
Answering with Cases: A CBR Approach to
Deep Learning

Kareem Amin1,3, Stelios Kapetanakis4,5, Klaus-Dieter Althoff1,2, Andreas
Dengel1,3, and Miltos Petridis 6

1 German Research Center for Artificial Intelligence, Smart Data and Knowledge
Services, Trippstadter Strae 122, 67663 Kaiserslautern, Germany,

kareem.amin,klaus-dieter.althoff,andreas.dengel@dfki.uni-kl.de
2 Institute of Computer Science, Intelligent Information Systems Lab, University of

Hildesheim, Hildesheim, Germany,
3 Kaiserslautern University, P.O. Box 3049, 67663 Kaiserslautern, Germany

4 School of Computing Engineering and Mathematics, University of Brighton,
s.kapetanakis@brighton.ac.uk
5 Gluru Research, Gluru, London

stelios@gluru.co
6 Department of Computing, University of Middlesex, London, UK

m.petridis@mdx.ac.uk

Abstract. Every year tenths of thousands of customer support engi-
neers around the world deal with, and proactively solve, complex help-
desk tickets. Daily, almost every customer support expert will turn his/her
attention to a prioritization strategy, to achieve the best possible result.
To assist with this, in this paper we describe a novel case-based reasoning
application to address the tasks of: high solution accuracy and shorter
prediction resolution time. We describe how appropriate cases can be
generated to assist engineers and how our solution can scale over time to
produce domain-specific reusable cases for similar problems. Our work is
evaluated using data from 5000 cases from the automotive industry.

Keywords: Case-based Reasoning, Deep Learning, Natural Language Pro-
cessing

1 Introduction

Effective Customer Support can be a challenge. Both for a company and for a
trained system engineer it depends on endless hours of case scanning, a large va-
riety of complex factors and in cases obscure case definitions.To complete a series
of tickets successfully a help-desk engineer needs an appropriate prioritization
strategy for every working day. The engineer must select a suitable prioritiza-
tion route, based on the problem description, complexity and historical evidence
upon its possible solution. The aim of this work is to help support engineers
to achieve the best possible outcome for a given ticket. We propose case-based

reasoning (CBR) as the problem solver by increasing the solution accuracy and
provide shorter prediction resolution time.

This work combines deep learning and big data with CBR to automate the
acquisition of a domain specific knowledge. The growth of intensive data-driven
decision-making has caused broad recognition [1], and the promise that Artificial
Intelligence (AI) technologies can augment it even further. Within the Case-
based Reasoning community there have been several examples of applying data-
driven methods to fast changing work environments with several benefits from
it. Recently, the customer experience industry has adopted a data-centric vision
in an equivalent way, as companies embrace the power of data to optimise their
business workflows and the quality of their services[1].

In this work we focus on large-scale ticket management support, helping
help-desk managers to optimize their prioritization strategy and achieve supe-
rior performance. A key concept in that of timely ticket resolution, measured
in resolved tickets per minute, which usually leads to high resolution vs. lower
accuracy. Research on successful customer support ticket resolutions has iden-
tified several features that influence resolutions results. For example, the work
of Maddern et al. [14] looks at the effect of grammatically incorrect sentences,
abbreviations, mix between different languages and semantic challenges.Besides
the knowledge containers domain vocabulary: how similarity measures are for-
mulated and are able to identify the adaptation knowledge [7].

Deep Learning algorithms are effective when dealing with learning from large
amounts of structured or unstructured data. Big Data represent a large spec-
trum of problems and techniques used for application domains that collect and
maintain large volumes of raw data for domain-specific data analysis. Within the
CBR paradigm, Deep Learning models can benefit from the available amounts of
data, but the integration between CBR, Big Data and Deep Learning faces chal-
lenges that propagated from each research field (CBR, Big Data, DL) [3]. The
age of Big Data poses novel ways of thinking to address technical challenges. with
Deep Learning neural networks extracting meaningful abstract representations
from raw data. While Deep Learning can be applied to learn from large volumes
of labeled data, it can also be attractive for learning from large amounts of unla-
beled/unsupervised data [4][5][6], making it attractive for extracting meaningful
representations and patterns from Big Data.

