
Dynamic Case Bases and the Asymmetrical
Weighted One-Mode Projection

Rotem Stram1,2, Pascal Reuss1,3, and Klaus-Dieter Althoff1,3

1 Smart Data and Knowledge Services Group, German Research Center for Artificial
Intelligence, Kaiserslautern, Germany

{rotem.stram,pascal.reuss,klaus-dieter.althoff}@dfki.de
2 Department of Computer Science, Technical University of Kaiserslautern

3 Institute of Computer Science, Intelligent information Systems Lab, University of
Hildesheim, Hildesheim, Germany

Abstract. Building a case base for a case-based reasoning (CBR) sys-
tem is incomplete without similarity measures. For the attribute-value
case structure similarity between values of an attribute should logically
fit their relationship. Bipartite graphs have been shown to be a good rep-
resentation of relationships between values of symbolic attributes and the
diagnosis of the cases in a technical diagnosis CBR system, while using
an asymmetrical weighted one-mode projection on the values to model
their similarity.
However, the weighted one-mode projection assumes that the set of sym-
bols is static, which is contradictory to the dynamic nature of case bases
as defined by the retain phase of the CBR cycle. In this work we present
two methods to update the similarity measure whenever new information
is available and compare them. We show that even though updating the
similarity measure to exactly reflect the case base had the new informa-
tion been available a-priori produces better results, an imperfect update
is a feasible, less time consuming temporary solution.

Keywords: Dynamic case bases, Bipartite graph, Weighted one-mode
projection, Local similarity, Symbolic attributes

1 Introduction

The basic idea behind Case-Based Reasoning (CBR) is that similar problems
have similar solutions. It is a paradigm for problem solving by using previously
solved problems as the starting point for new solutions. The CBR cycle was
formalyzed by Aamodt and Plaza in [1] and is also known as the four R cycle,
named after its four steps: Retrieve, Reuse, Revise, and Retain.

The retrieve step of the cycle is one of its crucial parts, as it decides which
past experiences the system uses as a basis for a new solution. It takes as input a
case description representing a new problem, and outputs either the most similar
case from the case base (past experience), or a list of n most similar cases. When
considering a diagnosis system, where a solution is a member of a pre-defined set

2 Rotem Stram, Pascal Reuss, and Klaus-Dieter Althoff

of possible diagnoses, there is usually almost no processing done on the retrieved
cases, making the accuracy of this step even more crucial.

At the heart of the retrieval step is the similarity between two cases. There are
two types of similarities in CBR, local and global. If we focus on the attribute-
value case structure, local similarity is defined as the similarity between two
values of a single attribute. Global similarity is then the similarity of two cases
as a whole by aggregation of local similarity values.

For local similarities the type of the attribute defines the similarity function
that is used. For numerical attributes, for instance, a distance measure such as
Euclidean distance can be used. For strings the edit distance is a good solu-
tion [4], while the similarity of symbolic attributes is usually either modeled by
experts, defined by taxonomies, or is a combination of both [2], [10].

Recently, graph theory and network analysis methods have been introduced
as tools to extract local similarity measures of symbolic attributes, most notably
the weighted one-mode projection (WOMP) [15]. In this work from the technical
diagnosis domain, textual problem description were transformed into keywords,
and each keyword connected to the diagnosis of the case, effectively creating a
bipartite graph (BPG) where the weight of each edge is the number of times
each keyword appeared under each diagnosis. A novel method for asymmetrical
weighted one-mode projection (aWOMP) was introduced, and used as a simi-
larity measure between the keywords. This work, however, assumed that the set
of keywords is fixed and did not address the possibility that the case-base will
change over time. Here we will addresses the possible updates of the aWOMP
as the case base is updated.

This work is structured as follows. In section 2 we will give an introduction
to aWOMP. Section 3 will discuss the update options of aWOMP and introduce
two methods to update the similarity measure under different conditions. Section
4 will present the premise of our experimentation and their results. Section 5
will list works that are related to ours, while section 6 will conclude this paper
and offer possible directions for future work.

2 Asymmetrical Weighted One Mode Projection

One-mode projection (OMP) refers to an action performed on a bipartite graph
(BPG) to transform it to another graph depicting the relationship of only some
of the original nodes. A BPG, as can be seen in Fig. 1a, is a graph with two
groups of nodes generally referred to as left (L) and right (R). Connections are
only allowed between groups, but not within them. A OMP is a projection of
the graph on either the L nodes or the R nodes, where two nodes are connected
if they share a neighbor in the BPG (e.g. Fig. 1b).

