Skip to main content Skip to main navigation

Publikationen

Zeige Ergebnisse 11 bis 20 von 55.
  1. Kristian Kersting; Christian Bauckhage; Mirwaes Wahabzada; Anne-Katrin Mahlein; Ulrike Steiner; Erich-Christian Oerke; Christoph Römer; Lutz Plümer

    Feeding the World with Big Data: Uncovering Spectral Characteristics and Dynamics of Stressed Plants

    In: Jörg Lässig; Kristian Kersting; Katharina Morik (Hrsg.). Computational Sustainability. Pages 99-120, Studies in Computational Intelligence, Vol. 645, Springer, 2016.

  2. Mayukh Das; Yuqing Wu; Tushar Khot; Kristian Kersting; Sriraam Natarajan

    Scaling Lifted Probabilistic Inference and Learning Via Graph Databases

    In: Sanjay Chawla Venkatasubramanian; Wagner Meira Jr. (Hrsg.). Proceedings of the 2016 SIAM International Conference on Data Mining. SIAM International Conference on Data Mining (SDM-2016), May 5-7, Miami, FL, USA, Pages 738-746, ISBN 978-1-61197-434-8, SIAM, 2016.

  3. Joseph G. Taylor; Viktoriia Sharmanska; Kristian Kersting; David Weir; Novi Quadrianto

    Learning Using Unselected Features (LUFe)

    In: Subbarao Kambhampati (Hrsg.). Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. International Joint Conference on Artificial Intelligence (IJCAI-2016), July 9-15, New York, NY, USA, Pages 2060-2066, IJCAI/AAAI Press, 2016.

  4. Christopher Morris; Nils M. Kriege; Kristian Kersting; Petra Mutzel

    Faster Kernels for Graphs with Continuous Attributes via Hashing

    In: Francesco Bonchi; Josep Domingo-Ferrer; Ricardo Baeza-Yates; Zhi-Hua Zhou; Xindong Wu (Hrsg.). IEEE 16th International Conference on Data Mining. IEEE International Conference on Data Mining (ICDM-2016), December 12-15, Barcelona, Spain, Pages 1095-1100, IEEE Computer Society, 2016.

  5. Shuo Yang; Tushar Khot; Kristian Kersting; Sriraam Natarajan

    Learning Continuous-Time Bayesian Networks in Relational Domains: A Non-Parametric Approach

    In: Dale Schuurmans; Michael P. Wellman (Hrsg.). Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence (AAAI-2016), February 12-17, Phoenix, Arizona, USA, Pages 2265-2271, AAAI Press, 2016.

  6. Marion Neumann; Roman Garnett; Christian Bauckhage; Kristian Kersting

    Propagation kernels: efficient graph kernels from propagated information

    In: Machine Learning, Vol. 102, No. 2, Pages 209-245, Springer, 2016.

  7. Piotr Szymanski; Tomasz Kajdanowicz; Kristian Kersting

    How Is a Data-Driven Approach Better than Random Choice in Label Space Division for Multi-Label Classification?

    In: Entropy, Vol. 18, No. 8, Pages 0-10, MDPI, 2016.

  8. Sarah Elkasrawi; Hussein Elwy; Stephan Baumann; Christian Reuschling; Andreas Dengel

    Prediction of Social Trends Using Nearest Neighbors Time Series Matching and Semantic Similarity.

    In: Petra Perner (Hrsg.). Advances in Data Mining - 16th Industrial Conference, ICDM 2016 - Poster Proceedings. Industrial Conference on Data Mining (ICDM-2016), July 13-17, New York, NY, USA, Pages 87-93, ISBN 978-3-942952-42-2, ibai-publishing, Fockendorf, Germany, 2016.

  9. Kathleen Schwarz; Maurice Rekrut; Judith Bauer

    Ergebnisauswertung der Abschlussinterviews mit den MOBIA-Kunden

    In: Daniel Bieber; Kathleen Schwarz. Mobilität für Ältere. Dienstleistungen für den ÖPNV im demografischen Wandel. Chapter 10, Pages 221-236, ISBN 978-3-935084-36-9, iso-Verlag, Saarbrücken, 2016.

  10. Die MOBIA-Fahrgast-Schnittstelle

    In: Daniel Bieber; Kathleen Schwarz. Mobilität für Ältere. Dienstleistungen für den ÖPNV im demografischen Wandel. Chapter 5, Pages 119-152, ISBN 978-3-935084-36-9, iso-Verlag, Saarbrücken, 2016.