The research approach in this paper aims to assess the effect of combining
CBR with Deep Learning on overcoming the challenges that come with highly-
complex, highly-noisy domains. Our proposed work has been mainly designed
and implemented to support Help-Desk engineers in prioritizing and solving new,
raw-content tickets as they come from customers. We present a hybrid Textual
Case-based reasoning (hTCBR) approach using Deep Neural Networks and Big
Data Technologies. hTCBR poses two main advantages: a) it does not rely on
manually constructed similarity measures as with traditional CBR and b) it does
not require domain expertise to decode the domain knowledge.

This paper is structured as follows: First we describe the application domain
and the main limitations of the processes in place. Section 3 explains our ap-

proach, our faced challenges and the followed solution architecture. Section 4
presents the carried-out evaluation with domain experts to ensure the efficiency
of our proposed approach. In Section 5 we discuss the related work followed by
the summary, conclusion and future work in Section 6.

2 Application Domain

Most companies have a dedicated internal Help-Desk team for customer support
since service quality is usually measured via customer satisfaction. For this work
the implemented application and any used data is a joint application between
the German Research Center for Artificial Intelligence (DFKI) and a Multina-
tional Automotive Company (the company) located in Munich, Germany with
branches all over the world. Inside the company, most of the help-desk tickets
come through emails to a dedicated help-desk team. Once received help-desk
agents prioritize the tickets and assign them to specialist engineers inside the
team to work on it. The company had several historical datasets describing a
plethora of issues they have happened in the past along with proposed solu-
tions to those. A historical case could be represented in the form of Problem
Description, Solution and Keywords. When new tickets arrive, a help desk en-
gineer should search within the company’s knowledge base to confirm whether
any solution(s) exists or not. As reported by domain experts, their processes in
place were suffering from the following issues:

1. A help-desk agent prioritizes or routes the ticket in the wrong way. Such an
action can lead to longer times to a successful ticket resolution.

2. Lack of enough experience or deep knowledge from a help-desk engineer
3. It is not easy to find proposed solutions from a historical knowledge base

and engineers find it detrimentally time consuming and not always leading
to a solution

3 Hybrid Textual CBR Approach on Ticket Management
System

3.1 The Methodology

Text is used to express knowledge. Text is a collection of words in any well-
known language that can convey a meaning (i.e., ideas) when interpreted in
aggregation[8]. To build a textual CBR system we discussed the system process
and how normally the help-desk agents prioritize and route tickets. From this
process four attributes were identified as key ones to make a decision. These were:
1. Email Subject 2. Email Content 3. Email Sender Group (The company was
organized internally in different groups and each group had its own applications
and systems) 4. The initial priority of the ticket assigned by the team who
reported it. Based on the above attributes, a help-desk agent would decide how
to proceed with this ticket. Based on those discussions with experts we decided
our CBR approach as follows:

1. Case Generation: Since there were not too many attributes, cases were gen-
erated with flat attribute-value representation features

2. Case Retrieval: Due to the complexity of Natural Language Processing (NLP)
case similarities required a rich context-aware similarity measure. As such a
trained neural network for identifying and recommending solutions from the
historical case base was selected.

3. Case Adaptation: Adaptation rules are not included during this implemen-
tation but should be added in the next phases.

3.2 The Challenges

After analyzing the application domain and the data we received, we identified
the following challenges:

1. Building cases was a tedious and extremely time consuming task for domain
experts. Experts were not able to add much effort, and hence we resorted to
as much automation during the build-up of the CBR system as possible.

2. Any existing knowledge base and new tickets were received in a bilingual
format (English, German, or both), which added more complexity in the
text analysis and pre-processing to build cases or retrieve similar cases.

3. Tickets were primarily written by non-native English or German speakers
and they could have contained several grammar mistakes or vague domain
abbreviations.

Due to the last two challenges it was not possible to use any traditional NLP
frameworks for text understanding like TwitterNLP and Stanford NLP, since
their application did not lead to promising results. Therefore, we decided to use
Deep Neural Networks and Word Embeddings to improve the text pre-processing
and similarity measures.

