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Abstract

Learning and understanding natural lan-
guages are usually considered as independent
tasks in natural language processing. These
two tasks, however, are strongly interrelated
and are presumably unsolvable as separate
problems. In this paper, we present an al-
gorithm called Frequent Rule Graph Miner
(FRGM) that tackles these problems by al-
ternately improving on the language model
and the example interpretations. FRGM
is based on an effective graph-mining algo-
rithm adapted for enumerating frequent rule-
graphs and is applicable to different layers of
natural language processing such as morphol-
ogy, syntax, semantics and pragmatics.

1 Introduction

Learning and understanding natural languages are two
of the most challenging problems in artificial intelli-
gence. One reason why these problems are so hard
is that they can not be solved independent from one
another [3]. Before deeper linguistic knowledge can be
learned from an example sentence, an interpretation of
the meaning of this sentence is required. But the con-
struction of such an interpretation requires that a suf-
ficiently good language model has been learned before.
In this paper, we propose a rule-based approach able
to integrate both the learning and the understanding
steps.

Another problem in natural language processing is
that the different layers of language such as morphol-
ogy, syntax, semantics and pragmatics can not be pro-
cessed separately from one another. There is also no
predefined order in which rules acting on these lay-
ers have to be processed. Consider, for instance, the
problem that grammar is in many cases syntactically
ambiguous, i.e. there are often multiple possible parse
trees for a given sentence. Choosing the most appro-
priate one usually requires semantic and contextual
information [5]. One possible way to overcome this
problem is to provide a common representation scheme
in which all the information needed for a useful inter-
pretation of text can be expressed. In our approach
we chose a powerful class of labeled graphs, called text-
graphs which meets these demands. Text-graphs allow
to represent words, semantic annotations and concepts
as vertices and to put them in relation to each other
by the means of edges.

To represent knowledge in our language model, we
introduce rule-graphs. A rule-graph is a pair A → B,
where A and B are labeled graphs. In this rule-graph,
A is the rule body which is required to occur in a text-
graph before the rule-graph can be applied. When
that happens, B the rule head will be added to the
text graph. Since these rules are based on graphs
they are able not only to recognize a relational pat-
tern, but also to provide a resulting relational pattern
that references the original pattern. The ability to
process relational data is an important trait that dis-
tinguishes rule-graphs from more conventional propo-
sitional rules.

In our approach the task of understanding a given
sentence is performed by inferring an interpretation
from this sentence using a previously learned language
model. This is done by iteratively applying the rules
in the model on a text-graph representation of the
sentence. Hereby, each rule can rely on the informa-
tion that has been added during the previous round
so that more and more information is accumulated in
each round. Ideally, the final interpretation assigns
each word a unique meaning and also describes the
relations between the phrases of the sentence. The
rules are applied in a forward chaining fashion, mean-
ing that we start from the data, and successively apply
the rules. We note that this contrasts the approach
taken by most parsing algorithms, where the starting
point is a predefined goal that these algorithms try
to ”explain” by chaining the rules backwards until a
complete parse tree is found. The other task that we
try to tackle in our approach is to learn the language
model from a set of example text-graphs. To do so, we
formulate the learning task as a problem of finding all
rule-graphs that occur frequent as positive embeddings
and infrequent as negative embeddings in these exam-
ples. In other words we search for rule-graphs that
are as general as possible, but at the same time do not
make too many mistakes. The assumption is that rule-
graphs that occur frequent in the training examples,
will accurately predict the target values on unknown
data, too. To determine the frequency threshold we
use a linear function that requires higher frequency
for larger rule-graphs, because those are less likely to
be correct according to Occam’s razor. If the quality
of the training data is good enough, it makes sense to
set the maximum threshold for negative embeddings
to zero in order to disallow false embeddings. The
forward-chaining property of our rule system allows to
facilitate false parses as negative training examples.

The idea behind our approach is to go through sev-
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Figure 1: The running example

eral cycles of mining (learning) and inference (under-
standing) steps, so that alternately the language model
and the training database are improved (Fig.2). Dur-
ing the first round only very basic rules are learned
from the example database, but those rules are then
applied to the database so that the next mining round
can learn from a richer, better understood set of ex-
amples. Thus, complex training examples can profit
from rules that have been previously learned from sim-
pler examples. Once the model has been sufficiently
trained it can be used to process a new previously
unknown text. The output of this processing step is
solely determined by the training examples that have
been used to train the model.

