
A Template-Based Approach to Summarize XML Collections

Gudrun Fischer, Igor Jacy Lino Campista
University of Duisburg–Essen
D-47057, Duisburg, Germany

{fischer,campista}@is.informatik.uni-duisburg.de

Abstract
Existing summarization approaches for XML
concentrate on extracting common structure
and compressing the data, to optimize storage
and speed up queries. Neither compression,
nor structure extraction suffices for advanced,
content-based summarization tasks. We present
a set of tools for semi-automatic summarization
of XML collections, where the user can specify
semantically relevant features for an XML col-
lection in a template, and define rules for sum-
marization. The system assists the user in gen-
erating one or several such templates, selects ap-
plicable templates for a given collection, and ap-
plies them for automatic summarization. In ex-
periments on the INEX collection (among oth-
ers), we investigate the merits and limitations of
our approach.

1 Introduction
Summarization is the task of creating a shorter represen-
tation of a given document or dataset, containing those
characteristics of the original which are relevant for a spe-
cific user and application context. Previous approaches like
[Liefke and Suciu, 2000] concentrate on extracting com-
mon structure and compressing the data, in order to opti-
mize data storage and exchange and, in some cases, query
processing. Similarly, explicit XML summarization tech-
niques, e.g.[Cannataroet al., 2002a], aim at query opti-
mization and precompute aggregation dimensions, concen-
trating on the data-centric view of XML.

For other applications, however, this functionality does
not suffice. In the context of XML document clustering,
for example, the cluster descriptions which have to be gen-
erated from the documents in the cluster should give the
user a good overview of the content of the cluster, rather
than of the structure alone. Similarly, when exploring a
set of unknown XML collections, users could profit from
concise and meaningful, content-based summaries which
should still contain relevant structural characteristics of the
collections as well. Therefore, as observed in[Cannataroet
al., 2002b], the summarization of XML documents is not
only an auxiliary functionality for compression and query-
ing, but a task in its own right.

In this paper, we present a template-based, semi-
automatic approach where the user herself can specify the
relevant parts and characteristics of XML documents, and
how they should be summarized. This information is for-
mulated in an XML template document which can be gen-
erated automatically or manually, or interactively using the

Template Designer, one of the two tools which form our
implementation.

Given a new XML collection and one or multiple tem-
plates, theAutomatic Summarizerthen assigns each docu-
ment of the collection to those templates which match the
document’s structure and content. After the matching step,
the Automatic Summarizer applies to each of the found
subcollections the respective template, thus generating the
desired output for the whole collection.

In comparison with[Cannataroet al., 2002a], we fol-
low the same assumption that the information need of the
user will vary between collections and contexts of appli-
cation, and thus no automatic method will be able to meet
this need accurately. In contrast to their approach, however,
we concentrate on the document-centric view of XML, and
give the user a more thorough control over the summariza-
tion process by providing more, and dedicated datatype–
specific summarization functionality. In addition, we fa-
cilitate template generation and the reuse of existing tem-
plates by providing a flexible tool for interactive template
manipulation.

The rest of this paper is organized as follows. In sec-
tion 2, we give an overview over previous XML summa-
rization approaches. Section 3 then introduces our concept
of template-based summarization, and in section 4, we de-
scribe the two tools implementing it. Section 5 contains
experimental results for the INEX collection[Fuhr et al.,
2004]. In section 6, we close with an outlook on further
research.

2 Related work
Existing approaches dealing with XML summarization can
be distinguished by their motivation. XMill[Liefke and Su-
ciu, 2000] uses summarization for efficient compression of
XML collections, separating structure from data, and com-
pressing or, as the case may be, summarizing the data ac-
cording to its datatype. To define transformation rules, they
use a simple, dedicated language.

Compression and synthesis for efficient storage and
querying is also the main objective of SqueezeX[Can-
nataroet al., 2002a]. There, the user first specifies the
relevant dimensions of XML documents in a negotiation
phase. According to these dimensions, the documents are
then transformed into datacubes, with aggregated values in
the selected dimensions, which can be queried efficiently.
SqueezeX thus implements a strictly data-centric view.

Query processing is the target application of[Comai
et al., 2004]. Here, however, XML collections are sum-
marized in order to allow for approximate answers from
precomputed summaries. A fixed set of transformations



Figure 1: Summarization example

for this purpose is described in the XQuery language.
XSKETCH [Polyzotis and Garofalakis, 2002c; 2002a;
2002b], on the other hand, creates statistical summaries of
large XML data graphs, to estimate path expression selec-
tivity.