Sections 3.3 and 3.4 describe the proposed solution architecture along with
the tools and methodologies we have applied to overcome the aforementioned
challenges.

3.3 DeepTMS: The Solution Architecture

DeepTMS solution architecture consists of three main modules (See Figure 1):

1. Input Process (Data Generation) Module: This module is responsible for
generating and simulating the emails (tickets) stream.

2. Map/Reduce -Hadoop- Cluster (Data Processing & Retrieval): This mod-
ule is responsible for receiving the tickets and doing the ticket content pre-
processing/processing, then retrieve the similar tickets from the Case Base
(Case Generation, Retrieval & Retain).

3. Graphical User Interface (Data Visualization): This module is responsible
for visualizing the results to the system end-users.

Fig. 1. DeepTMS Solution Architecture

3.4 The Hybrid CBR Approach

The first decision we had to make in the development of DeepTMS was how
we are going to handle the challenges mentioned before, and which approach we
should apply. The selected approach combines a Deep Neural Network with CBR
to capture and decode domain knowledge. Our approach uses Deep Learning al-
gorithms in the context of Natural Language Processing (NLP). More specifically
it applies them throughout the task of prioritizing emails based on their content
and it measures text similarity based on their semantics. We, therefore, present
several Neural Network types to represent a sequence of sentences as a conve-
nient input for our different models. First, we divided the emails into sub-groups
based on the business sectors they were coming from. The first stage was the
ticket pre-processing, which divided into five main processes (see Figure 2)

1. P1: Input Process (Data Generation): was responsible for generating and
simulating the emails (tickets) stream

2. P2: Prioritization process: was prioritizing incoming tickets based on histor-
ical cases and their recorded priorities

3. P3: Greedings filter: which identified and eliminated any unnecessary text
(ex. greetings, signatures etc.) from any email

4. P4: Stemming and stop words elimination: in either German or English lan-
guage

5. P5: Text vectorization

Fig. 2. Ticket Pre-processing

In the beginning, our approach was to use Support Vector Machines (SVM)
and Vectorization to prioritize emails. Early results from this approach were
promising but not in sub-group cases. When we performed a more intensive test
with large volume of emails, it failed to prioritize with high accuracy. Therefore,
we decided to build several state of the art neural network models: Convolutional
Neural Networks (CNNs), Recurrent Neural Network (RNNs), and Long Short-
Term Memory (LSTMs) [16] to test and compare their results. Deep neural
network applications seemed to perform substantially better on all sub-groups
(Detailed results will be shown in the next section).

3.4.1 Vocabulary Containers Vocabulary is one of the knowledge contain-
ers and represents the information collected from the domain to express knowl-
edge [17]. By filling in this container we identify terms that are useful for the
main system tasks. The acquisition of the domain vocabulary has direct effect
on the system performance, and that’s why it is usually done with intensive help
from domain experts. As mentioned in Section 3.2 utilizing several experts to
manually assist with decoding domain knowledge was rather expensive, there-
fore an alternative was sought. In order to improve the acquired vocabulary, we

followed the typical three methods described in [7]. We have used neural net-
works to remove irrelevant words and extracted the main features that represent
certain text using the Word2Vec models [12]. In the next section we describe
how exactly Word2Vec worked to build neural word embeddings.

3.4.2 Neural Word Embedding Most of the Deep Learning models aren’t
able to process strings or plain text. They require numbers as inputs to per-
form any sort of job, classification, regression, etc... Many current NLP systems
and techniques treat words as atomic units, therefore, in order to apply a Deep
Learning model on NLP, we need to convert words to vectors first. Word em-
bedding is the process of converting text into a numerical representation for
further processing. The different types of word embeddings can fall into two
main categories:

1. Frequency-based embedding (FBE):
FBE algorithms focus mainly on the number of occurrences for each word,
which requires a lot of time to process and exhaustive memory allocation
to store the co-occurrence matrix. A severe disadvantage of this approach
is that quite important words may be skipped since they may not appear
frequently in the text corpus.

2. Prediction-based embedding (PBE):
PBE algorithms are based on Neural Networks. These methods are predic-
tion based in the sense that they assign probabilities to seen words. PBE
algorithms seem the present state of the art for tasks like word analogies
and word similarities.

