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Abstract

We present an approach for solving constraint
nets occurring in spatial inference using methods
of Machine Learning.

In contrast to qualitative spatial reasoning we use
a metric description. Relations between pairs of
objects are represented by parameterised homo-
geneous transformation matrices and numerical
(nonlinear) constraints on the parameters. For
drawing inferences we have to multiply the ma-
trices and to propagate the constraints. The re-
sulting constraint net consists of equations and
inequalities containing trigonometric functions,
which can be solved analytically only in rare
cases. So we employ decision tree learning for
learning and solving the constraints. We also
use the decision trees for giving additional con-
straints for inferring a spatial relation from a set
of other relations.

1 Introduction

The ability to draw conclusions is one of the most essen-
tial cognitive skills of humans. Especially in the context
of spatial reasoning it is essential, not only for humans but
also for mobile agents, to autonomously acquire additional
information from a given spatial description, i.e. to infer
relations not explicitly mentioned in the given description.
This task is related to construct appropriate cognitive maps
from a text describing a spatial configuration.

Given the example description (Fig. 1), the spatial rela-
tions right (steffi, table) and right (table,
spots) can be extracted from the text. Since the descrip-
tion does not yield any information about the size and ori-
entation of the described objects, there are several corre-
sponding cognitive maps. In Fig. 2 two possible depictions,
derived from the given facts, are shown'.

Steffi is entering the room to feed her cat ‘Spots’.
She is looking around. To her right is a table. After
looking further she finds her cat standing to the right
of the table.

Figure 1: Example text describing a spatial scenario

We use a metric approach for the inference procedure
([Wiebrock et al., 2000]) instead of qualitative approaches

'Tmagine the table as a desk, so it has an intrinsic front side.
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Figure 2: Appropriate cognitive maps to the example sce-
nario

to spatial reasoning ([Cohn and Hazarika, 2001]). The se-
mantics of the spatial relations is given by homogeneous
transformation matrices and constraints on the variables.
With each object we associate a coordinate system, which
is anchored in the centre of the object so that the x-axis is
directed to the right and the y-axis points to the front of
the object. As shown in [Wiebrock er al., 2000], inference
of a relation between two objects is done by propagating
the constraints. Note, that we use an intrinsic interpretation
of the spatial relations, i.e. the first object in the relation is
the reference system for the second object. So we have to
change the reference system while propagating constraints.
This is done by multiplying the transformation matrices.
Thus the resulting constraints contain trigonometric func-
tions and inequalities and we can solve them analytically
only in rare cases. Instead we apply methods of Machine
Learning to spatial inference.

As shown in Fig. 2, there are many different interpre-



tations of a given spatial description?. These maps may

be even contradictory to each other. This is due to the
intrinsic interpretation of the relations. Every conclusion
depends on the relative position and orientation of the co-
ordinate systems and objects, resp. In order to draw infer-
ences we will usually need to give some additional con-
straints. These additional constraints are added to the
premise, i.e. the given spatial description, and ensure the
validity of the conclusion (cf. Sect. 3).

In this paper we show how to find these constraints using
methods of Machine Learning, particularly an algorithm
using CALS5-decision trees presented in [Gips et al., 2002].

First we introduce spatial descriptions and the seman-
tics of the spatial relations in Sect. 2. Thereafter we sketch
the inference mechanism and introduce methods of Ma-
chine Learning for finding possibly necessary additional
constraints for inference. In Sect. 4 we present results of
our implemented inference algorithm and compare them
with theoretical predictions. Finally, we state conclusions
(Sect. 5).

2 Semantics of the Spatial Relations

As already mentioned, in contrast to qualitative techniques
for spatial reasoning ([Cohn and Hazarika, 2001]), we use
a metric approach known from the area of robotics.

With every object we associate a coordinate system,
which is centered in the object, so that the x-axis corre-
sponds to the right-direction and the y-axis to the front, and
its shape and size. Spatial relations between pairs of objects
are represented by their transformation matrices and con-
straints on the parameter of the matrices, i.e. restrictions to
the relative positions and rotations of the objects.