In some cases a weighted OMP (WOMP) is needed, and even more so when
the BPG itself is weighted. To this end, Stram et al. [15] introduced a novel
WOMP method in their work from 2017 that produced asymmetrical weights
in the resulting graph (aWOMP). This method was used as a local similarity
measure of symbolic attributes in a Case-Based Reasoning (CBR) system, where
they showed the superiority of aWOMP over other common methods.

Dynamic Case Bases and the aWOMP 3

Fig. 1: a. A bipartite graph. b. The one-mode projection of the bipartite graph

The aWOMP relies on resource allocation of nodes in a bipartite graph, and
is based on a method introduced by Zhou at al. [16]. It takes a weighted BPG as
an input, and produces a new graph quantifying the relationship between nodes
in a single group from the BPG by measuring the amount of resources node A
allocated to all the neighbors Ni that it shares with node B, together with the
resources that nodes Ni allocate to node B.

Let G = (L,R,E) be a BPG where E is a set of edges (li, rj , wij), where wij

the weight between nodes li ∈ L and rj ∈ R, and |L| = n, |R| = m. Then the
resources that node li accumulates is the sum of its adjacent edges:

WL
i =

m∑
j=1

wij (1)

The resources that node li allocates to node rj is the weight of the edge
between them normalized by the total amount of li’s resources:

wL→R
ij =

wij

WL
i

(2)

Which leads to the resources that each node rj ∈ R accumulates:

WR
j =

n∑
i=1

wL→R
ij (3)

This process corresponds to the flow of resources seen in Fig. 2a. Now we
switch directions and regard the flow from R to L:

wR→L
ij =

wL→R
ij

WR
j

(4)

This is visualized in Fig. 2b. When we look at two nodes la, lb ∈ L, the
resources that flow between them are:

wL→L
ab =

m∑
j=1

paj · pbj · (wL→R
aj + wR→L

Bj) (5)

4 Rotem Stram, Pascal Reuss, and Klaus-Dieter Althoff

Fig. 2: a. Resource allocation from L to R. b. Resource allocation from R to L.
c. Asymmetrically weighted one-mode projection

Where pij = 1 if li and rj are neighbors, and pij = 0 otherwise. We then
normalize this weight:

WL→L
ab =

wL→L
ab

wL→L
bb

(6)

The resulting weights are those used in the aWOMP graph as seen in Fig.
2c.

3 aWOMP and Dynamic Case Bases

The case base of a diagnostic CBR system is comprised of case description and
diagnosis pairs. We focus on the attribute-value case description type, and so
cases are comprised of a set of attribute values, where a value can on its own be
a set of values. As an example take the system described by Reuss et al. [10] in
the technical diagnosis of aircraft faults domain. Here, symbolic attributes were
extracted from textual fault descriptions and divided into different attributes
such as fault, location, and time. For a single case each attribute can hold sev-
eral values. Focusing on a single attribute, each value representing a keyword
is connected to the diagnosis of the case. In the BPG the keywords build the
node set L and the diagnoses the node set R. The weight between a keyword
and a diagnosis is the number of cases the keyword appeared in that had this

Dynamic Case Bases and the aWOMP 5

diagnosis. If this keyword appears in several cases with different diagnoses then
in the BPG it will be connected to several nodes from R.

In order to use the aWOMP as a local similarity measure, the BPG needs to
be known beforehand, and the aWOMP is calculated offline. However, in real-
world applications the environment is dynamic and new information is constantly
added. In order to overcome this, the aWOMP should be updated whenever new
information arises. New information in this context could be one of the follwoing:

– a new node in L
– a new node in R
– a new edge
– a different weight on an existing edge
– removing a node from L
– removing a node from R
– removing an edge

Removing nodes or edges from the graph is a result of removing cases from
the case base in a process called forgetting [9]. Since forgetting is outside the
scope of this work we will focus only on changes resulting from adding new cases
to the case base. More specifically, we will focus on adding a new node to L,
adding a new edge, and changing the weight of an existing edge. Adding a new
node to R will not be described here for simplicity reasons, however it is straight
forward since the new node will only have one edge when it is added.

In this section we will discuss two possible update method to the BPG so
that the similarity measure remains up to date with the case base.