Model

Mining-Mode

Inference-Mode

Start

Finish

Database

Figure 2: The main routine

For efficiency reasons we store the model in a gen-
eralized version space tree (GVST) as proposed by
Rückert and Kramer [4]. But that means, that we
have to define a unique or canonical form in which to
store the rule-graphs.

Another application area where forward-chaining
based inference has been quite successfully used is ex-
pert systems. Here, however, rules are usually based
on a first order logic representation instead of a graph
based one. The most popular algorithm for matching
such rules is RETE [1].

In production rule systems runtime efficiency has al-
ways been a critical issue. Fortunately, new advances
in the field of graph-mining such as GVSTs, allow to
improve the performance not only of the rule-mining

step but also for the rule-application step. The FRGM
algorithm itself is based on a basic graph-mining algo-
rithm similar to the gSpan [6] algorithm. The task
of such an algorithm is to enumerate all frequent sub-
graphs in a database of graphs. A new technique that
we employ in our algorithm are the refinement candi-
dates, which simplify the generation of rule-graph re-
finements. Another approach concerned with mining
for rule-graphs is the Subdue system [2]. Their graph
grammar rules however replace (compress) parts of the
instance graphs instead of adding new subgraphs.

2 A running Example

Before we go into further details, we want to illus-
trate our algorithm on a simple example sentence. We
start the example by transforming the sentence ”the
dog chased the cat” into a text-graph where each word
has a corresponding vertex. The correct sequence of
words in the text-graph is maintained by edges spec-
ifying the previous word relations between the ver-
tices. In this step, additional edges and vertices can
be introduced to represent morphological features or
long ranging word relations. In addition to the in-
put data (marked by continuous lines), we need to
specify the learning target (marked by dotted lines)
as a set of additional vertices and edges. The learning
target are those elements that we hope to predict on
unknown data. According to Fig.2 processing would
start with the rule application (inference) step, but
since the model is still empty we can directly jump to
the mining step. In mining mode the algorithm at-
tempts to find all rule-graphs that occur frequently as
positive example embeddings and at the same time in-
frequent as negative example embeddings. Positive ex-
ample embeddings are those where the complete rule,
body and head, can be embedded into the example
text-graph such that the edges, labels and roles (IN-
PUT⇔ BODY, TARGET⇔ HEAD) match together.
A positive example embedding in Fig.1 is for instance
the embedding {(1 7→ 1), (2 7→ 6)} of rule-graph G1

r
in text-graph G1

t . Example embeddings where only an
embedding of the rule-body exists, but not of the rule-



head are counted as either negative or neutral. This
depends on whether the rule-head and the target part
of the text-graph have common labels. Consider for
instance the embedding {(1 7→ 4)} of the rule-body
of rule-graph G1

r into the text-graph G1
t . This em-

bedding is negative, because the label A is present as
the label of a target vertex (e.g. Vertex 6) but there
is no target vertex corresponding to the head of the
rule-graph. The intention behind this scheme is to
implicitly define the negative training examples. This
scheme, however, demands that the target vertices of a
certain label have always to be completely provided for
a given text-graph since otherwise valid occurrences of
a rule would be counted as negative ones.

Now, let us assume that the rule-graphs shown in
model M meet the threshold demands and are there-
fore the results of the first mining round. These
rules are then used in the inference step to create a
first interpretation of the example sentence. This is
done by applying all rules in the model on all occur-
rences of their bodies in the database. The interpre-
tation, though not perfect yet, already delivers some
additional information to the original sentence (see
D′, G1

t ). These informations further the next min-
ing round so that more interesting and complex rules
can be found (see M′

). The rule-graph G4
r can not

be found earlier because the vertices labeled A (arti-
cle) and N (noun) have not been there before and the
patterns ”the dog” and ”the cat” were too infrequent.

3 The Text- and Rule-Graphs

In this section, we define the text- and rule-graphs as
well as some necessary notations related to them.

A text-graph Gt is a directed acyclic graph (DAG)
consisting of a 5-tuple (Vt, Et,Σ, λt, αt), where Vt =
{v1, ..., vn} is a set of vertices, Et ⊆ Vt × Vt is a set of
edges, Σ is an alphabet, λt : Vt ∪Et → Σ is a labeling
function mapping the vertices and edges to Σ, and αt

is a function that assigns to each vertex and edge either
{INPUT}, or {TARGET}, or {INPUT ,TARGET}.

The target elements in text-graphs play an impor-
tant role in that they determine the future structure
and labeling of the learned rules. Therefore, they
also determine the final processing results on new sen-
tences.