So far we use projective relations like right, left,
front, and behind. Let us consider the relation right
in detail. The relation right (table, spots) places
the cat ‘Spots’ right wrt. the table. The coordinate system,
associated with the table, is the origin of the relation. The
cat can be placed between the bisectors of the right angles
of the table ((2) and (3) in Fig. 3). This is shown in Fig. 3,
where Spots is represented by a circle and the table by a
rectangle.

Figure 3: The relation right (table,
tail

spots) in de-

We can describe the relation right (a, b) mathe-
matically by the following inequalities, i.e. constraints,

The theory and the methods described in this paper are appli-
cable for 3D problems. For better understanding we use without
restrictions 2D space only.

whereby a stands for the table and b for the cat in the above
example:

Azy > aw+br M
Azy' > Ay +aw—ad+ V2bor @
Azt > —Ay’+aw—ad+ V2b.r. 3)

At this, a.w and a.d represent (the half of) the width and
the depth of the rectangle, i.e. the table, and b.r stands for
the radius of a cylindric abstraction of the cat. The pa-
rameters Axb" and Ayba describe, as explained above, the
relative position of object b wrt. object a. The constraints
1, 2, and 3 describe the corresponding half planes shown
in Fig. 3. Generally the lower index denotes the object and
the upper index its reference system, i.e. the relatum.

Due to the ambiguousness of the given texts, each pa-
rameter belongs to a real valued interval. Usually there is
no information on the exact extents of the objects. So we
have to deal with intervals, e.g. the radius of the cat may
range’ in the interval [0.1, 0.5].

The other spatial relations used, like 1eft, front, and
behind are defined in an analogous manner. Note that
for the relation r ight, like for every spatial relation, the
formulas differ depending on the shape of the relata and
referents.

Since we use an intrinsic interpretation of the spatial re-
lations, the constraints of each relation are defined wrt. a
local reference system, i.e. the coordinate system of the re-
latum. That implies that we need to transform the coor-
dinates of an object using the corresponding matrix when
changing its relatum. A point sj, expressed wrt. system
7, is transformed to the new reference system % using the
homogeneous transformation matrix P ]—i:

ski = Pjiskj
where
4 cos AH; —sin AG;_ ijf—
P/ = sin Ag ! cos A0 Ay
0 0 1

The parameter A} describes the rotation angle of system
J wrt. system 4. Tlie distances of object j in the z- and y-
directions from the origin of the relatum ¢ are denoted by
Az} and Ay}, resp.

3 Drawing Inferences

Given the system of, in general, nonlinear constraints
and transformation matrices (see below) we can draw in-
ferences, i.e. answer questions on relations between ob-
jects which where not initially given in the text. As
shown in [Wiebrock ef al., 20001, this is done by prop-
agating the constraints (i.e. (1) to (3) when considering
right (table, spots)). The homogeneous transfor-
mation matrices are used for changing the reference sys-
tem.

Suppose we want to verify, whether the relation
right (steffi, spots) is consistent with the text
given in Sect. 1 (Fig. 1). Since there are already constraints
for the cat (expressed wrt. the system of the table), we
transform them into the coordinate system of steffi using

3This is some kind of background knowledge for the consid-
ered domain.



: : steffi table
the transformation matrices P 3" and P e, Thus we
have to calculate
steffi __ steffipy table
Pspots - Ptable Pspots
: : steffi :
and to compare the resulting matrix P 5o and its con-

straints with the defining constraints for right. For in-
stance we have to check, whether

stefi = __ steffi table
A‘rspots = COo8 (Aetable) A‘CCspots -
: steffi table
SH1 (Aetable) Ayspots +
steffi
A‘Ttable

meets the definition of right (cf. Fig. 3). Only in very
rare cases ([Wiebrock et al., 2000]) we can do the compar-
ison analytically. Thus we have to use numerical methods
to solve and check the constraints. In the following sections
we apply methods of Machine Learning to this problem.

3.1 Learning the Spatial Relations

Each relation r; corresponds to a region G; in the config-
uration space4, where all its constraints are satisfied. We
try to learn a decision function which can decide whether
a given vector of the configuration space belongs to the re-
gion of the relation. Afterwards we use the result from the
learning step to solve the constraints and generate depic-
tions. We introduced this idea in [Gips et al., 2002] as an
alternative approach for solving spatial constraints.