3.1 Perfect Update

A perfect update is an update to the aWOMP such that it is indistinguishable
from an aWOMP that would have been calculated had we built the BPG with
the new information in advance. There are two ways to obtain a perfect update
of an aWOMP: either calculate the new aWOMP from scratch, or making local
changes to the BPG only where it is relevant. Let’s focus on two possible local
changes to the BPG: adding a new node to L and changing the weight of an
existing edge.

Adding a new node to L Assume that we have a BPG, and for each node
li ∈ L and rj ∈ R we know the values of WL

i and WR
j respectively. Adding a

new node lx to L, along with an edge to at least one rj ∈ R (e.g. Fig. 3) would
affect WR

j (see Eq. 3) and thus ultimately WL→L
ab (Eq. 6) for all la and lb that

share rj as a neighbor.
The required local changes are then:

WR
jnew = WR

j +
wx

WL
x

(7)

and from here on every call to WL→L
ab would give the correct weight.

6 Rotem Stram, Pascal Reuss, and Klaus-Dieter Althoff

Fig. 3: Adding a new node to a bipartite graph

Changing the weight of an existing edge Assuming again that for a given
BPG and for each node li ∈ L and rj ∈ R we know the values of WL

i and WR
j

respectively (e.g. Fig. 4). We now change the weight of wb. The effect here is
much greater than adding a new node, due to its effect on all the neighbors of
lb, since the sum of all its resources, which is used in Eq. 2, is now different.
Subsequently, WR

j of all rj ∈ R, rj is a neighbor of lb needs to be updated.

Fig. 4: Changing the weight of an existing edge in a bipartite graph

The following changes need to be made:

WL
bnew = WL

b − wb + wbnew (8)

And then for each rj ∈ R, rj is a neighbor of lb:

WR
jnew = WR

j −
wb

WL
b

+
wL

bnew

WL
bnew

(9)

From here on every call to WL→L
ab would give the correct weight. With these

example, perfectly updating the aWOMP for the remaining scenarios can be
easily extrapolated.

Discussion Remaining in the CBR domain where aWOMP is used as a simi-
larity measure, adding or removing a single case may result in a massive chain
reaction of changes to the BPG, depending on the density of the graph. A case
can be seen as a BPG on its own, where |R| = 1 containing the diagnosis of the
case (see example in Fig. 5b). Adding this graph representation of the case to
the case-base BPG (Fig. 5a) results in a new weight for the shared edges, and
possible new nodes and edges.

A change in the weight of just one edge adjacent to a node li ∈ L would
require an update to the resources li allocates to all its neighbors (see Eq. 2)

Dynamic Case Bases and the aWOMP 7

Fig. 5: a. An existing BPG representing a case base. b. A BPG representation
of a new case. c. The new BPG resulting from adding the new case to the case
base.

and subsequently an update to the resources allocated to all of the neighbors of
rj ∈ R, rj a neighbor of li. Now imagine the new case is comprised of several
keywords. This makes the scalability of the perfect update only slightly more
feasible than calculating the aWOMP from scratch, if at all, especially when the
BPG is dense.

Dynamic real-time systems with large case bases and tens of thousands of
keywords in just one attribute may not have the resources to perfectly update
the aWOMP for every new case, requiring a temporary scalable solution that is
feasible in the short run. A solution can be temporarily imperfect, allowing the
BPG to be perfectly updated (or recalculated) in the background for future use.

3.2 Imperfect Update

In order to better understand the imperfect update of a weighted BPG we first
define the relation ≤c between the similarity functions sim1 and sim2 under a
context c. If the aWOMP of two BPGs is used as local similarity measures sim1

and sim2 between symbolic attributes of a case base domain d (the context),
then sim1 ≤d sim2 if sim2 leads to better diagnosis accuracy than sim1 for the
same test set.

Let us assume that given a domain d, G1 is a BPG representation of the case
base CB1, sim1 the similarity measure, C a set of new cases, CB2 = CB1 ∪ C
the case base after adding C, G2 the BPG of CB2 resulting from the perfect
update of G1, and sim2 the similarity measure of G2. We also assume that
sim1 ≤d sim2. An imperfect update of G1 is a transformation of sim1 into a
new similarity measure simu that maintains the following inequality for some
ranked results:

sim1 ≤d simu <d sim2 (10)

In this work we propose an imperfect update method that approximates the
inequality in Eq. 10. Let G = (L,R,E) be a BPG representation of case base
CB, sim the local similarity between symbols of a symbolic attribute as derived
from the aWOMP of G, and let C a set of new cases. We follow these steps:

8 Rotem Stram, Pascal Reuss, and Klaus-Dieter Althoff

1. create a new BPG Gc = (Lc, Rc, Ec) from C and derive the similarity mea-
sure simc from the aWOMP of C.