An important feature of text-graphs is that during
inference they can be enriched by additional informa-
tion represented by new vertices and edges. In order to
avoid redundancy (i.e. the problem that two vertices
represent the same information) we define a merging
scheme that allows to eliminate those redundant ver-
tices. Such a merging scheme requires that all vertices
except the initial ones can uniquely be identified by
their labels and their outgoing edges.

Vertices of a text-graph can be interpreted in a dual
way as objects and as predicates relating to other
objects. Therefore, the merging scheme allows to
uniquely identify objects even if multiple rule-graphs
recognize the same object.

Let Gt = (Vt, Et,Σ, λt, αt) be a text-graph. Two
vertices vi, vj ∈ Vt are mergeable if and only if (iff) (i)
both have the same label, i.e., λt(vi) = λt(vj) , (ii)
there are edges ei = (vi, v), ej = (vj , v) ∈ Et pointing
to some common vertex v ∈ Vt such that λt(ei) =
λt(ej), (iii) there are no edges ei = (vi, vx), ej =

(vj , vy) ∈ Et pointing to different vertices vx and vy

such that λt(ei) = λt(ej), and (iv) there is no edge
(vi, vj) or (vj , vi) connecting these two vertices. To il-
lustrate this, consider the vertices A1 and A2 in Fig.3.
Here, A1 and A2 are mergeable in text-graph ii), but
not in the text-graphs i), iii) and iv).
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Figure 3: Mergeable (ii) and non-mergeable (i,iii,iv)
vertices.

Let vi, vj ∈ Vt be two mergeable vertices of a text-
graph Gt = (Vt, Et,Σ, λt, αt). The graph derived
from Gt by merging the vertices vi, vj ∈ Vt, denoted
β(Gt, vi, vj), is a text-graph obtained from Gt contain-
ing a new vertex vk, that replaces the vertices vi and
vj . Edges that were either connected to vi or vj are
now connected to vk. The same applies to labels. The
roles of vi and vj are combined by a set union.

A canonical text-graph Gt = (Vt, Et,Σ, λt, αt) is a
text-graph containing no two vertices vi, vj ∈ Vt that
are mergeable.

Any non-canonical text-graph Gt can be trans-
formed into a canonical text-graph by successively ap-
plying the merge operator β on all mergeable vertices
in Gt. We note that the order of the merge operator
leading to canonical text-graphs is arbitrary. This is
stated by the following proposition.

Proposition 1 For each text-graph it holds that its
canonical text-graph is unique.

A rule-graph Gr is a connected DAG consisting of
a 5-tuple (Vr, Er,Σ, λr, αr), where Vr = {v1, ..., vn}
is a set of vertices, Er ⊆ Vr × Vr is a set of edges,
λr : Vr ∪ Er ↪→ Σ is a partial labeling function, and
αr is a function that assigns to each vertex and edge
either {HEAD} or {BODY }.

In Fig. 2:G1
r,... ,G4

r we see that in a rule-graph all
vertices and edges have a role label that assigns them
a role as rule head (marked by a dotted line) or rule
body (marked by a continuous line).

Given a rule-graph Gr = (Vr, Er,Σ, λr, αr), the rule
body Gbody

r of Gr is the graph Gbody
r = ({vr ∈ Vr |

BODY ∈ αr(vr)}, {er ∈ Er | BODY ∈ αr(er)},Σ, λr,
{Vr∪Er → {BODY }}) of Gr whose vertices and edges
have the role BODY assigned to them. In a similar
way, the rule head Ghead

r of Gr is the graph Ghead
r =

({v ∈ Vr | αr(v) ⊆ {HEAD}}, {e ∈ Er : αr(e) ⊆
{HEAD}},Σ, λr, {Vr ∪Er → {HEAD}}) of Gr whose
vertices and edges have only the role HEAD assigned
to them.