For each requested combination of relations and tuples
of object types we construct training sets by exploiting the
given constraints for the particular relation. Using these
training data sets, Machine Learning algorithms construct
classifiers. We have chosen the decision tree learning al-
gorithm CALS5 ([Miiller and Wysotzki, 1997]) for learn-
ing the spatial relations. It uses axis-parallel hyperplanes
for approximating the class boundaries piecewise linearly.
The main advantage of using decision trees is their inter-
pretability. The paths in the decision tree contain the ap-
proximation of the solution region G; of a relation r;. This
can be used in a constructive manner for deciding the con-
straints in later steps.

For a more detailed survey on the learning process and its
results refer to [Gips et al., 2002; Wiebrock, 2000]. Note,
the learned decision trees contain all generalisations for a
given tuple of object types. So we can use the same tree for
different input objects of a relation, as long as the objects
have the specific shapes the tree was trained for.

3.2 Inference using Sets

Using the learned decision trees we can draw inferences on
relations between objects which were not initially given in
the text. Given the relations right (steffi, table)
and right (table, spots), is there any other rela-
tion relat ion between Steffi and Spots? More generally,
given the spatial relations r1(O1, O2) and r2(O2, O3), can
we infer a third relation r3(O1, O3)? This can be expressed
by

VO1,Y02,V03 : 11(01,02) A12(02,03) — 13(01, O3)

“)

As mentioned above, it is seldom possible to prove the

validity of those statements analytically. However, we can

reduce the problem to intersecting sets in the configuration
space.

*The configuration space is the space where each parameter or
variable of the problem spans a dimension.

The relations r; (whereby each r; is defined by a set of
constraints) form a constraint net (Fig. 4(a)). Each relation
can be interpreted as an area G in the configuration space.
Note, that these areas G; are given in the local reference
system of the relation r;, i.e. the coordinate system of the
first argument object of r;. However, for intersecting the
areas G; we have to transform them into the same, i.e. a
global coordinate system (e.g. the coordinate system asso-
ciated with O; or the room system). In order to infer r3 in
(4) from rq and ro, the intersection of G and G, would
have to lie completely within G (Fig. 4(b)):

G1 NGy C Gs.

r3(01,05)? - !

o
O r1(01,02)

(a) Constraint net

K Gg\\\

P

(b) Intersection of the
solution regions (ideal
case)

Figure 4: Inference in a set context

If the intersection G; N Gy is not completely contained
in Gg, certain constraints ¢(O1, O3) have to be added to
the premise to state, under which conditions the conclusio
can be inferred, reducing the G;:

VOl,VOQ,VOg : I‘1(01,02) /\1"2(02,03)/\ (5)
¢(01,03) — 13(01,03)

The new constraint ¢(O1, O3) denotes a conjunction of
constraints for O; and Os. Note, that almost every con-
clusio depends on the relative position and orientation of
the coordinate systems. Thus we will usually get the non-
ideal case (5) and have to add the additional constraints
¢(O1, O3) to the premise. These constraints are a result of
our new algorithm (cf. Sect. 3.4).

Using the learned CAL5-decision trees we can avoid the
complex analytical calculation of the constraints. Instead
we can intersect the solution regions of the relations, which
can be extracted from the decision trees. This is done by
exploration of the intersection using an algorithm presented
in [Gips et al., 2002] and the learned trees. In Sect. 3.4 we



show, how to prove the implication and how to quantify the
additional constraints, if needed, using the exploration and,
again, CALS.

3.3 Generating Datasets for Satisfying the
Premise

As mentioned above, inference of a relation r3(Oq,O3)
from a proven knowledge {r1(O1, O3),12(02, O3)} means
to prove the implication (4).

The first task is to find (theoretically all) ob-
jects O1,02 and O3, so that the premise r1(O1,02) A
r2(O2, O3) is valid. We have to find values for the 2- and y-
parameters, the rotation angle of the objects and values for
their extents (i.e. width and depth or radius) so that all the
constraints of the relations r; and r, are satisfied. Such a
combination of valid parameters corresponds to a depiction
of the conjunction of the relations r1 and r».