Finally, [Lim et al., 2002] build a tree representation of
the input XML (path tree) for paths up to a certain length,
delete low-frequency paths, and estimate the selectivity of
longer paths. Their method allows an approximate repre-
sentation of the original XML to fit into any amount of
memory, and can therefore be seen as a summarization as
well.

The above approaches either target XML summariza-
tion as an auxiliary functionality for another objective, e.g.
compression or query optimization, or they are limited to a
data-centric view of XML, or they do not allow user in-
teraction. Our approach, in contrast, is semi-automatic,
supporting user interaction, and follows a document-centric
view.

3 Template-based summarization
In our template-based approach to XML summarization,
the user describes theelementsshe is interested in by defin-
ing a pseudo-structure of the input XML (one or multiple
documents) containing the relevant features. This pseudo-
structure is called atemplateand is an XML document it-
self. Like the input XML, it can be seen as a tree, with
nodes describing elements, and transformation and aggre-
gation rules annotating the nodes. Relevant nodes in the
input XML can be selected by a node description using
the path, datatype, and/or tag name. For each node thus
selected, the user can define further selection rules for de-
scendants, and transformation rules for the content of the
node itself, or aggregation rules for descendants.

Figure 1 shows a simple example, using schematic tree
representations. Template documents, as well as the input
and output of our approach, are specified in XML. In the
input XML, the roota has two children with tag nameb.

Bothb nodes have children with tag namec and content of
typeinteger, as well as children with text content and tag
named. The user in this example is interested in a summary
of the content of all theb elements, differentiating between
integer andtext nodes, while the path to theb elements
is to be preserved unchanged. For content of typeinteger,
only values below 10 are relevant.

The corresponding template document first specifies the
nodes which should be processed to generate the output,
i. e. a andb nodes, and their path structure. Theb node is
then annotated with a transformation rule, which merges all
suchb nodes into a singleb element in the output (rule 1).
Rules 2, 3, and 4 in the example treat the children of the
newb node. Nodes with content of typeinteger and value
greater or equal to 10 are eliminated (rule 2).Integer
nodes with values less than 10 are aggregated by calculat-
ing the sum (rule 3), and nodes with text content are aggre-
gated by merging and summarizing them with a text sum-
marizer (rule 4). The resulting output XML contains the
original a node, but only oneb node with onec child and
oned child, each summarizing severalc andd nodes of the
original.

Obviously, the order of processing is important for some
rules. In the given example, rule 1 must be applied before
all the other rules, so that rules 2, 3, and 4 will work on
the merged set of children of all theb elements. Similarly,
rule 2 has to be processed before rule 3, because only inte-
gers below 10 should be considered in the sum. Template
trees in our approach are processed in a pre-order direction,
i. e. for a given node, all its rules will be processed before
any rule of any of its children. Thus, rule 1 in the exam-
ple will be invoked before the other rules by default. For
cases like rules 2 and 3, we allow rules to be grouped into
a chain, where each rule in the chain will work on the out-
put of its predecessor. In the example, rules 2, 3, and 4 all
consecutively modify the set of child nodes of the singleb
resulting from rule 1. Thus, all three rules can be combined



into a rules chain1. The resulting order of processing in the
example is shown in figure 1 by the numbering of rules.
The rules chain itself is depicted in the screen shot in the
next section (figure 2), which contains a more detailed rep-
resentation of the template document from this example.

As such a template is a valuable result of the user’s work
and requires time and cognitive effort, ease of reuse is an
important issue. Furthermore, for heterogeneous collec-
tions, it may be necessary to specify multiple templates,
targeting different subcollections. Therefore, we inserted
an additional step between the design, and the application
of templates:template matching. The input to the matching
step is a collection of XML documents, and a set of tem-
plates. Each input document is assigned to every template
which fits its structure and content, i. e. which does not ex-
pect any node (described by tag name and/or type) which is
not found in the input document. Thus, one input document
can either be part of one or several subcollections, or it will
be ignored because no applicable template was found. The
output of the matching step is a set of matched subcollec-
tions, each paired with its corresponding template. These
form the input to thesummarization step, where each sub-
collection is summarized according to its template. In the
following section, we describe the tools we developed to
implement these concepts.

4 Prototype
Our implementation consists of two tools, theTemplate De-
signer, and theAutomatic Summarizer.

4.1 Template Designer
Templates can be created, manipulated, and tested, using
the Template Designer. Figure 2 shows the graphical user
interface for the example in the previous section.