The role mapping function δ is a bijection, mapping
the rule-graph roles onto the text-graph roles in the
following way: {(∅ 7→ ∅), ({BODY } 7→ {INPUT}),
({HEAD} 7→ {TARGET}), ({BODY ,HEAD} 7→
{INPUT ,TARGET})}

Let Gt = (Vt, Et,Σ, λt, αt) be a text-graph and
Gr = (Vr, Er,Σ, λr, αr) be a rule-graph. An isomor-
phic embedding of Gr into Gt is a bijection ϕ : Vr → Vt

preserving the edges, labels, and roles with respect to
δ, i.e.,
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Figure 4: A syntactic disambiguation example 2

• for every vi, vj ∈ Vr, (vi, vj) ∈ Er iff (ϕ(vi), ϕ(vj)) ∈ Et,

• λr(v) =
{

λt(ϕ(v)) if λr(v) is defined
∅ otherwise

for every v ∈ Vr,

• λr((vi, vj)) =
{

λt((ϕ(vi), ϕ(vj))) if λr((vi, vj)) is defined
∅ otherwise

for every (vi, vj) ∈ Er,
• δ(αr(v)) ⊆ αt(ϕ(v)) for every v ∈ Vr, and
• δ(αr((vi, vj))) ⊆ αt((ϕ(vi), ϕ(vj))) for every (vi, vj) ∈ Er.

The isomorphic embedding describes the occurrence
of either a rule body or a complete rule-graph, in a
text-graph. Take for instance the rule-graph G4

r in
model M′

and the text-graph G1
t in database D′

in
our running example, then there exists an isomorphic
embedding {(1 7→ 1), (2 7→ 2), (3 7→ 6), (4 7→ 7), (5 7→
9)}.

A database is a set of example text-graphs and a
model a set of rule-graphs.

4 The Graph Inference and the Graph
Mining Problem

Before we explain the graph inference problem in detail
we would like to give a more complex example (Fig.4)
that shows how a syntactic disambiguation can be re-
alized with graph inference. Given are two example
sentences where the prepositional phrase (i.e. ”with
...”) relates either to the noun phrase ”the rat” or to
the verb ”poisoned”. These sentences have already
been partially processed so that some additional infor-
mation is already given. The example now shows how
new information (marked by dotted lines) is added to
the text-graphs by applying the rule-graphs c), d), and
e). In the example, rule-graph c) adds another noun
phrase vertex to the text-graph a), which refers to the
phrase ”the rat with white hair”. This rule-graph is
not a pure grammar rule, since it also takes the seman-
tic information into account that a rat is an animal
and that hair are a body part. Without these infor-
mation the rule would not be able conclude that the
noun phrase ”the rat” together with the prepositional
phrase ”with white hair” form a larger noun phrase.
It is obvious that the phrase ”the rat with arsenic”

in b) does not form a meaningful noun phrase. The
next rule-graph adds the concept ”C:poisoned” to both
text-graphs1 which represent the respective predicate
of these sentences. The last rule-graph adds only a
single edge, describing that arsenic has been used for
poisoning.

Now, we formally define the graph inference prob-
lem, i.e. the problem of how rule-graphs are used to
derive interpretations from sentences.

Let Gt = (Vt, Et,Σ, λt, αt) be a text-graph and
Gr = (Vr, Er,Σ, λr, αr) be a rule-graph containing the
subgraphs Ghead

r = (V head
r , Ehead

r ,Σ, λhead
r , αhead

r ) and
Gbody

r such that Gbody
r can be embedded into Gt via

subgraph isomorphism. Let V
′

t be a new set of vertices
such that Vt ∩ V

′

t = ∅ and |V head
r | = |V ′

t |. Let further
ϕbody : V body

r → Vt be a bijection corresponding to
such an embedding of Gbody

r , ϕhead : V head
r → V

′

t be a
bijection, and ϕ = ϕhead ∪ ϕbody be the combined bi-
jection from Vr to Vt∪V

′

t . The graph derived from Gt

by Gr and ϕbody, denoted τ(Gr, Gt, ϕ
body), is a text-

graph Gτ
t = (V τ

t , Eτ
t ,Σ, λτ

t , ατ
t ), where

• V τ
t = Vt ∪ V

′

t ,

• Eτ
t = Et ∪ E

′

t such that
E

′

t = {(ϕ(vi), ϕ(vj)) | ∀(vi, vj) ∈ Ehead
r },

• λτ
t (x) =


λt(x) if x ∈ Vt ∪ Et

λhead
r (ϕ−1(x)) if x ∈ V

′

t

λhead
r ((ϕ−1(vi), ϕ−1(vi))) if x = (vi, vj) ∈ E

′

t

• ατ
t (x) =

{
αt(x) if x ∈ Vt ∪ Et

{INPUT} if x ∈ V
′

t ∪ E
′

t

Given an occurrence of a rule body in a text-graph,
the rule inference operator τ is used to apply this rule
on the text-graph. That means, a copy of the head of
this rule will be added to the text-graph. Head edges
linking to the body of the rule will be transfered using

1Note that rule-graph d) can be applied twice on text-
graph a).