PBE methodologies were known to be limited in their word representations
until Mitolov et al. introduced Word2Vec to the NLP community [12]. Word2vec
consists of two neural network language models: A Continuous Bag of Words
(CBOW) and Skip-gram. In both models, a window of predefined length is moved
along the corpus, and in each step the network is trained with the words inside
the window. Whereas the CBOW model is trained to predict the word in the
center of the window based on the surrounding words, the Skip-gram model
is trained to predict the context based on the central word. Once the neural
network has been trained, the learned linear transformation in the hidden layer
is regarded as the word representation. In this work we have used Skip-gram
model since it demonstrates better performance in semantic task identification
[13].

3.4.3 Text Pre-Processing In the Text Pre-Processing stage, raw text cor-
pus preparation tasks are taking place in anticipation of text mining or NLP. We
trained our Word2Vec model over the ticket corpus overall to build cases used
in similarity measures. As any text pre-processing tasks, we have two main com-
ponents: 1. Tokenization, 2. Normalization. Tokenization is a step which splits
longer strings of text into smaller pieces, or tokens. Normalization generally

refers to a series of related tasks meant to put all text on a level playing field:
converting all text to the same case (upper or lower), removing punctuation,
converting numbers to their word equivalents, and so on. Normalization puts all
words on equal footing, and allows processing to proceed uniformly. Normalizing
text can mean performing a number of tasks, but for our approach, we will apply
normalization in four steps: 1. Stemming, 2. Lemmatization 3. Eliminating any
stopping words (German or English) 4. Noise Removal (e.g. greetings & signa-
tures). In essence we can consider the Word2Vec model or any other model that
could be built as a substitution to the traditional taxonomies.

3.4.4 Similarity Measures Similarity measures are highly domain depen-
dant and used to describe how cases are related to each other. In CBR, com-
parison of cases can be performed along multiple important dimensions [9][11].
Cases that only match partially, can be adapted to a problem situation, using
domain knowledge contained in the system [10]. Thus, methods, like in partic-
ular Information Retrieval, which are based only on statistical inferences over
word vectors, are not appropriate or sufficient. Instead, mechanisms for mapping
textual cases onto a structured representation are required. A basic assumption
for applying the principle for similarity measures is that both arguments of the
measure follow the same construction process. This allows us comparing the
corresponding sub-objects in a systematic way. For our system we defined the
two types of similarity measures: Local Similarity Measures and Global Simi-
larity Measures. Local Similarity Measures describe the similarity between two
attributes and the Global Similarity Measures describe the similarity between
two complete cases. In the next section we elaborate how we applied the Local
Similarity Measures followed by the Global Similarity Measures.

Local Similarity Measures: Based on the collected data and the dis-
cussions with experts, we defined the local similarity measures. We have mainly
four attributes which are distinctive except for the email subject and content. For
the Priority (integer) and Sending Groups (distinctive strings) we used distance
functions. For the email subject and content, we counted upon the Word2Vec
model to give us the similarity degrees between different texts, after applying all
the aforementioned prepossessing tasks.

Global Similarity Measures: The Global Similarity Measure defines the
relations between attributes and gives an overall weight to the retrieved case.
The weight of each attribute demonstrates its importance within the case. We
decided to use the weighted euclidean distance for the calculation of the global
similarity as applied in [15] . The weight of each attribute has been defined in
collaboration with the domain experts. We decided to use a weight range between
1 and 5. The most important values are weighted with 5.0 and 4.0 determined
by the experts on which attribute value they would use to evaluate the case.
They have decided to give the following weights to the attributes (Priority =
2.0, Email Content = 4.0 or 5.0, Email Subject = 2.0 or 3.0, Sending Group =

3.0 or 4.0). After giving the weights to the attributes we then sum up the given
weights to come up with the overall global case similarity.

4 Experimental Evaluation

Our system evaluation is divided into two parts:

1. The case priority given by the neural network
2. The retrieved cases and suggested solutions to the new case

During our system testing and evaluation phase, we decided to use different
Neural Network models to explore, validate and compare accuracy results for
each and every model. We applied three Neural Network models: CNNs, RNNs,
and LSTMs [16]. Word2Vec was applied to vectorize text input and build word
representations in the vector space (See Figure 3). Sequences of such vectors
were processed using various neural net architectures.