The screen is divided into three parts. The template doc-
ument is shown in the center, either as XML, or graphically
as a tree. Thea andb nodes from the example in figure 1
are specified byNodeDescriptors. The node forb has
two children: theTransformationRule for merging allb
elements (rule 1 of the example), and aNodeDescriptor
without tag name, which will select all children of the new
(merged)b node. This generic node is annotated by a
rules chain containing the remaining rules from the exam-
ple. The first rule in the rules chain filters out allinteger
nodes with values greater or equal to 10. The second rule
will aggregate all remaininginteger values by calculating
their sum. Finally, the third rule will aggregate allstring
nodes by applying aSummarizationModuleRule. Obvi-
ously, for this example, this third rule will take the text
content of the respective nodes and simply merge it.

Templates can be created from scratch, or extracted by
the Template Designer from existing examples. We imple-
mented a simple template extraction strategy, which con-
secutively parses given examples and matches them with
the template under construction. Whenever the extraction
algorithm encounters a non-matching node in an example,
it adds a correspondingNodeDescriptor to the template.
For eachNodeDescriptor, the number of example docu-
ments containing a matching node is determined, so that
the user can prune rare nodes later, if necessary.

Regardless of how a template was created, the user can
edit it further in the Template Designer by e.g. adapting it

1While it is not important that rule 4 be processedafter rules
2 and 3, it does not influence the result either if itis processed in
this order.

to additional example input documents. Thus, it is easy to
reuse existing templates for new XML collections. The left
part of the Template Designer shows the current example
input XML, either as a tree, or as raw XML. The user can
modify the example input, or select a new example input at
any time, and test the template on the new document. On
the right part of the screen, she can then preview the output
which would be generated by applying the current template
to the current example input.

4.2 Automatic Summarizer

The Automatic Summarizer consists of two components,
implementing the two remaining automatic steps, i. e. the
template matching and the summarization itself. The
matcher component reads XML documents from a direc-
tory and templates from another directory and creates the
matched subcollections (i. e. template-subcollection pairs).
The summarizer then processes each matched subcollec-
tion, and writes the resulting new XML documents to
a specified output directory. The summarization of a
matched subcollection entails parsing each input docu-
ment, and in doing so, comparing each element of the
input with NodeDescriptors in the template, and, if a
NodeDescriptor matches an element, transforming the el-
ement according to the specified rules, and then processing
its children. After transforming an XML document or a
collection of XML documents in this fashion, the result is
saved to the specified output directory. The user can moni-
tor and check the process in a log file.

4.3 Implementation

The prototype implementation in Java has been designed
for extensibility. Therefore, most of its components, e.g.
the underlying XML parser, the template extraction strat-
egy, and the matching algorithm, are loaded at runtime,
while the framework uses abstract classes or interfaces.
Currently, we have two parser implementations, based on
DOM, and on STaX2, respectively.

Rules and datatypes are the most basic components used
in both the Template Designer, and the Automatic Sum-
marizer. The characteristics of the individual datatypes
(e.g.integer andstring) are defined in dedicated XML
schemas and implemented in a corresponding Java class hi-
erarchy. Additional datatypes can be added in a straight-
forward way by defining the characteristics and deriving an
implementation from theAbstractDatatype class. Simi-
larly, the available rules are implemented in a correspond-
ing hierarchy of Java classes which can be extended to add
further rules as required.

To leverage the power of other existing summarizer
implementations, these can be plugged into the system
by defining a SummarizationModuleRule, which in-
vokes the external code that has to be encapsulated in
a SummarizationModule. In our example, we used the
Classifier4J summarization module3 for text summariza-
tion.

5 Evaluation
In this section, we present experimental results and discuss
the merits and limitations of our tools. The experiments
were conducted on four different test collections:

2E.g. http://woodstox.codehaus.org
3http://classifier4j.sourceforge.net/



Figure 2: Template Designer

• INEX [Fuhret al., 2004] is a collection of XML full
texts with an average of 1,532 nodes per article. For
the matching experiments, we used only 45 arbitrarily
selected documents with an average file size of 41,249
bytes. For the scalability test (at the end of this sec-
tion), we took 10,000 documents from INEX 2001.

• MathPreprints are 1,002 bibliographical metadata
records in XML-coded Dublin Core with an average
file size of 2,559 bytes, which we extracted from the
corresponding Open Archive4.

