
Fast Subgraph Isomorphism Detection for
Graph-Based Retrieval

Markus Weber1,2, Christoph Langenhan3, Thomas Roth-Berghofer4,1

Marcus Liwicki1, Andreas Dengel1,2, and Frank Petzold3

1 Knowledge Management Department,
German Research Center for Artificial Intelligence (DFKI) GmbH

Trippstadter Straße 122, 67663 Kaiserslautern, Germany

2 Knowledge-Based Systems Group, Department of Computer Science,
University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

3 Chair of Architectural Informatics, Faculty of Architecture,
Technical University of Munich, Arcisstrasse 21, 80333 Munich, Germany

4 Explanation-aware Computing Systems, Institute of Computer Science,
University of Hildesheim, Marienburger Platz 22, 31141 Hildesheim, Germany

{firstname.lastname}@dfki.de,{lastname}@tum.de

Abstract. In this paper we present a method for a graph-based retrieval
and its application in architectural floor plan retrieval. The proposed
method is an extension of a well-known method for subgraph matching.
This extension significantly reduces the storage amount and indexing
time for graphs where the nodes are labeled with a rather small amount of
different classes. In order to reduce the number of possible permutations,
a weight function for labeled graphs is introduced and a well-founded
total order is defined on the weights of the labels. Inversions which violate
the order are not allowed. A computational complexity analysis of the
new preprocessing is given and its completeness is proven. Furthermore,
in a number of practical experiments with randomly generated graphs the
improvement of the new approach is shown. In experiments performed on
random sample graphs, the number of permutations has been decreased
to a fraction of 10−18 in average compared to the original approach by
Messmer. This makes indexing of larger graphs feasible, allowing for fast
detection of subgraphs.

Key words: architecture, graph theory, retrieval

1 Introduction

A graph is a mathematical representation that consists of vertexes and edges and
can be applied to representations that capture relationships between any two
elements. Thus they offer a number of advantages over traditional feature vector
approaches [1]. Unlabeled graphs have no fixed labels, thus the only applicable
similarity methods are ones that search for identical subgraphs. This subgraph

isomorphism problem is a well-known problem in literature and is known to be
NP-complete [2]. Similarity assessment for labeled graphs in general is domain-
specific. Although being polynomial, graph representations do have a significant
computational cost. Fortunately, there are a number of methods and techniques
aimed at reducing this problem [1].

However, subgraph isomorphism still is a powerful general similarity measure
which also could be applied without any specific domain knowledge. In order to
reduce computational cost in subgraph isomorphism, index based approaches
have been introduced. Such a method has been proposed by Messmer et al. [3].
It builds an index using the permutated adjacency matrix of the graph. The
real-time search is then based on a tree. While the method has shown to be
effective for a reference set with small graphs, it is unfeasible for graphs with
more than 19 vertices.

In this paper we propose a method to overcome this problem. Assuming
that the number of labels for the nodes is relatively small, we introduce a well-
founded total order and apply this during index building. This optimization
decreases the amount of possible permutations dramatically and allows building
indexes of graphs with even more than 30 vertices.

The method has been applied in the architectural floor plan retrieval. In [4]
a graph-based structure for representing the spatio-relational content of a floor
plan has been introduced. The case-based design approach for floor plan retrieval
described in [5] deals with semantic and topological information of spatial con-
figurations not regarding procedural information. The topological and functional
inner structure, the orientation of spaces as well as the urban integration, and
the relation of buildings to each other is vital for a retrieval of valuable reference
to support architects during the early stages of designing a building. Thus a
digital fingerprint was proposed in [6] that contains a clear spatial description of
an architectural dataset. The proposed system offers a computational approach
to extract a few characteristic and prominent features of a floor plan which are
then used to generate a digital fingerprint. In the paper, we examine the de-
velopment of graph-based methods to provide a sketch-based submission and
retrieval system for publishing and researching building layouts.

The rest of this paper is organized as follows. First, Section 2 gives an
overview over related work. Subsequently, Section 3 introduces definitions and
notations which are used and Section 3.1 describes the new preprocessing step
and Section 3.2 the modified retrieval algorithm. Next, Section 4 will show that
the number of computational steps will be significantly decreased and Section 5
discusses the application in the architectural domain. Finally, Section 6 concludes
the work.