Fig. 3. Text Vectorization

Word2Vec was built using 300,000 historical tickets in an unsupervised train-
ing mode. All networks were built with one hidden layer, and utilised the Word2Vec
model we have already built. To train the three different neural net models, we
have also used 300,000 old tickets with known priorities in a supervised learning
process. An additional 10,000 tickets were used to evaluate the models in prior-
itizing the test tickets automatically. Table 1 summarizes the prioritizing stage
results.

Table 1: Prioritization Results

Neural Network Model Accuracy Precision Recall F1
Convolutional Neural Net-
work (CNN)

82.67% 82.52% 82.64% 82.58%

Recurrent Neural Network
(RNN)

89.28% 89.19% 89.27% 89.23%

Long Short-Term Memory
Network (LSTM)

92.35% 92.13% 92.23% 92.16%

The second evaluation part is retrieving similar cases based on the similarity
measures we defined before, and using Word2Vec model to give the degree of
similarity between two texts. Since the LSTM model showed the best results in
prioritizing the tickets, we continued to build our solution with LSTM models.
In the Results Discussion section, we are presenting details about the differ-
ence between the three applied models. The evaluation was done with company
experts and technicians. DeepTMS suggested ten solutions to a new ticket, and
then experts were called to decide where the most relevant solution was posi-
tioned among the retrieved ten. We defined also four levels that the most relevant
solution could belong to. These were: 1. one:three 2. four:seven 3. eight:ten
4. Not Listed. For the evaluation we used the same 10000 Test Tickets that
were used in the Prioritization stage. Table 2 shows the results for this stage.

Table 2: Retrieval Results

Level Number of Cases Percentage
One : Three 7764 77.64%
Four : Seven 1468 14.68%
Eight : Ten 692 6.92%
Not Listed 76 0.76%

4.1 Results Discussion & Lessons Learned

During the implementation of DeepTMS, we used neural networks in tickets
pre-processing to eliminate the redundant text and pass the most relevant text
to deep neural networks for prioritization purposes. For both tasks, LSTMs out-
performed all the other neural network models we used. It is recommended to
use LTSM for text related tasks, but it is also important to mention that it
takes longer time both for its training phase, and for text processing afterwards.
CNNs are more appropriate for image-related tasks. However, we investigated
them since the literature suggests them as appropriate to areas where changes
take place in the network architecture and can give promising results in text
processing as well [18]. CNNs are faster in training and processing phases than
RNNs and LSTMs. Since an LSTM is a special RNN case they seemed to per-
form well on text tasks, better t standard CNNs and worse than LSTMs. In
terms of training and processing performance they take longer than CNNs and
less time compared to LSTMs.

For building the Word Embedding using Word2Vec and use them within
the neural networks models, the performance is pretty good and it always gets
improved with more text we use in building the model, since it expands the
word corpus and improves the ability to find relationships between words. We

started building the Word2Vec model with 50000 tickets, and the results were
worse compared to training with 6 times more tickets.

5 Related Work

The related work to this research, is defined on the following three axes: 1. Text
processing issues with incorrect sentences and mixed languages 2. Help-desk
CBR systems 3. Automation of text relation extraction.

Text processing and analysis is considered a ”must-have” capability due to
the immense amount of text data available on the internet. Textual CBR is
the type of CBR systems where the cases are represented as text. The text
representation brings several challenges when the text is unstructured or has
grammatically incorrect sentences. The task of the approach described in our
research can be compared to the work presented in [19][20][21], the authors used
a hybrid CBR approach where they combined CBR with NLP frameworks to
be able to process the knowledge written in free text. They mentioned to the
issues they faced with the free text or to extract features and build accurate
similarity measures. In our work, NLP frameworks were not able to process
text spanned across different languages and there were several issues related
to accurate sentence parsing. Therefore, we applied a different approach using
Deep Neural Networks to ease the task of finding similarities between cases and
automate the knowledge from textual cases.