• CompuScience5 is a bibliographic database covering
literature in the field of Computer Science and Com-
puter Technology. Our input XML consisted of 11
XML-coded bibliographies, each describing multiple
articles and including abstracts. The average file size
was 29,885,175 bytes.

• Shakespeareis a collection of 37 plays (full texts)
coded in XML, with an average file size of 213,887
bytes.

We ran all experiments for both parser implementations
and achieved consistently better results for STaX. Because
of space limitations, we will therefore concentrate on the
most interesting STaX results and refer to our website for a
more detailed and comprehensive list of results.

5.1 Template generation
As mentioned in section 4, templates can be extracted from
a set of example documents. We therefore investigated the
time for extracting a template, varying the number and the
source of the examples (and thereby the size as well). Com-
paring the results for the different test collections, we made
the following observations:
• The size of the generated template and the time needed

to reach a maximal template depends on the structural
heterogeneity of the collection. For the MathPreprints
collection, the template was complete after 15 exam-
ples, while for INEX, it was still growing linearly after
45 examples.

• The time to generate the template depends linearly on
the number of files to be read, and their sizes. This
was to be expected, as the Template Designer has to
read each example. However, it is encouraging that
the growth is only linear.

4http://www.mathpreprints.com/math/OAI/
5http://www.zblmath.fiz-karlsruhe.de/cs/index.html

For 45 INEX documents with a total size of 1,812 K, just
282 milliseconds were necessary. For 10 CompuScience
documents (288,723 K), the template generation took 3.9
seconds. Thus, the time for extracting a template from a
moderate sample is certainly affordable. As the template
size converges after a certain number of samples, we rec-
ommend to extract a template from a small sample first
(e.g. 20 documents), and consecutively try larger samples,
as long as the resulting template does not match the whole
collection sufficiently well.

5.2 Matching

Matching is the process of assigning each input document
to all templates which match its structure. Thus, it requires
comparing each XML document to each candidate tem-
plate. Figure 3 shows the time required to match a growing
number of input files stemming from 3 different collections
(INEX, Shakespeare, MathPreprints), in relation to a grow-
ing number of templates6.

In these tests, the time required for matching depends
linearly on the number of templates and on the number of
input files. Interestingly enough, however, we saw in fur-
ther experiments that the time does not depend directly on
the sizes of the input files. This is intuitive, as matching
requires detecting structural compliance, and an input file,
regardless how large it is, can be discarded as soon as it
does not match a structural condition. Thus, most input
files were not read completely for the non-matching tem-
plates, and their size could therefore not influence the time
as much as the number of files and templates.

For matching 41 input files with 5 templates, the Au-
tomatic Summarizer already took 15 seconds. If the user
wants to wait for the result of the matching phase (e.g. to se-
lect the most appropriate template for a collection), match-
ing a whole collection (probably more than 41 documents)
to a large number of templates may require too much time.
For these cases, we therefore recommend an interactive ap-
proach instead, where for an unknown collection, only a
small sample is matched to all candidate templates, a larger
sample is matched to the most successful templates of the
first iteration, etc. , until only one or two templates are left.
These can then be used for the whole collection.

6For the STaX parser implementation, the time required does
not change with a growing number of source collections.



Figure 3: Template matching

5.3 Summarization
The summarization step takes a matched collection (a
collection of XML documents, paired with a template)
and summarizes it according to the rules in the template.
Among other experiments, we compared the following two
templates, applied to a growing number of INEX docu-
ments:

• T2 uses a dedicated summarization module imple-
mentation which extracts bibliographic fields from
INEX documents and transforms them into a format
suitable for the Daffodil Digital Library7.

• T3 removes infrequent structure and summarizes text
using the Classifier4J summarizer module.

Figure 4 shows the total output size, the time spent,
and the reduction ratio for 1,000, 2,000, 3,000, 5,000, and
10,0008 INEX documents. T3 produces a larger output
than T2 (and thus, a lower reduction ratio), which is no-
ticeable mainly for the larger collection sizes. Both tem-
plates achieve very good reduction ratios (between 98.42
and 98.93 %).

The maximal duration in minutes (for template T2) is
41, for 10,000 documents. Therefore, while this is not fast
enough for online summarization (e.g. during online clus-
tering of XML documents), the time is affordable in of-
fline summarization scenarios where e.g. a new collection
has been harvested from the Deep Web, and the user wants
to gain an overview at leisure, or where e.g. an institution
wants to give a content-based description of an XML col-
lection it provides.