2. for each symbol pair la, lb ∈ Lc

(a) find the similarity value s = sim(la, lb). If la /∈ L or lb /∈ L then s = 0.
(b) find the similarity value sc = simc(la, lb)
(c) snew(la, lb) = s + (1− s) ∗ sc

For the case la = lb aWOMP ensures that sim(la, lb) = 1, however even if
the value is not in G then simc(la, lb) = 1 and thanks to the equation in step 2c
snew(la, lb) = 1. We expect that sim ≤d simnew <d simperfect where simperfect

the similarity measure of the perfectly updated BPG.

Discussion The proposed imperfect update method provides a solution for local
update of similarity between keywords that appeared in the new cases added
to the case base. The advantage here is the quick update for only a subset of
keywords instead of all keywords, meaning only those keywords that appeared in
the new cases. This suggests that a simultaneous update for several cases at once
would give better results than an update for one case at a time, meaning that
batch updates would be more beneficial. On the other hand, this update requires
calculating an aWOMP for the new cases, which is computationally intensive,
especially considering that our goal is to avoid recomputing the aWOMP for the
entire case base. This leads to the conclusion that the batches need to be small
enough for the update to be worth while.

4 Experimental Results

The dataset used for testing in this work was taken from [15]. This dataset
is based on IMDB1 data and contains 8,000 movies with a list of descriptive
keywords for each. The movies are tagged with one of the following genres:
action, comedy, horror, and romance. The movies are divided equally between
the genres. This dataset is split into training and test set with 6,000 items (1,500
items per genre) and 2,000 items in the test set (500 items per genre). We keep
each dataset balanced since accuracy is our chosen method of evaluation.

In order to test if the proposed imperfect update method is viable for our
purpose we divide the training set further into two sets: one with 1,300 items
per genre, which we called set 1300, and two repository sets with 100 items per
genre each. From set 1300 we built a BPG where L = keywords and R = genres
and a keyword is connected to a genre if it is listed under a movie that is part
of the genre. The edge weights of the BPG is the number of times each keyword
appeared under each genre.

We performed both an imperfect and a perfect update on set 1300 with the
first repository, the result of which we call 1300 imperfect and 1400 respectively.
This was done again on 1400 with the second repository, resulting in BPGs 1400

1www.imdb.com

Dynamic Case Bases and the aWOMP 9

imperfect and 1500. It is clear that 1500 is equivalent to the BPG of the full
training set. At the end of this process we had five similarity functions.

Fig. 6: The retrieval accuracy of the similarity functions derived from 1300 and
the two perfect updates

Fig. 7: The retrieval accuracy of the similarity functions derived from one im-
perfect and one perfect update of 1300

10 Rotem Stram, Pascal Reuss, and Klaus-Dieter Althoff

Fig. 8: The retrieval accuracy of the similarity functions derived from one im-
perfect and one perfect update of 1400

From the test set we built five case bases, one for each similarity function,
using the myCBR tool [3], where each case represents a movie and contains a
single symbolic attribute with multiple values for the keywords. If a keyword
or a link between two keywords did not exist in the aWOMP or the updates,
the equality function was used (i.e. sim(a, b) = 0 if a 6= b and sim(a, b) = 1
if a = b). To quantify how well each similarity function performed a retrieval
test was done for each case from the test set. A case was deemed as correctly
retrieved if it belonged to the same genre of the query case. Using this definition
allows us to simulate a diagnostic problem with a dataset that is usually used
for recommendation. The aggregated accuracy values were then calculated by
retrieval rank (i.e. 1st rank is the case retrieved with the highest similarity value,
the 20st rank the case retrieved with the 20st highest similarity value).