2 Related Work

In [7], Goa et al. give a survey of work done in the area of graph matching. The
focus in the survey is the calculation of error-tolerant graph-matching; where
calculating a graph edit distance (GED) is an important way. Mainly the GED

algorithms described are categories into algorithms working on attributed or
non-attributed graphs. Ullman’s method [8] for subgraph matching is known
as one of the fastest methods. The algorithm attains efficiency by inferentially
eliminating successor nodes in the tree search.

Bunke [9, 1] discussed several approaches in graph-matching. One way to cope
with error-tolerant subgraph matching is using the maximum common subgraph
as a similarity measure. Another way is by applying graph edit costs, an ex-
tension of the well-known string edit distances. A further group of suboptimal
methods are approximate methods. They are based on neural networks, such as
Hopfield networks, Kohonen maps or Potts MFT neural nets. Finally, genetic
algorithms, the usage of Eigenvalues, and linear programming are applied.

Graph matching is challenging in presence of large databases [10, 1]. Conse-
quently, methods for preprocessing or indexing are essential. Preprocessing can
be performed by graph filtering or concept clustering. The main idea of the graph
filtering is to use simple features to reduce to number of feasible candidates. An-
other concept clustering is used for grouping similar graphs. In principle, given a
similarity (or dissimilarity) measure, such as GED [11], any clustering algorithm
can be applied. Graph indexing can be performed by the use of decision trees.

Messmer and Bunke [3] proposed a decision tree approach for indexing the
graphs. They are using the permutated adjacency matrix of a graph to build a
decision tree. This technique is quite efficient during run time, as a decision tree is
generated beforehand which contains all model graphs. However, the method has
to determine all permutations of the adjacency matrices of the search graphs.
Thus, as discussed in their experiments, the method is practically limited to
graphs with a maximum of 19 vertices. The main contribution of this paper is
to improve the method of Messmer and Bunke for special graphs by modifying
the index building process.

As topologies are crucial to describe the relation of spaces, graphs are widely
used to store information about buildings. The EsQUIsE project focuses on
the the early design stages of buildings to support architects with a pen-based
interface to sketch ideas and simulate certain aspects of the design. Juchmes et
al. [12] proposes a floor plan like input strategy to use adjacency, dimension and
orientation of space to build a 3D model and a graph structure. The PROBADO-
framework intends to integrate multimedia content to digital libraries. Apart of
indexing methods for music and 3D shape retrieval [13] a room connectivity
graph [14] was proposed. To build up the graph structure of the spatial relation
of a non semantic 3D-Model the storeys are detected, the room per storey, doors
and windows determined. Using a sketch-based retrieval interface 3D-models will
be retrieved by inputting schematic topologies of a spatial configuration.

3 Definitions and Notations

Basic definitions that are used throughout the paper are a labeled graph G =
(V,E, Lv, Le, µ, υ) with its common representation as an adjacency matrix M :

Definition 1 An adjacency matrix is n× n matrix M.

M = (mij), i, j = 1, ..., n, where

mii = µ(vi)

and

mij = υ((vi, vj)) for i 6= j.

Thus a graph G can also be represented by its adjacency matrix M . But the
matrix M is not unique for a graph G. If M represents G, than any permutation
of M is also a valid representation of G.

Definition 2 A n × n matrix P = (pij) is called a permutation matrix if

1. pij ∈ 0, 1 for i,j = 1, ..., n
2.
∑n

i=1 pij = 1 for j = 1, ..., n
3.
∑n

i=1 pij = 1 for i = 1, ..., n

Furthermore, a so called row-column representation is given. Each matrix
can be represented by its row-column elements ai, where ai is a vector of the
form

ai = (m1i,m2i, ...,mii,mi(i−1), ...,mii).

Fig. 1: The row-column representation of an adjacency matrix

In order to compare two adjacency matrices with different dimensions, a
notation Sk,m(M) is required which reduces the dimension of the matrix with
the higher dimension.

Definition 3 Let M = (mij) be a n× n matrix. Then Sk,m denotes the k ×m
matrix that is obtained from M by deleting rows k + 1,..., n and columns j =
1,...,m where k,m ≤ n. That is, Sk,m(M) = (mij); i = 1,...,k and j = 1,...,m.