2X: unlabeled vertex; NP: noun phrase; PP: preposi-
tional phrase; V: verb; pp: previous phrase; sp: subphrase;
N: main noun; A: article. We note that edges determining
the range of phrases and the relations between words have
been omitted.



the embedding of the rule body. To illustrate this,
consider the text-graph G1

t in database D′
and the

rule-graph G4
r in model M′

in our running example
(Fig.2). Let {(1 7→ 4), (2 7→ 5), (3 7→ 10), (4 7→ 8)}
be an embedding of this rules body in the text-graph.
The result of the inference operation is shown in v),
that is, a new vertex labeled NP has been added.

Using the above notation of rule inference opera-
tor τ , we are now ready to define the model infer-
ence operator. This operator, denoted π is used to ap-
ply all rule-graphs of a model on a text-graph and to
combine the results afterwards. Multiple additions of
the same information are prevented by the text-graph
merging scheme. For a canonical text-graph Gt =
(Vt, Et,Σ, λt, αt) we define Gx,y

t = τ(Gx
r , Gt, ϕ

body
y ) for

all Gx
r ∈M 1 and all isomorphic embeddings ϕbody

y of
Gbody

r into Gt. The text-graph π(Gt,M) derived from
the canonical text-graph Gt byM is π(Gt,M) = (Vt∪
V 1,1

t ∪V 1,2
t ∪...∪V n,m

t , Et∪E1,1
t ∪E1,2

t ∪...∪En,m
t ,Σ, λt∪

λ1,1
t ∪ λ1,2

t ∪ ... ∪ λn,m
t , αt ∪ α1,1

t ∪ α1,2
t ∪ ... ∪ αn,m

t ).
Given a text-graph Gt and a model M, the graph

inference problem is to find a new text-graph G
′

t such
that G

′

t can be derived by a sequence of model infer-
ence operator applications.

The basic assumption underlying the learning pro-
cess in our approach is that predictive rules will occur
often as positive embeddings in the training database
and at the same time seldom as negative embeddings.
In contrast to other supervised learning systems we
use the notation of positive and negative embeddings
instead of examples, because the target we are try-
ing to predict is a subgraph within an example rather
than a label for the whole example. Therefore, a single
text-graph can contain several positive and negative
embeddings of a rule-graph.

Before formulating the graph-mining problem let us
first define the threshold function µ(Gr). Given a rule-
graph Gr and real numbers a and b, the threshold
function is a linear function of the form µ(Gr) = |Gr|∗
a + b.

Let D be a database of example text-graphs. Let
count+(Gr) be the number of embeddings of the com-
plete rule-graph Gr (i.e. HEAD + BODY). Let
count−(Gr) be the number of negative embeddings of
Gr, i.e. the number of rule body embeddings in those
examples that contain the labels of all head vertices
of Gr as labels of target vertices minus the number
of complete rule embeddings in those examples. The
rule-graph mining problem is to find a model M =
{Gr | count+(Gr) ≥ µ(Gr) ∧ count−(Gr) < freqmin}
containing all positively frequent rule-graphs that oc-
cur in D.

5 Generalized Version Space Trees
and the Canonical Form of Rule
Graphs

As already mentioned in the introduction, we use the
Generalized Version Space Tree (GVST) structure to
efficiently store our rule-graphs in a model. The main
idea behind the GVST is to decompose each rule-graph
into a sequence of primitive graph refinements. The

1Note that x here uniquely identifies a rule-graph ofM

original rule-graph can then be reconstructed by fol-
lowing the path from the root node, and adding each
refinement on the path. A rule-graph that is not in
canonical form needs to be transformed to a canonical
form prior to storing it in the GVST. This is necessary
to prevent that duplicates of the same rule-graph are
stored in the GVST.

Basically, the canonical form of a graph is a unique
sequential ordering of its vertices. In general the ver-
tices of any graph could be represented in n! differ-
ent sequences whereby n is the number of vertices.
By using a canonical form we can prevent that we
have to consider all those different orderings of what
is essentially the same graph. Designing a canonical
form definition, however, implies several constraints
that we need to take care of. Firstly, it must be pos-
sible to sequentially construct a connected canonical
graph without having to rely on unconnected interme-
diate graphs. Secondly, an order among the syntactic
variants of a rule-graph must be defined. And thirdly,
rule-graphs differ from usual graphs in that they con-
sist of two parts, the head and the body. For our pur-
poses, we need to calculate the embeddings not only
for the entire rule-graph, but also for the body part
only. For this reason it is necessary to separate the
head and body vertices in two ranges. Therefore, any
canonical rule-graph begins with vertices of the body
part, followed by the vertices of the head part.