HOMER [22] [23] is a help desk support system designer for the same purpose
of DeepTMS. HOMER used an Object Oriented approach to represent cases
and used a question-answering approach to retrieve cases. HOMER showed very
good results when it first presented in 1998 and after its further improvement in
2004. However any existing fast-pace work environments demand solutions that
are able to deal with big amounts of data in real time with minimum human
interference. Comparing to DeepTMS, we focused more on how to automate the
extraction of similarities and deal with unstructured or mixed-languages text,
but this approach also can’t be automated to be integrated in the real business
environments.

Finding the relation between text and extract features are key criteria in
the success of any textual CBR system. These tasks require a lot of effort and
normally can take a long time to be done accurately. Different approaches have
been presented to build text similarities and find higher order relationships [24].
The work of automating knowledge extraction using Neural Networks can be
compared to the work presented in [25] where authors represented the text using
dubbed Text Reasoning Relevant work has been seen in Graph (TRG), a graph-
based representation with expressive power to represent the chain of reasoning
underlying the analysis as well as facilitate the adaptation of a past analysis to
a new problem. The atuhors have used manually constructed lexico-syntactic
patterns developed by Khoo [26] to extract the relations between texts.

6 Summary

This paper presents DeepTMS, a hybrid CBR system that uses Deep Neural
Networks to assist in automatic feature extractions from text and define simi-
larity across text. DeepTMS is able to automate the building of text similarity
without exhaustive expert involvement and work in real-time on new tickets to
suggest the most relevant solutions. However, such an approach hides part of
the explainability capability of CBR approaches. Our main goal through this
research was to show how a hybrid approach using deep learning and CBR can
ease in dealing with complex tasks. Such an approach seems appropriate to deal
with high volume data that need to be processed fast and in real-time.

7 Future Work

DeepTMS is a starting point towards similarity measures extraction. In the near
future we plan to use the fastText text classifier presented by Facebook [27]. Re-
current Siamese Network models are also considered to improve the efficiency of
text similarity measures [28]. DeepTMS is not dealing with too many attributes
and the text in the emails is not too long. The results from our presenting
implementation are promising, however, it should be tested in more complex
environments to show how a hybrid CBR approach can scale. Additional layers
to the deep neural networks might be required to be added or more complex
models should be applied for better results. The built models can be used to
find similarity for any new additional attributes.

References

1. Erik Brynjolfsson, Kristina McElheran, Data in Action: Data-Driven Decision Mak-
ing in U.S. Manufacturing, Center for Economic Studies (CES), January 2016

2. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications 1(7) (March 1994)

3. XUE-WEN CHEN, XIAOTONG LIN, Big Data Deep Learning: Challenges and
Perspectives, IEEE Access (Volume: 2), Page(s): 514 - 525,May 2014

4. Bengio Y (2013) Deep learning of representations: Looking forward. In: Proceedings
of the 1st International Conference on Statistical Language and Speech Processing.
SLSP13. Springer, Tarragona, Spain. pp 137.

5. Bengio Y, LeCun Y (2007) Scaling learning algorithms towards, AI. In: Bottou L,
Chapelle O, DeCoste D, Weston J (eds). Large Scale Kernel Machines. MIT Press,
Cambridge, MA Vol. 34. pp 321360.

6. Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and
new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 35(8):17981828. doi:10.1109/TPAMI.2013.50

7. Richter, M.M.: Introduction. In: Lenz, M., Bartsch-Sporl, B., Burkhard, H.D.,
Wess, S. (eds.) Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400, pp.116.
Springer, Heidelberg (1998)

8. Richter, M. M., Weber, R., Springer-Verlag GmbH. (2016). Case-Based Reasoning:
A Textbook.

9. Ashley, K., Modeling Legal Argument, Reasoning with Cases and Hypotheticals.
MIT-Press, 1990

10. Aleven, V., Teaching Case-Based Argumentation through a Model and Examples.
Ph.D. Dissertation, University of Pittsburgh, Intelligent Systems Program, 1997

11. Stefanie Brninghaus and Kevin D. Ashley (1998) How Machine Learning Can
be Beneficial for Textual Case-Based Reasoning. In: Proceedings of the AAAI-
98/ICML-98 Workshop on Learning for Text Categorization (AAAI Technical Re-
port WS-98-05). Pages 71-74.Madison, WI.