Besides, definitions for orders on sets are needed.

Definition 4 A total order is a binary relation ≤ over a set P which is tran-
sitive, anti-symmetric, and total, thus for all a, b and c in P, it holds that:

– if a ≤ b and b ≤ a then a = b (anti-symmetry);
– if a ≤ b and b ≤ c then a ≤ c (transitivity);
– a ≤ b or b ≤ a (totality).

Definition 5 A partial or total order ≤ over a set X is well-founded,
iff (∀ Y ⊆ X : Y 6= ∅ → (∃y ∈ Y : y minimal in Y in respect of ≤)).

Additionally, a weight function is defined, which assigns a weight to a label of a
graph.

Definition 6 The weight function σ is defined as: σ : Lv → N.

Using the weight function, a well-founded total order is defined on the labels
of graph, for example σ(L1) < σ(L2) < σ(L3) < σ(L4). Thus the labeled graph
can be extended in its definition.

Definition 7 A labeled graph consists of a 7-tuple, G = (V,E, Lv, Le, µ, υ, σ),
where

– V is a set of vertices,
– E ⊆ V × V is a set of edges,
– Lv is a set of labels for the vertices,
– Le is a set of labels for the edges,
– µ : V → Lv is a function which assigns a label to the vertices,
– υ : E → Le is a function which assigns a label to the edges,
– σ : Lv → N is a function which assigns a weight to the label of the vertices,

and a binary relation ≤ which defines a well-founded total order on the
weights of the labels:

∀x, y ∈ Lv : σ(x) ≤ σ(y) ∨ σ(y) ≤ σ(x)

3.1 Algorithm

The algorithm for subgraph matching is based on the algorithm proposed by
Messmer and Bunke [3], which is a decision tree approach. Their basic assump-
tion is that several graphs are known a priori and the query graph is just known
during run time. Messmer’s method computes all possible permutations of the
adjacency matrices and transforms them into a decision tree. At run time, the
adjacency matrix of the query graph is used to traverse the decision tree and
find a subgraph which is identical.

Let G1 and G2 be graphs with their adjacency matrices M1 and M2 of di-
mension m × m and n × n and m ≤ n. The problem of finding a subgraph
isomorphism from G1 to G2 is equivalent to finding a permutation matrix, so

the subgraph isomorphism is given, iff there is a n × n permutation matrix P
such that

M1 = Sm,m(PM2P).

Let G = (V,E, Lv, Le, µ, υ) be a graph from the graph database and M the
corresponding n × n adjacency matrix and A(G) the set of permuted matrices.
Thus the total number of permutations is |A(G)| = n!, where n is the dimension
of the permutation matrix, respectively the number of vertices.

Now, let Q = (V,E,Lv, Le, µ, υ) be a query graph and M ′ the corresponding
m ×m adjacency matrix, with m ≤ n. So, if a matrix MP ∈ A(G) exists, such
that M ′ = Sm,m(MP), the permutation matrix P which corresponds to MP

represents a subgraph isomorphism from Q to G, i.e

M ′ = Sm,m(MP) = Sm,m(PMPT).

Messmer proposed to arrange the set A(G) in a decision tree, such that each
matrix in A(G) is classified by the decision tree. However, this approach has
one major drawback. For building the decision tree, all permutations of the
adjacency matrix have to be considered. Thus, for graphs with more than 19
vertices the number of possible permutations becomes intractable. In order to
overcome this issue, the possibilities of permutations have to be reduced. One
way is to define constraints for the permutations. Therefore a weight function σ
(see Definition 6) is introduced which assigns a weight for each vertex according
to its label. Thus each label has a unique weight and a well-founded total order
(see Definition 4 and Definition 5) on the set of labels which reduces the number
of allowed inversion for the adjacency matrix. Figure 2 illustrates an example
for the modified matrices and the corresponding decision tree. Let us consider
the following weights for the nodes:

Lv ={L1, L2, L3}
σ(L1) = 1,

σ(L2) = 2,

σ(L3) = 3.