We first compare the accuracy results of the two perfect updates. As can be
seen in Fig. 6, each update increased the accuracy of the similarity function.
It is clear that 1300 < 1400 < 1500 at least for the first 20 retrieved cases.
The first imperfect update, however, does not allow a clear-cut assumption that
1300 < 1300 imperfect < 1400. Fig. 7 shows a higher accuracy for the imperfect
over the perfect update for the first 7 ranks, and a higher rank over 1300 for
the first 13 rank, afterwards its performance is worse than both 1300 and 1400.
Similar ratios can be seen for the second imperfect and perfect updates (Fig. 8),
and here accuracy becomes worse than the perfect update in even lower ranks.

The questions arise, why does the imprefect update perform better in higher
ranks than both perfect measures, and why does it perform worse in lower ranks?
In order to answer these questions we first need to look into the properties of the
evaluation method. Accuracy by rank can also be seen as accuracy for k-nearest
neighbor, i.e. k=rank. The imperfect update, in its nature, is local and therefore

Dynamic Case Bases and the aWOMP 11

impacts only nodes in its vicinity. This creates a strong positive impact on lower
k’s, however this impact is diminished when increasing the scope of influence.

These results show that the proposed imperfect update method is not as
reliable as perfect updates, however it is still usable as a temporary solution
with the assumption that a recalibration with a perfect update is performed in
the future.

Discussion The question is asked, when should the perfect and imperfect up-
dates be used? As stated before, adding new information to a dense BPG can
cause a wave of changes across the graph, making the perfect update almost
as computationally intensive as recalculating the aWOMP from scratch. In this
scenario it would be more beneficial to use the imperfect update when new in-
formation becomes available, as it has been shown to be reliable enough, while a
new aWOMP can be recalibrated either periodically or when a predefined num-
ber of new cases have been added to the case base. On the other hand, if the
graph is sparse then a perfect update may be the best course of action.

5 Related Work

Several works combined complex network analysis (CNA) methods with CBR.
Cunnigham et al. in [5] described a system that transforms textual case descrip-
tions into graphs where terms are connected according to the sequence of their
appearance in the text. The similarity measure on these cases was then defined
as the maximum common subgraph. Although experiments showed promise, the
time complexity of the similarity measure is polynomial, making its feasibility
for real-world applications difficult.

Another notable work that combined CNA and CBR is Sizov’s Text Reason-
ing Graph (TRG) [13, 12]. Here detailed descriptions of how each case was solved
are transformed into a graph representing causal relationships with textual en-
tailments and paraphrase relations. In their first attempt this graph was built
only for the solution of the case, while case similarity was based on the vector
space model with TF-IDF weights. In their followup work the TRG was incor-
porated into the case description and the so-call longest common paraphrase
was used as the similarity function. In order for this method to be applicable,
the solution process needs to be available beforehand for each case, and this is
unfortunately hard to obtain for most domains.

There has been some discussion on how symbolic attributes should be com-
pared. A common way to define symbolic attribute similarity is by using a tax-
onomy [6]. Recently, Bach et al. [2] described a technical fault diagnosis system
where fault descriptions were given in textual form. Keywords were extracted us-
ing NLP methods and a taxonomy was manually constructed by experts. Reuss
et al. described a similar scenario in [10], where keywords were extracted from
textual fault descriptions in the technical fault diagnosis domain. Again, tax-
onomies were manually defined by experts, however they were also automatically
supplemented with further information from tools such as wordnet2.

2wordnet.princeton.edu

12 Rotem Stram, Pascal Reuss, and Klaus-Dieter Althoff

More complex automated similarity measure have also been discussed in
the past. in 1995 Ricci et al. described a reinforcement method for learning a
similarity function for symbolic attributes [11], and in 2003, Stahl et al. described
an evolutionary algorithm for the same purpose [14]. Both these methods require
an arduous learning phase with intensive time complexities. For a static case
base and set of attribute values this can be feasibly done offline, however if a
new case is added to the case base containing a new keyword retraining the
similarity function is required.

Simply weighted one-mode projection (sWOMP) was used by Jimenes-Diaz
in a CBR recommendation system for link prediction. The system recommended
students with programming tasks based on previously solved task. A BPG was
built between students and tasks and the sWOMP was derived on the tasks,
where the weights between them were the number of common neighbors in the
BPG. In a followup work, Gómez-Martin et al. [8] performed the sWOMP on
the users, and a user was recommended a task they hadn’t completed yet if a
similar user completed it.