The following definitions describe the canonical form
of rule-graphs by defining a set of interdependent com-
pare operators. The comparison starts with the edges
and their labels, goes over the vertices and finally com-
pares whole rule-graphs. The least rule-graph accord-
ing to this order is the canonical one.

Given two elements xi and xj , the relation xi ≺R xj

is true iff: (BODY ∈ αr(xi) ∧ BODY /∈ αr(xj))
Given two elements xi and xj , the relation xi ≺L xj

is true iff the label λ(xi) of element xi has a lexico-
graphically lower value than the label λ(xj) of xj .

Given two elements xi and xj , the relation xi ≺N xj

is true iff: ((xi = ∅) ∧ (xj 6= ∅))
In the following we use the notation

(a1 ≺X1 b1) B (a2 ≺X2 b2) B ... B (an ≺Xn
bn)

as shorthand for:
if (a1 ≺X1 b1) ∨ (b1 ≺X1 a1) then return (a1 ≺X1 b1)
else if (a2 ≺X2 b2) ∨ (b2 ≺X2 a2) then return (a2 ≺X2 b2)
...
else if (an ≺Xn

bn) ∨ (bn ≺Xn
an) then return (an ≺Xn

bn)

The ea ≺E eb relation defines an order on the edges
ea = (vi, vx) and eb = (vj , vy) 1, where x = y . The
ei ≺E ej relation is true iff: (ea ≺R eb) B (i < j) B
(ea ≺L eb)

The vi ≺V E vj relation defines an order on the ver-
tices vi and vj with regard to their adjacent edges.
The edges of these vertices are represented by two se-
quences Ti = (ei

1, e
i
2, ..., e

i
m) and Tj = (ej

1, e
j
2, ..., e

j
n).

Ti = (ei = (vx, vy) ∈ Er | ei �R vi, (x < i ∨ y <
i), (x = i ∨ y = i)) These sequences are ordered ac-
cording to ≺E . The vi ≺V E vj relation is true iff:
(ei

1 ≺E ej
1)B(ei

2 ≺E ej
2)B...B(ei

n ≺E ej
n)B(|Ti| < |Tj |)

where n = min(|Ti|, |Tj |)

1Note that the vertices vx and vy may belong to two
different variants of the structurally same rule-graph



Given two vertices vi and vj , the relation vi ≺V vj

is true iff: (vi ≺R vj) B (vi ≺V E vj) B (vi ≺L vj)
Let vi, vj ∈ Vr be two vertices in a rule-graph Gr =

(Vr, Er,Σ, λr, αr). The rule-graph Gr is ordered iff:
∀vi, vj ∈ Vr : (vi ≺V vj)↔ (i ≤ j)

Let Gi
r and Gj

r be two rule-graphs that are ordered.
Let further be vi

x a vertex of rule-graph Gi
r and vj

x be
a vertex of rule-graph Gj

r respectively.
The Gi

r ≺G Gj
r relation is true iff: ((vi

1 ≺V vj
1) B

(vi
2 ≺V vj

2) B ... B (vi
n ≺V vj

n)) where n = |Vr|.
Let L be the set of all ordered syntactic variants (i.e.

all possible sequential orderings of vertices in a graph
that are ordered) {G1

r, G
2
r, ..., G

n
r } of a rule-graph Gr.

The least entry in L according to ≺G is the canonical
form1 of rule-graph Gr. Gcanonical

r = {Gi
r ∈ L | ∀Gj

r ∈
L : Gi

r ≺G Gj
r}

6 The Algorithm

The main routine of the FRGM algorithm, consists of
just two loops which alternately call the core routine
in inference and mining mode (see Fig.2).

Input: D : A database of canonical text-graphs
M : The initial model

Output: D′
: The result database

M : The result model

1: procedure FRGM(D,D′
,M)

2: do
3: D′ ← D,D′′ ← D
4: do
5: FRGMCore(D′

,D′′
, Root(M), INFERE )

6: D′ ← Canonize all text-graphs in D′′

7: while D
′
changed and not max iter.