Each inversion that violates the ordering is not allowed. Thus just the vertices
which have the same label, respectively the same weights, have to be permuted
and if the labels have a different weight, just the variations are required. Given
the graph G, the following labels are assigned to the vertices,

V ={v1, v2, v3}
µ(v1) = L1,

µ(v2) = L2,

µ(v3) = L2.

Hence, the only valid permutations are:

1. σ(µ(v1)) ≤ σ(µ(v2)) ≤ σ(µ(v3))

Fig. 2: Modified decision tree for adjacency matrices

2. σ(µ(v1)) ≤ σ(µ(v3)) ≤ σ(µ(v2))
3. σ(µ(v2)) ≤ σ(µ(v3))
4. σ(µ(v3)) ≤ σ(µ(v2))

Let V A(G) be the set of all valid permutations. The decision tree is built ac-
cording to the row-column elements of the adjacency matrices MP ∈ V A(G)
and should cover all graphs from the database. So, let R be the set of semantics
R = {G1, G2, ..., Gn}, where n is the total number of graphs in the reposi-
tory, with their sets of corresponding adjacency matrices V A(G1), V A(G2), ...,

V A(Gn). Now, each set of adjacency matrices has to be added to the decision
tree.

3.2 Retrieval Algorithm

An obvious advantage of the method is that the whole process can be done a
priori. The decision tree acts as an index for subgraphs. So, during run time
the decision tree has been loaded into memory and by traversing the decision
tree, the corresponding subgraph matrices are classified. For the query graph
Q the adjacency matrix M is determined following the constraints defined by
ordering. Afterwards the adjacency matrix is split up into row-column vectors
ai. For each level i the corresponding row-column vector ai is used to find the
next node in the decision tree using an index structure. The pseudo code of
Algorithm 1 displays how the results are retrieved by traversing the tree:

Algorithm 1 RETRIEVAL(Q = (V, E, µ, υ, σ, Lv, Le), Tree)

Require: Unsorted set V of vertices, µ labeling function, σ weight function
1: sort(Q, Lv, µ, σ)

Ensure: Vertices V are sorted according to the defined order.
2: Let R be an empty sorted set which will contain all results sorted by the similarity

value Sim.
3: Determine adjacency matrix M from graph Q.
4: Determine row-column list RCL from M .
5: for i← 1 to |V | − 1 do
6: for j ← 1 to |RCL| do
7: Find best match for row-column vector ai ∈ RCL in tree at leveli.
8: Update R and Sim.
9: end for

10: Remove element Vi from V .
11: end for
12: return R.

3.3 Proof of Completeness

For the proposed modified algorithm it has to be proven that the algorithm
finds all solutions. The algorithm elaborated in the previous section reduces
the number of valid permutations. So, it has to be shown that by leaving out
permutations, no valid solution is lost.

Let G = (V,E, Lv, Le, µ, υ, σ) be a well-founded total ordered graph and let
A(G) be the set which contains all valid permutations of the graph’s adjacency
matrices. To be complete, the algorithm must find a solution if one exists; other-
wise, it correctly reports that no solution is possible. Thus if every possible valid
subgraph S ⊆ G, where the vertices of S fulfill the order, every corresponding
adjacency matrix M has to be an element of the set A(G), M ∈ A(G).

Algorithm 2 BUILD INDEX(G = (V,E,Lv, Le, µ, υ, σ), Tree)

Require: Unsorted set V of vertices, µ labeling function, σ weight function.
1: sort(V, Lv, µ, σ)

Ensure: Vertices V are sorted according to the defined order.
2: Let O be an empty list.
3: for all li ∈ LV do
4: Let {va, . . . , vb} contain all v with µ(v) = li
5: Oi ← V ARIATIONS({va, . . . , vb})
6: end for
7: Let AG← O1 × . . . ×O|Lv|.
8: for all mi in AG do
9: Add row column vector for sequence of mi to Tree.