6 Conclusions and Future Work

In this work we discussed the aWOMP method in its role as a local similarity
method in a diagnosis CBR system. In previous works the aWOMP was seen as a
single-pass similarity measure of static symbolic attributes, however, real-world
application are dynamic and ever-changing. We presented two update options
for aWOMP, the perfect and the imperfect update, which can be used when new
cases are added to the case base. The perfect update is equivalent to recalculating
the aWOMP from scratch with the updated case base and is computationally
intensive for dense BPGs, while the imperfect update allows for local changes
on-the-fly that should be usable until a recalibration of the aWOMP is possible.

In our experimentation we showed that a perfect update of the BPG improves
the retrieval accuracy, and this is consistent with the notion that more informa-
tion allows for a better modeling of an environment. The proposed imperfect
update method performed better than the perfect update for higher retrieval
ranks, however it did not keep its superiority for lower ranks. In the future the
imperfect update method can be refined in order to improve retrieval results.

As for the perfect update, in order to allow faster updates that make this
solution feasible to be used over many changes to the case base, a map-reduce
[7] type system could be used. In an initial architecture, for instance, one could
use a sequence of mappers and reducers where the first mapper phase could
collect the resources of each keyword while the reducer calculates Eq. 1, and the
second mapper would then accumulate the resources that nodes li allocate to
their neighbors, with the reducer performing a sum function that would result
in Eq. 3. Once we know the values of WL

i and WR
j , finding the aWOMP is

straightforward.

Dynamic Case Bases and the aWOMP 13

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations and system approaches. AI Communications 7(1), 39–59 (1994)

2. Bach, K., Althoff, K.D., Newo, R., Stahl, A.: A case-based reasoning approach for
providing machine diagnosis from service reports. In: International Conference on
Case-Based Reasoning. Springer Berlin Heidelberg (2011)

3. Bach, K., Sauer, C., Althoff, K.D., Roth-Berghofer, T.: Knowledge modelling with
the open source tool mycbr. In: CEUR Workshop Proceedings (2014)

4. Ceausu, V., Desprès, S.: A semantic case-based reasoning framework for text cat-
egorization. The Semantic Web pp. 736–749 (2007)

5. Cunningham, C., Weber, R., Proctor, J.M., Fowler, C., Murphy, M.: Investigating
graphs in textual case-based reasoning. In: European Conference on Case-Based
Reasoning. Springer Berlin Heidelberg (2004)

6. Cunningham, P.: A taxonomy of similarity mechanisms for case-based reasoning.
In: IEEE Transactions on Knowledge and Data Engineering 21.11 (2009)

7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51.1 (2008)

8. Gómez-Martin, P.P., Gómez-Martin, M.A.: Case-based recommendation for online
judges using learning itineraries. Case-Based Reasoning Research and Develop-
ment: 25th International Conference, ICCBR (2017)

9. Markovitch, S., Scott, P.D.: The role of forgetting in learning. In: Machine Learning
Proceedings (1988)

10. Reuss, P., Stram, R., Juckenack, C., Althoff, K.D., Henkel, W., Fischer, D.:
Feature-tak - framework for extraction, analysis, and transformation of unstruc-
tured textual aircraft knowledge. In: International Conference on Case-Based Rea-
soning. Springer (2016)

11. Ricci, F., Avesani, P.: Learning a local similarity metric for case-based reasoning.
International Conference on Case-Based Reasoning pp. 301–312 (1995)

12. Sizov, G., Öztürk, P., Aamodt, A.: Evidence-driven retrieval in textual cbr: bridg-
ing the gap between retrieval and reuse. In: International Conference on Case-Based
Reasoning. Springer International Publishing (2015)

13. Sizov, G., Öztürk, P., Štyrák, J.: Acquisition and reuse of reasoning knowledge from
textual cases for automated analysis. In: International Conference on Case-Based
Reasoning. Springer International Publishing (2014)

14. Stahl, A., Gabel, T.: Using evolution programs to learn local similarity mea-
sures. In: International Conference on Case-Based Reasoning, pp. 537-551. Springer
Berlin Heidelberg (2003)

15. Stram, R., Reuss, P., Althoff, K.D.: Weighted one mode projection of a bipartite
graph as a local similarity measure. In: International Conference on Case-Based
Reasoning. Springer (2017)

16. Zhou, T., Ren, J., Medo, M., Zhang, T.C.: Bipartite network projection and per-
sonal recommendation. Physical Review E 76.4, 046115 (2007)