In [Gips er al., 2002] we presented a heuristic back-
tracking search algorithm, which used the learned CALS-
decision trees ([Miiller and Wysotzki, 1997]) for finding
an appropriate depiction for a given set of spatial rela-
tions. This algorithm is used now for generating a number
of scenes, i.e. sets of objects 01,05 and O3, which sat-
isfy the premise r1(O1,O2) A r2(O2,03). Theoretically
we would have to generate an infinite number of such de-
pictions for actually finding all objects, which satisfy the
premise, i.e. to explore the complete intersection of the so-
lution regions of the relations in the premise. For practical
reasons we actually generate only about 1.000 such scenes.

3.4 Conclusio: Proving the Implication

Given the data set satisfying the premise (generated by the
depiction algorithm described in the previous section), we
have to check G1 NGy C Gg. The data set consists of vec-
tors, which represent objects from the premise with their
position, orientation and also their size, i.e. a sample of
G1 N Go. Thus each vector corresponds to an appropriate
depiction of the given spatial description and satisfies the
premise, i.e. each vector belongs to G; N Go.

For classical inference all the vectors should be com-
pletely contained in the solution region of the relation to
be inferred. This can be proved quickly by classifying all
vectors using the learned decision tree for the relation to be
inferred (r3). If all vectors are classified correctly, i.e. they
satisfy r3 and, thus, lie in G3, we can draw the inference.
This is the ideal case: we do not need any additional con-
straints.

Otherwise we must define (in contrast to the classical
logic) some new constraints, so that the inference is valid.
Therefore we use the generated set of depictions as a train-
ing set: we classify each vector whether it satisfies the
relation to be inferred (class ‘A’) or not (class ‘B’). Us-
ing this training set and CALS5 we generate a new decision
tree. From this tree the additional constraints c(O1, O3) for
drawing the inference r3(O1, O3) can be directly obtained
simply by reading off the paths to end nodes marked with
class ‘A’.

In the following section we apply this algorithm for
proving the implication and for finding possibly needed ad-
ditional constraints to some example problems.

4 Experiments

As mentioned in the previous section, the first step is to
generate a dataset satisfying the premise. Therefore we em-
ploy the depiction generating algorithm presented in [Gips

et al., 2002]. Tt uses the learned decision trees for the spa-
tial relations to find points in the configuration space, which
satisfy the relations in the premise. These points build up
the dataset. In the next step the dataset is classified using
the decision tree of the relation to be inferred. If all points
in the dataset satisfy the conclusio, we can state, that this
relation can be inferred without any additional constraints.
In the case there isn’t any point in the dataset, which satisfy
the conclusio, the relation cannot be inferred. Otherwise
we start CALS on the dataset and train a new decision tree.
From this tree we can extract additional constraints for a
possible inference of the conclusio.

A first decision is to choose the optimal size of the
dataset, i.e. the number of depictions used for the experi-
ments. This is a compromise between accuracy, i.e. train-
ing and generalisation error, and calculation time, i.e. time
to learn the decision tree. For the experiments presented in
this paper a dataset size of 1.000 scenes proved as a good
compromise.

The constraints, and thus the learned trees, depend on
the definition of the spatial relations. As shown in Sect. 2
we usually use sectors defined by bisecting lines of certain
quadrants (i.e. the first and second quadrant for right,
cf. Fig. 3). For the first presented experiment (Sect. 4.1)
we have chosen this variant. In order to compare the results
and the predictions for a more complex example, we used
a simpler definition of the relations, called ’strict relations’,
in the second experiment (Sect. 4.2). In the case of the
right relation this means that the sector defined by the
constraints (1) to (3) is replaced by a single line. The centre
of the second object must be somewhere on the positive x-
axis of the first object, i.e. Az,* > a.w+0b.r and Ay,* = 0.

4.1 Two Objects, One Relation

To pick up a simplification of the initial example
from Sect. 1 we assume the validity of the relation
left (steffi, table), i.e. there is a single relation
in the premise. From this premise we can derive succes-
sively the relations right, behind, left, and front
for (table, steffi). For each conclusion we ob-
viously have to restrict the angle between steffi and
table,i.e. Aﬁsttz?flie, as additional constraint. Note, the re-
lations right (steffi, table), front (steffi,
table), and behind(steffi, table) cannot be
concluded.