10: end for

Algorithm 3 PERMUTE(V, begin, end,R)

Require: Sorted set V of vertices and begin < end, with Vend−1 being last the element.
1: Adding sequence of vertices V to R.
2: for i← end− 2 to begin do
3: for j ← i+ 1 to end− 1 do
4: Swapping position i and j in V.
5: Call PERMUTE(V, i+ 1, end,R).
6: end for
7: Call ROTATE(V, i+ 1, end,R).
8: end for

For this reason to proof that the algorithm is complete it has to be shown
that the algorithm generates all valid subgraphs S ⊆ G. Therefore the pseudo
code of Algorithm 2 shows how the index is built. Algorithm 3 and Algorithm 4
are helping functions for calculating all variations of the set of vertices in an
interval. The generation of the index starts with an unsorted set of vertices.
By sorting the vertices with their associated labels using the well-founded total
order, the set is ordered according to the weights of the labels.

Now, the algorithm iterates over all intervals of vertices {va, ..., vb} where
the labels have the same weights, σ(µ(va)) == σ(µ(vb)). For each interval
{va, . . . , vb}i all variations with respect to the order have to be determined.
These variations are computed in Algorithm 5, by determining all combina-
tions of the interval {va, . . . , vb}i including the empty set and calculating all
permutations for these combinations. Algorithm 3 and Algorithm 4 realize the
algorithm proposed by Rosen [15] which computes all permutations for a de-
fined interval. It has been proven that Rosen’s algorithm computes all per-
mutations. In combinatorial mathematics, a k-variation of a finite set S is a
subset of k distinct elements of S. For each chosen variation of k elements,
where k is Linterval = length of interval; k = 1 . . . Linterval, again all permu-
tations have to be considered. Now, assuming there would be a valid subgraph
Q = (V ′, E′, L′v, L

′
e, µ, υ, σ), respectively the corresponding adjacency matrix A

Algorithm 4 ROTATE(V, begin, end,R)

1: Let temp← Vend−1.
2: Shift elements in V in from position begin to end− 1 one position right
3: Set Vbegin ← temp.
4: Add sequence of vertices V to R.

Algorithm 5 VARIATIONS({va, . . . , vb})
Require: Sorted set V = {va, . . . , vb} of vertices, a ≤ b.
1: Let O be an empty list.
2: Determine all combinations C for {va, . . . , vb} including the empty set.
3: for all c in C do
4: Call PERMUTE(c, 0, |c|, O).
5: end for
6: Return O.

which depends on the alignment of the vertices. To be a valid subgraph, V ′ has
to be a subset of V , V ′ ⊆ V . Furthermore the alignment of the vertices V ′

according to their labels has to fulfill the defined order, σ(µ(vi)) ≤ σ(µ(vi+1)).
For the alignment the intervals {v′a, . . . , v′b} ∈ V ′ where the weights of the labels
have the same value σ(µ(v′a))) == σ(µ(v′b) are important as they can vary. The
Algorithm 5 determines all variations for intervals with the same weights for la-
bels, thus the alignment {v′a, . . . , v′b} is considered. This holds for each interval,
thus algorithm produces all valid permutations according to the well-founded
total order. As the query graph Q also has to fulfill the order, its adjacency
matrix A will be an element of A(G), if Q is a valid subgraph of G. Thus, the
solution will be found in the decision tree.

3.4 Complexity Analysis

The computational complexity analysis discussed in this section will be based
on the following quantities:

N = the number of graphs in the floor plan graphs in the repository,

M = the maximum number of vertices of a graph in the floor plan repository,

Mv = the number of vertex labels for a graph in the floor plan repository,

I = the number of vertices in the query graph,

Iv = the number of vertex labels.

The original algorithm by Messmer [3] as well as the proposed algorithm need an
intensive preprocessing, the compilation of the decision tree. Messmer’s method
has to compute all permutations of the adjacency matrix of the graph, thus the
compilation of the decision tree for a graph G = (V,E, Lv, Le, µ, υ, σ) has a run
time complexity of

O(|V |!).

For the size of the decision tree Messmer determined the following bounds.
The sum of nodes over all the levels (without the root node) is limited to

O(lv

M−1∑
k=0

(
M

k

)
(le2)k) = O(lv(1 + l2e)M),

and as the decision tree becomes linearly dependent on the size of the database
N , the space complexity of the decision tree is

O(Nlv(1 + l2e)M).

The processing time for the new decision tree compilation algorithm is re-
duced. Algorithm 2 describes the new way to The basic idea of the algorithm
is to take all labels Lv with the same weight which occur in the graph and
omit their instances. So, considering the mathematical idea of the algorithm an
approximation of the run time complexity would be:

|Lv|∏
i=1

|{∀v ∈ V |µ(v) = li}|!︸ ︷︷ ︸
ni

+

ni−1∑
j=1

(
ni
j

)
· j!