8: FRGMCore(D′
, ∅,Root(M),MINE )

9: whileM changed and not max iter.
10: end procedure

In rule inference mode the FRGM core routine (see
appendix) takes a database D and a model M as in-
put and computes a new database D′

by applying all
the rules in M on all text-graphs in D. In rule min-
ing mode the algorithm only takes a database D with
example text-graphs as input and computes a new or
improved modelM containing all rules that meet the
required frequency thresholds.

The FRGM is designed on the basis of three data
structures. The first one is the GVST which is used to
efficiently store the rule-graphs and their associated
refinements. The second one is the embedding tree.
A root path in this embedding tree describes the
embedding of a rule-graph in the same way as a
root path in the GVST describes the rule-graph
itself. Each rule-graph node in the GVST can have
several associated embedding nodes describing all
occurrences of this rule-graph in the database. The
third data structure are the refinement candidates
(RCs). A RC describes a possible extension to an
embedded rule-graph and is stored in an ordered set
associated with the respective embedding. A RC
{INPUT ,TARGET} × {INPUT ,TARGET} × Vr ×
Et × Vt is determined by the vertex roles, the starting
point within the rule-graph, and an edge and a vertex
in the text-graph. The order ≺C on RCs is defined
as follows. Given two RCs ci = (Ri

v, Ri
e, v

i
r, e

i
t, v

i
t)

1The implementation of the canonical verification algo-
rithm can be found at: http://www.ais.fhg.de/∼lmolz

and cj = (Rj
v, Rj

e, v
j
r , e

j
t , v

j
t ), ci ≺C cj is true iff:

if (vi
r = ∅) ∨ (vj

r = ∅) return (Ri ≺R Rj) B (vi
r ≺N vj

r) B (vi
t ≺L vj

t )
else return
(Ri

v ≺R Rj
v) B (Ri

e ≺R Rj
e) B (vi

r ≺V vj
r) B (ei

t ≺L ej
t ) B (vi

t ≺L vj
t )

By using RCs we avoid that refinements have to be
considered that would lead to unordered (see def-
inition in section 5) and therefore non-canonical
rule-graphs. Of coarse, there may be more than one
ordered variant of any given rule-graph. Thus, we still
need to perform a complete canonical verification.

The FRGMCore routine starts with an initial
database scan (ln:2-3) where for each text-graph in
D an empty root embedding node is created. In the
next step the algorithm calls the RC generation sub-
routine, where for all embeddings associated with the
current rule-graph Gr the RCs are computed. These
RCs are then converted to actual refinements (ln:5-7).
The next section (ln:8-13) is the recursive step of the
algorithm leading to the next level in the GVST. In
line:9 the frequency threshold is checked. In inference
mode a frequency of at least 1 is required while iterat-
ing the body parts of the rule-graphs. No embeddings
are required while iterating the head parts of the rule-
graphs, since those are the parts of the rules that we
are going to add to the text-graphs. In inference mode
the last step is to apply the rule-graph Gr on all oc-
currences in D (ln:14-15).

The routine GenerateRCs(Gr) is responsible for the
creation of RCs for the embeddings. For the root level
only initial RCs are created that do not yet have an
edge or a starting point in the rule. All later RCs start
from an existing rule-graph and describe a possible
extension by an edge and a vertex. RCs for edges that
already exist in the rule-graph are filtered out (ln:8).

The refinement operator converts the RCs into new
refinements and embeddings for these refinements.
Furthermore, the RCs are partially relayed (ln:13) to
this next level of embedding nodes. That is, only those
RCs are relayed that are greater than the current RC
according to ≺C because all other RCs would lead to
non-canonical rule-graphs, anyway.

7 Conclusions and Future Work

In this paper we have introduced text-graphs as a
new way to represent text interpretations consisting
of syntactic and semantic annotations as well as inter-
relating concepts. Furthermore, we have presented the
FRGM algorithm which is able to extract knowledge
from text-graphs and to apply it to new text-graphs.
Our first experimental results suggest that the expres-
siveness of text- and rule-graphs allows to process ef-
fectively even complex linguistic tasks.

At the moment, we have only some preliminary ex-
perimental results. Using a generative grammar, in
our first experiments we have created a test corpus
consisting of 320 example datasets. On this corpus
we were able to enumerate the 312378 frequent (given
µ(Gr) = |Gr| ∗ 2 + 6) rule-graphs in 56 seconds (on an
AMD Athlon XP 2000+). For this test we have lim-
ited the number of unlabeled rule-graph vertices to 3
because otherwise the number of frequent rule-graphs
grows too large. We are going to perform experiments
on large, real-world text datasets as well.