12. Tomas Mikolov and Kai Chen and Greg Corrado and Jeffrey Dean, Efficient Esti-
mation of Word Representations in Vector Space, NIPS’13 Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2,
2013

13. Altszyler, Edgar and Sigman, Mariano and Fernndez Slezak, Diego, Comparative
study of LSA vs Word2vec embeddings in small corpora: a case study in dreams
database, 2016

14. Maddern, M., Maull, R., Smart, A. (2007). Customer satisfaction and service qual-
ity in UK financial services. International Journal of Production and Operations
Management, 27, 998-1019

15. Bach K., Althoff KD., Newo R., Stahl A. (2011) A Case-Based Reasoning Approach
for Providing Machine Diagnosis from Service Reports. In: Ram A., Wiratunga
N. (eds) Case-Based Reasoning Research and Development. ICCBR 2011. Lecture
Notes in Computer Science, vol 6880. Springer, Berlin, Heidelberg

16. Hochreiter, Sepp & Schmidhuber, Jrgen. Long Short-term Memory. Neural com-
putation. 1997.

17. Richter MM, Lenz M, Bartsch-Sprl B, Burkhard H-D et al, Introduction. In: Case
based reasoning technology: from foundations to applications. Lecture notes in ar-
tificial intelligence, vol 1400. Springer, Berlin, p 1, 1998

18. Yoon Kim, Convolutional Neural Networks for Sentence Classification, Conference
on Empirical Methods in Natural Language Processing, 2014

19. Stram R., Reuss P., Althoff KD. (2017) Weighted One Mode Projection of a Bipar-
tite Graph as a Local Similarity Measure. In: Aha D., Lieber J. (eds) Case-Based
Reasoning Research and Development. ICCBR 2017. Lecture Notes in Computer
Science, vol 10339. Springer, Cham

20. Reuss P., Witzke C., Althoff KD. (2017) Dependency Modeling for Knowledge
Maintenance in Distributed CBR Systems. In: Aha D., Lieber J. (eds) Case-Based
Reasoning Research and Development. ICCBR 2017. Lecture Notes in Computer
Science, vol 10339. Springer, Cham

21. Reuss P. et al. (2016) FEATURE-TAK - Framework for Extraction, Analysis, and
Transformation of Unstructured Textual Aircraft Knowledge. In: Goel A., Daz-
Agudo M., Roth-Berghofer T. (eds) Case-Based Reasoning Research and Develop-
ment. ICCBR 2016. Lecture Notes in Computer Science, vol 9969. Springer, Cham

22. Roth-Berghofer T.R, Learning from HOMER, a Case-Based Help Desk Support
System. In: Melnik G., Holz H. (eds) Advances in Learning Software Organizations.
LSO 2004. Lecture Notes in Computer Science, vol 3096. Springer, Berlin, Heidel-
berg

23. Gker M. et al., The development of HOMER a case-based CAD/CAM help-desk
support tool. In: Smyth B., Cunningham P. (eds) Advances in Case-Based Reason-
ing. EWCBR 1998. Lecture Notes in Computer Science, vol 1488. Springer, Berlin,
Heidelberg

24. Ozturk, Pinar & Prasath, R.Rajendra & Moen, Hans. (2010). Distributed Repre-
sentations to Detect Higher Order Term Correlations in Textual Content.

25. Sizov G., ztrk P., tyrk J. (2014) Acquisition and Reuse of Reasoning Knowledge
from Textual Cases for Automated Analysis. In: Lamontagne L., Plaza E. (eds)
Case-Based Reasoning Research and Development. ICCBR 2014. Lecture Notes in
Computer Science, vol 8765. Springer

26. Khoo, C.S.G.: Automatic identification of causal relations in text and their use for
improving precision in information retrieval. Ph.D. thesis, The University of Arizona
(1995)

27. Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov, Bag of Tricks
for Efficient Text Classification, dblp computer science bibliography, 2017

28. Jonas Mueller, Aditya Thyagarajan Siamese Recurrent Architectures for Learning
Sentence Similarity, Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI-16), 2016