In order to conclude the relation right (table,
steffi) from the premise left (steffi, table)
the objects steffi and table need to have a similar
orientation. Since we use relations defined like right in
Sect. 2, the inference algorithm should theoretically pro-
duce the additional constraint ¢ (steffi, table) =
Aftable ¢ [—7 /4, 4+ /4] resp. approximate it with inter-
vals in certain paths of a decision tree. I.e. the relative
orientation Aft2Ele does not have to be zero but spans
an interval of +1/47 around zero. This is equivalent to
Aftable e [5.50,6.28] and Aft2ble € [0.00,0.79], be-
cause A@Stt";?flf is an angle. The universally valid inference
of right (steffi, table) is thus:

V steffi, V table : left(steffi, table)A

1 1
abl
Aesidelﬂﬁe € [_1777 +Z7T] -
Table 1 shows the mean values of the interval borders of
the inference results of 30 passes in comparison to the the-
oretical expectations. Each pass is based on 1.000 scenes.

right(table, steffi)



Table 1: Prediction for Aft25i¢ and the experimental results in 30 runs

ste

Relation Prediction Aft2ble € Result Aftable e
right (table, steffi) [5.50, 6.28] [5.19, 6.26]
[0.00, 0.79] [0.02, 0.83]
behind (table, steffi) [0.79, 2.36] [1.17,2.27]
left (table, steffi) [2.36,3.93] [2.72,4.14]
front (table, steffi) [3.93,5.50] [4.21,5.45]

4.2 Three Objects, Three Strict Relations

The complexity of the inference is now extended to form
a ring of three circle objects O1, O3 and O3. The premise
chains these objects with the three relations right (Oq,
02), right (Oy, Os) and right (O3, O1)°. From
this configuration the four spatial relations (right,
behind, left, front) for each remaining combina-
tion of objects {(O1, O3), (O3, 02), (O2,01)} can be con-
cluded. Again, each dataset contained 1.000 vectors,
i.e. scenes, and for each inferred relation 10 runs were ex-
ecuted with strict relations. For easier predictions we use
strict relations in this example.

right(O; O))

—_—
0, right(0, O, %

(a) Line

0, right(0, 0,

right(05 O) right(0, O5)

s

0 right(0, 0,) 0

(b) Triangle

Figure 5: Alignments of rings with three objects chained
with strictly right relations

When generating scenes using the strict relations, the so-
lution area for each relation forms an e-stripe around one
of the objects intrinsic axis. Only two general cases of ob-
ject alignment occur when inference is drawn (Fig. 5) and
each inferred relation falls into one of these categories and
has therefore a predictable A (Tab. 2). If the objects are
aligned in a line for example (Fig. 5(a)), the second object
Oy is strictly right of the first and the third object
O3 is strictly right of the second. Oz has to be
rotated by exactly 7 relative to O; so that O; enters the
right area of Os!

>We use this relations for getting a closed loop, which enforces
a small set of possible configurations and, thus, enables predic-
tions for inferences.

4.3 “Knights of the Round Table” Scene

To test the functionality with more complex scenes a
“Knights of the Round Table” configuration was generated
in which six knights were placed around a table. The fol-
lowing relations form the premise:

right (K1, K2) Aright (Ka, K3) A
right(Kg,K;;) /\right(K4,K5) A
right(K5,K6) /\right(KG,K1) A
front (K,, table);n=1,...,6

Figure 6: Premise for a “Knights of the Round Table” scene

The K, represent the six knights, randomly generated
with a radius r € [0.2,0.3], the table is defined as a cir-
cle with r € [0.3,0.5]. As in the first experiment, the area
based relations are used. Due to the complexity of this con-
figuration (6 objects, 12 relations) the inference is based on
200 scenes only.

The knights form a circle around the table, because they
have to face the table and each knights successor is placed
to his right. Thus the predecessor of a knight will often be
positioned to his left. For inference we have to ensure, that
the concluded relations 1eft (K1, Kg), left (Kg, K5),
..., left (Ky, K;) are always valid. For this our infer-
ence algorithm found reasonable constraints.