 .

The first term considers the permutations for all labels with the same weight, de-
noted by ni. The second term describes the k-variations. As we have to consider
the variations from ni − 1 to 1, the sum is sufficient.

In order to simplify the equation, we can combine the two terms, as the ni!
is equivalent to

(
ni

ni

)
· ni! = 1 · ni! = n!, thus we have:

|Lv|∏
i=1

 ni∑
j=1

(
ni
j

)
· j!

 .

Now, let nmax be the maximum number of vertices with the same weight.
Then we have the upper bound ofnmax∑

j=1

(
nmax

j

)
· j!

|Lv|

.

A rather imprecise approximation of the sum
∑nmax

j=1

(
nmax

j

)
· j! would be

(nmax + 1)!, so the resulting complexity of the algorithm is

O(((nmax + 1)!)|Lv|),

where nmax is the maximum number of vertices with the same weight. Thus for
the worst case - where all vertices have the same label - nmax = |V |, O((|V |+1)!)
which would be worse than the method proposed by Messmer and the best case
- where all vertices have different labels (nmax = 1) is

O(2|V |).

To find the average case of the algorithm the distribution of the labels in the
graph has to be considered. This distribution varies according to the represented
data.

Table 1: Results of graph experiments (first 10 graphs).

Graph Vertices Permutations Permutations Same lables
(modified) (original) (max.)

1 17 3.26× 106 3.55× 1014 5
2 21 3.59× 109 5.10× 1019 8
3 17 1.08× 107 3.55× 1014 5
4 20 2.50× 108 2.43× 1018 6
5 24 1.64× 1012 6.20× 1023 10
6 17 1.63× 106 3.55× 1014 3
7 21 2.04× 107 5.10× 1019 3
8 30 1.39× 1012 2.65× 1032 5
9 22 8.01× 108 1.12× 1021 6
...

...
...

...
...

100 23 1.00× 109 2.58× 1022 6

� 23.05 1.09× 1013 3.73× 1031 5.23

4 Evaluation

In order to examine run time efficiency of the modified subgraph matching ex-
periments on randomly generated graphs were performed. The modified decision
tree algorithm has been implemented in Java using a Java 6 virtual machine.
The experiments ran on a Intel Core Duo P8700 (2.53 GHz) CPU with 4 GByte
main memory. For the experiment 100 random graphs were generated with 15
to 30 vertices. It compares Messmers’s algorithm with its required permutations
to the modified algorithm. The permutations for the modified algorithm were
determined according to the algorithm discussed in Section 3.1 and the formula
in Section 3.4:

|Lv|∏
i=1

 ni∑
j=1

(
ni
j

)
· j!


and as the original has to be calculate the permutations for all vertices (|V |!
permutations). In the second experiment the time to add a graph to the deci-
sion tree was measured and again the number of permutations of the adjacency
matrix which were added to the decision tree. As the experiment was quite
time-consuming on a desktop machine, only the performance for five smaller
graphs was measured. The results of the experiment are listed in Tab. 2. The
experiments show that the algorithm significantly reduces the number of per-
mutations (see Tab. 1). Though, the time needed to compile the decision tree is
still quite long even for small problem instance, as shown in Tab. 2. However, as
the method is designed for an off-line preprocessing and considered to run on a
server machine, it is still reasonable for practical applications.

Table 2: Run time for compiling the decision tree for each graph

Graph Vertices Run time Permutations Same lables
(minutes) # (max.)

1 17 1.47 8.19× 105 4
2 17 8.90 4.17× 106 5
3 21 45.67 5.32× 107 4
4 21 10.06 8.19× 106 3
5 21 38.01 4.09× 107 3

5 Application in Architecture

In [4], we already a graph representation for floor plans has been introduced.
This representation is used to describe the spatio-relational content of the floor
plan. The nodes of the floor plan graph represent functional rooms in a floor
plan. Each label is an entity type which has been introduces in [4] and by using
the edges the relation between these functional units is described.