One interesting extension to the FRGM algorithm
would be to introduce non-monotonic inference. A dis-



advantage of the threshold based rule-graph evalua-
tion is that large rule-graphs require high frequencies
and therefore many training examples. One way to
overcome this problem could be the use of learning
patterns. A learning pattern is a subgraph of both a
text-graph and a candidate rule-graph which itself is
embedded in the text-graph, too. Here, the learning
pattern acts as a kind of template for this candidate
rule-graph and allows to reduce the required minimum
frequency threshold for the rule-graph.
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Appendix - The Algorithm

Input: D : A database of text-graphs
Gr : The root rule ofM
mode : The mode {INFERE ,MINE}

Inference Mode Output: D′
: The result database

Mining Mode Output: The improved model M

1: procedure FRGMCore(D,D′
, Gr,mode)

2: if Gr is the root node of the GVST then
3: Emb(Gr)← {(∅, Gt, (∅, ∅)) | ∀Gt ∈ D}
4: GenerateRCs(Gr)
5: for all embedding nodes emb = (embparent, Gt, (vr, vt)) ∈ Emb(Gr) do
6: for all refinement candidates cit ∈ RefCand(emb)
7: RefinementOperator(Gt, Gr, emb, cit,mode)
8: for all GVST nodes (ref = (vr, v

′

r, lv, le, rv, re), G
′

r) ∈ Ref(Gr) do
9: if (mode = MINE ∧ (count+(G

′

r) ≥ µ(G
′

r)))∨
(mode = INFERE ∧ ((count+(G

′

r) > 0) ∨ (rv = HEAD ∧ (vr = ∅ ∨ re = HEAD)))) then
10: if count−(G

′

r) ≤ freqmin then activate G
′

r

11: Fill the refined rule-graph G
′

r based on its parent Gr and the refinement ref .
12: if G

′

r is in its canonical form then FRGMCore(D,D′
, G

′

r,mode)
13: end if
14: end for
15: if mode = INFERE and Gr is active then
16: Apply the rule Gr on all embeddings in Emb(Gr ) and add the results to D′

.
17: end procedure

1: procedure GenerateRCs(Gr)
2: if mode = INFERE then R← {{INPUT}} else R← {{INPUT}, {TARGET}}
3: for all (embparent, Gt, (vr, vt)) = emb ∈ Emb(Gr) do
4: if Gr is the root node in the GVST then
5: C ← {(Rv, ∅, ∅, ∅, v

′

t) | ∀v
′

t ∈ Vt(Gt),∀Rv ∈ R : Rv ⊆ αt(v
′

t)}
6: else
7: C ← {(Rv, Re, vr, et, v

′

t) | ∀et = (vt, v
′

t) ∈ Et(Gt), Rv ∈ R,Re ∈ R : Rv ⊆ αt(v
′

t), Re ⊆ αt(et)}
8: C ← {(Rv, Re, vr, et, v

′

t) ∈ C | ¬∃er = (vr, v
′

r) ∈ Er(Gr) : v
′

t = ϕ(v
′

r)}
9: end if
10: RefCand(emb)← RefCand(emb) ∪ C
11: end for
12: end procedure

ϕ : Is an isomorphic embedding derived from the root path of emb. (See section 3)
δ : Is the role mapping function (See section 3)
cit = (Rv, Re, vr, et, vt)

1: procedure RefinementOperator(Gt, Gr, emb, cit,mode)
2: v

′

r ← ϕ−1(vt)
3: if v

′

r = ∅ then v
′

r ← new Vertex
4: else if (vr �V v

′

r) then return
5: ref ← (vr, v

′

r, λt(vt), λt(et), δ−1(Rv), δ−1(Re))
6: G

′

r ← {G
′

r | ∃(ref, G
′

r) ∈ Ref (Gr)}
7: if (mode = MINE ) ∧ (G

′

r = ∅) then
8: G

′

r ← new RuleGraph
9: Ref (Gr )← Ref (Gr ) ∪ {(ref, G

′

r)}
10: end if
11: emb

′ ← (emb, Gt, (v
′

r, vt))
12: Emb(G

′

r )← Emb(G
′

r ) ∪ {emb
′}

13: if vr 6= ∅ then RefCand(emb
′
)← {c ∈ RefCand(emb) | cit ≺C c}

14: Count the embedding emb
′
as occurrence of G

′

r.
15: end procedure


