the baseline.
Dense hand pose representation: We further experiment on the PoseCNN(J ∪ FL ∪
FD ∪KD) by interpolating n-points between the pairs of parent and child joints in the
kinematic hierarchy of the hand skeleton. Thereby, converting the sparse hand skeleton
to dense representation. This leads to increase in number of joint positions depending
on the value of n. Consequently, the size of the vectors FD andKD also increases. The
quantitative results are summarized in Table 2. Our model (PoseCNN(J ∪ FL ∪ FD ∪
KD)) with 5-points interpolation performs the best among the others. The results show
improvement in accuracy of the estimated J using the interpolation strategy. Therefore,
dense hand skeleton representation is useful for improved hand pose regression. For
notational simplicity, we call this model as PoseCNN(all). This model improves the
accuracy over the baseline by 21.71%.

The qualitative comparison of our baseline and PoseCNN(all) on the NYU dataset
is shown in Figure 3. The estimated joint positions J are displayed on the sample pre-
processed depth images. The predicted hand skeleton from our baseline architecture
(PoseCNN(J)) can be of incorrect size (i.e. shorter or longer) due to independent learn-
ing of joint keypoints. Whereas, PoseCNN(all) which incorporates all the constraints
along-with interpolated points produces more stable and reliable results. These results
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Fig. 4: Quantitative comparison on the NYU test set [27]. The right figure shows the
fraction of frames within thresholds in mm. The left one shows the mean errors (mm)
on individual joints of the NYU hand pose dataset. Our method PoseCNN(all) shows
the average error of 11.9mm which is better than several state-of-the-art methods.

Methods 3D Joint Location Error

DeepPrior [16] 20.75mm
DeepPrior-Refine [16] 19.72mm
Crossing Nets [28] 15.5mm
Neverova et al. [14] 14.9mm
Feedback [17] 15.9mm
DeepModel [35] 17.0mm
Lie-X [32] 14.5mm
GuoBaseline [6] 14.6mm
3DCNN [5] 14.11mm
REN [6] 13.3mm
DeepPrior++ [15] 12.3mm
PoseCNN(all) [Ours] 11.9mm

Table 4: Comparison with the state-of-the-art on the NYU test set [27]: Our pro-
posed model (PoseCNN(all)) exceeds in accuracy over the state-of-the-art hand pose
estimation methods.

clearly show the effectiveness of our novel strategies, namely, structural constraints and
the dense hand pose representation.
Hand segmentation: We evaluate our hand segmentation method (see Section 4.1) on
the NYU dataset by studying the impact of colorization and comparing with the depth-
thresholding followed by center of mass (CoM) computation method. The goal is to
observe the effects of hand segmentation on the final 3D pose estimation accuracy.
We train two different implementations of the PalmCNN. First, with colorized depth
input (Ours(w/colorization)) and second, without colorization (Ours(wo/colorization)).
Therefore, we get two different 3D palm centers for cropping the NYU depth images.
Also, we obtain 3D palm centers from center of hand mass (CoM) calculation method;
see Section 2. Using these three different palm centers, we obtain three distinct sets
of pre-processed NYU training and testing frames. The PoseCNN(all) is trained for
each of the three training sets. The effects on the accuracy of estimated J from the
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Fig. 5: Real-time demonstration: We test our complete pipeline in real-time using the
creative Senz3D depth camera [2]. The camera is mounted on top of the display screen.
The predicted hand skeleton (yellow) is overlaid on the depth image. Our system suc-
cessfully tracks various challenging hand poses from frontal camera view.

three PoseCNN(all) models are reported in Table 3. The best results are achieved by
Ours(w/colorization) model. It shows an error improvement of 19.75% and 8.81% over
the CoM and Ours(wo/colorization) methods; respectively.
Real-time demonstration: We test our complete framework in real-time using a single
creative Senz3D depth camera [2]. The camera is placed on top of the display screen.
Our framework tracks the hand movements with challenging poses as shown in Figure
5. For better generalization, we train our PoseCNN(all) architecture on the HandSet
dataset [11]. This dataset combines several public hand pose datasets (e.g. ICVL, NYU
and MSRA-2015) in a single unified format. The PalmCNN successfully estimates the
hand palm center. Thereafter, the PoseCNN reliably estimates the joint positions. The
predicted hand skeleton is displayed on the input depth frame. The run-time of the
pipeline is 42ms.

5.3 Comparison with the State-of-the-art

The state-of-the-art methods use either the ground truth palm center or the CoM local-
ization approach to segment the hand region from a raw depth image. However, these
approaches are not feasible for practical applications. In contrast, our CNN-based hand
segmentation method automatically segments the hand region from a raw depth image
and outperforms the commonly used CoM method (see Table 3). We compare our best
performing model, PoseCNN(all), with the state-of-the-art hand pose estimation meth-
ods i.e. DeepModel [35], DeepPrior [16], DeepPriorRefine [16], Crossing Nets[28],
Feedback [17], LieX[32], GuoBaseline [6] , 3DCNN [5] and REN [6]. The quantitative
results are shown in Table 4 and Figure 4. Our algorithm exceeds in accuracy over these
methods. The results clearly indicate the benefits of our hand segmentation approach,
the interpolation strategy and simultaneous learning of the hand structural constraints
with the joint positions.

6 Conclusion

In this paper, we present a novel structure-aware 3D hand pose regression pipeline from
a single raw depth image. We propose two strategies which can be easily used to im-
prove the hand pose estimation accuracy of any CNN-based discriminative method. To
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this end, a novel CNN-based hand segmentation method regresses the hand palm cen-
ter which is used to segment the hand region from a raw depth image. Thereafter, a
new CNN-based regression network simultaneously estimates the 3D hand pose and
its structural constraints. Thereby, enforcing the hand pose structure during the train-
ing process. The proposed constraints help to maintain a structural relation between the
estimated joint positions. Moreover, we study the effects of n-points interpolation be-
tween the pairs of parent and child joints in the kinematic chain of the hand skeleton. By
performing extensive evaluations, we show the effectiveness of our approach. Experi-
ments demonstrate competitive performance to the state-of-the-art hand pose estimation
methods.
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