6 Conclusion and outlook
Summarization of XML documents is not only a valuable
functionality to support query processing and other appli-
cations, but also a task in its own right. We have devel-
oped a template-based approach to XML summarization,
allowing the user to specify which elements of XML docu-
ments are relevant, and how they should be summarized.
Template creation and reuse is supported by an interac-
tive graphical tool, the Template Designer, where the user

7http://www.daffodil.de
8The slightly smaller numbers of files in the figure are the

number of input files which were not rejected as non-compliant
to one of the two templates.

can modify templates and/or example input documents and
preview the effect immediately. Templates can be created
manually from scratch, or they can be automatically ex-
tracted from a set of example documents, to be fine-tuned
later. Given an existing set of templates, and a collection to
be summarized, the Automatic Summarizer tool first cre-
ates subcollections by assigning each input document to
those templates which match its structure, and then summa-
rizes the resulting subcollections automatically, using their
assigned templates. Experiments on the INEX collection
(among others) show the applicability of our approach for
fast offline summarization, although the effort in time is yet
too high for online applications which would require sum-
marization on the fly.

Although we have conducted a considerable number of
experiments already, only some of which could be pre-
sented here, there are still some open questions. In par-
ticular, for the template generation and matching function-
alities, we need to run large-scale experiments to determine
their maximal capacities in terms of input size, if they have
such a limit, regardless of processing time. Furthermore,
we would like to compare our results with the computation
times and compression ratios in previous work. This will
entail additional experiments on their respective test collec-
tions.

To ensure the usability of our tools, we will also need
to conduct user experiments, first to improve the graphical
user interface, and then to assess the user satisfaction. Af-
ter these preliminary steps to make our set of tools usable in
a real-life working environment, the most interesting ques-
tion will be if our template-based set of tools will really
lead to a lesser (i. e. improved) workload for knowledge
workers and other users.

References
[Cannataroet al., 2002a] Mario Cannataro, Carmela

Comito, and Andrea Pugliese. SqueezeX: Synthesis
and compression of xml data. InITCC, pages 326–331,
2002.

[Cannataroet al., 2002b] Mario Cannataro, Antonella
Guzzo, and Andrea Pugliese. Knowledge manage-
ment and XML: derivation of synthetic views over
semi-structured data. SIGAPP Appl. Comput. Rev.,
10(1):33–36, 2002.



Figure 4: Summarizing INEX

[Comaiet al., 2004] Sara Comai, Stefania Marrara, and
Letizia Tanca. XML document summarization: Using
XQuery for synopsis creation. InDEXA Workshops,
pages 928–932, 2004.

[Fuhret al., 2004] Norbert Fuhr, Saadia Malik, and Mou-
nia Lalmas. Overview of the INitiative for the Evalua-
tion of XML retrieval (INEX) 2003. In Norbert Fuhr,
Mounia Lalmas, and Saadia Malik, editors,INitiative
for the Evaluation of XML Retrieval (INEX). Proceed-
ings of the Second INEX Workshop. Dagstuhl, Germany,
December 15–17, 2003, pages 1–11, March 2004.

[Liefke and Suciu, 2000] Hartmut Liefke and Dan Suciu.
XMill: an efficient compressor for XML data. In Wei-
dong Chen, Jeffrey Naughton, and Philip A. Bernstein,
editors, Proceedings of the 2000 ACM SIGMOD. In-
ternational Conference on Management of Data, pages
153–164, New York, June 2000. ACM Special Interest
Group on Management of Data, ACM.

[Lim et al., 2002] L. Lim, M. Wang, S. Padmanabhan,
J. Vitter, and R. Parr. XPathLearner: an on-line selftun-
ing markov histogram for XML path selectivity estima-
tion. In Proceedings of 28th International Conference
on Very Large Data Bases. Morgan Kaufmann, 2002.

[Polyzotis and Garofalakis, 2002a] Neoklis Polyzotis and
Minos N. Garofalakis. Statistical synopses for graph-
structured XML databases. InSIGMOD Conference,
2002.

[Polyzotis and Garofalakis, 2002b] Neoklis Polyzotis and
Minos N. Garofalakis. Structure and value synopses for
XML data graphs, 2002.

[Polyzotis and Garofalakis, 2002c] Neoklis Polyzotis and
Minos N. Garofalakis. XSketch synopses for XML. In
Proceedings of the 1st Hellenic Data Management Sym-
posium, HDMS’02, Athens, Hellas, July 2002.