As the opposite knights both look at the table and so sub-
sequently look at each other, the front relation for them
should be inferred as always true and behind as always
false. These conclusions are universally valid and no con-
straints may be generated. This assumption was validated
by the algorithm.

5 Discussion

In this paper we presented an approach for spatial infer-
ence, where spatial relations are represented by parame-
terised transformation matrices and constraints on the pa-
rameters. Inference of relations not mentioned in the spatial
description is done by propagating the constraints. Thereby
we have to change the reference systems because of the in-
trinsic definition of the spatial relations and, thus, the lo-
cal definition of the constraints. We use therefore homoge-
neous transformation matrices, which leads to a system of
nonlinear constraints.

Instead of solving this constraint net directly, we em-
ployed methods of Machine Learning. We used the deci-
sion tree learner CALS to transform the constraint solving
problem into a classification problem. Using CALS yields
well interpretable results. After learning we have, due to
the obtained decision trees, detailed knowledge about the
regions in the configuration space. Inference of a spatial
relation from a premise, i.e. a set of relations, is now done
by intersecting the solution regions of the relations in the



Table 2: Prediction of Af, experimental results in 10 runs

Relation Prediction Af Result Af
left (O1,03) AGSH =0=16.28 A0S €]

AGSH =21 = 6.28 AOS € [6.04,6.27]
right (O, 0s) AOSH =7 =3.14 A0S € [3.13,3.25]
front (O, 03) AOSH =3/2r =471 AOSH € [4.62,4.94]
behind (01,03)  AOS' =1/2r =157  AS' € [1.42,1.74]
left (O3,02) AOS? =0=16.28 AOSE €]

AOS? =2m =6.28 AGS? € [6.13,6.26]
right (O3, 0s) AYS? = =3.14 AOS?® € [3.13,3.30]
front (O3,03) AOS =3/2m =471 AOS® € [4.71,4.99]
behind (03,02) A0S =1/2r =157  AS?® € [1.46,1.71]
left (Og,01) A9S? =0 =6.28 A9S? € [0.01,0.21]

AOS? =2m =6.28 AGS? € [6.12,6.27]
right (Og,01) A9S? =7 =3.14 AOS? € [3.13,3.28]
front (Oy,01) AOS? =3/2m =471  AOS? € [4.72,4.91]
pehind (02,01)  AS> =1/2r =157  A9S* € [1.52,1.74]

premise. In the ideal case the solution region of the inferred
relation should be completely contained in this intersection.
Otherwise we get additional constraints for inferring this
relation from the given premise.

For calculation of the intersection of the premise rela-
tions we use an heuristic search algorithm ([Gips et al.,
2002]). Using the learned CAL5-decision trees it computes
a set of depictions for a given set of spatial relations, i.e. the
premise. These depictions correspond to a set of appropri-
ate objects which satisfy all the relations of the premise.
Thus the vector of the object parameters belongs to the in-
tersection region of the premise relations. For exploring
the complete intersection we would have to generate an in-
finite number of such depictions. For practical reasons we
actually use only about 1.000 scenes.

This set of depictions, i.e. the set of object vectors sat-
isfying the premise, should be completely contained in the
solution region of the relation to be inferred. This can be
proved quickly by classifying all vectors using the learned
decision tree for the inferred relation. If all vectors are clas-
sified correctly, we can draw the inference. Otherwise we
can define (in contrast to the classical logic) some new con-
straints, so that the inference is valid. Therefore we use the
generated set of depictions as training set: we classify each
vector whether it satisfies the relation to be inferred. Us-
ing this training set and CALS5 we generate a new decision
tree. From this tree the additional constraints for drawing
the inference can be extracted.

In the experiments shown the results of our approach
come very close to the theoretical (predicted) values. Even
for the complex problem of the “Knights on the Round Ta-
ble” we got reasonable results.

Future work includes a deeper investigation of this ap-
proach, including a speed up of the algorithm. Because
of the trade-off between computing time and precision we
have to find values for an optimal compromise for the actu-
ally needed number of generated depictions. Furthermore

we have to compare our approach to classical constraint
solvers, like the RealPaver interval solver ([Granvilliers,
2003]).
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