So, if the architect is searching for a specific composition of functional rooms,
a query is generated which describes this composition. Figure 3 illustrates a query
graph Q, where the architect would search for two directly connected apartments
(AP) in an attic floor (AT). Each leaf of the decision tree is a possible alignment
of the adjacency matrix representing a graph. Thus all leafs beneath the last
matching node of the search path, respectively the associated graphs, are added
to the result set R. The number of exact row column vector matches N for the
query graph Q divided through the number of nodes of the query graph |V |qis
used as a simple similarity measure.

Sim(q,R) =
N

|V |q

In our example the similarity would be 66, 6% as only two of three comparisons
match.

6 Conclusions and Future Work

In this paper an extension for the method of Messmer’s subgraph matching has
been proposed. The original method is very efficient to perform exact subgraph
matching on a large database. However, it has a limitation for the maximum
number of vertices. The modification discussed in this paper enables to increase
this limit depending on how the vertices are labeled. As the number of permuta-
tions in the preprocessing step depends on the vertices with the same labels, an
analysis of the data that will be represented in graph is necessary. If there are
just a few vertices with the same label, e.g. less than five, even graphs with 30
vertices can be handled. It has been proven that the modification of the method
does not affect its completeness.

1

2 4

6

12

AP2

2

0

1

APGF

AP0

1

AP2

2

11

{ A, B }

{ C, D }

3 5

AT CI

AP0

1

7

{ J' }

CI0

1

8 10

AP3

3

15

CI2

2

2

2

{ C', D' }

{ G' }

13

AP2

2

0

1

16

Ci2

2

2

2

1

1

{ A', B' }

14

CI2

2

0

1

{ E', F' }

CI3

3

9

{ H', I' }

a
2

a
1

AP

AT
v1

v2

Query q

AT

AP0

1

a
1

a
2

a
1

a
2

= (AT)

= (0, AP, 1)

AP
v3

a
3

= (0, 3, AP, 3, 1)

AP3

3

0

1

a
3

Adjacency matrix Row column vectors

v1 v2 v3

v1

v2

v3

AT

AP

AP

1 1

3

3

0

0

is part (1)

adjacent connection (2)

direct connection (3)

Fig. 3: Retrieval process.

Noteworthy, the proposed method can be applied in several areas, such as
object recognition, matching of 2D or 3D chemical structures, and architectural
floor plan retrieval. In the paper we discussed how the method is applied on
architectural floor plan retrieval and future work will be to perform experiments
on real graph data sets of different domains and research strategies for choosing

appropriate weight functions. Furthermore, we plan to extend this method to
provide a fast method for error-tolerant graph matching.

References

1. Bunke, H.: Recent developments in graph matching. Pattern Recognition, Inter-
national Conference on 2 (2000) 2117

2. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC ’71: Pro-
ceedings of the third annual ACM symposium on Theory of computing, New York,
NY, USA, ACM (1971) 151–158

3. Messmer, B., Bunke, H.: A decision tree approach to graph and subgraph isomor-
phism detection. Pattern Recognition 32 (1999) 1979–1998

4. Weber, M., Langenhan, C., Roth-Berghofer, T., Liwicki, M., Dengel, A., Petzold,
F.: a.SCatch: Semantic Structure for Architectural Floor Plan Retrieval. In: Ad-
vances in Case-Based Reasoning, Proc. of ICCBR 2010. (2010)

5. Langenhan, C., Weber, M., Liwicki, M., Petzold, F., Dengel, A.: Sketch-based
Methods for Researching Building Layouts through the Semantic Fingerprint of
Architecture. In: Computer-Aided Architectural Design Futures 2011: Proceedings
of the International CAAD Futures Conference. (2011)

6. Langenhan, C., Petzold, F.: The Fingerprint of Architecture - Sketch-Based Design
Methods for Researching Building Layouts Through the Semantic Fingerprinting of
Floor Plans. In: International electronic scientific-educational journal: Architecture
and Modern Information Technologies. (2010)

7. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern
Analysis and Applications 13(1) (Januar 2009) 113–129

8. Ullmann, J.: An algorithm for subgraph isomorphism. Journal of the ACM (JACM)
23(I) (1976) 31–42

9. Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications.
Proc. Vision Interface (2000)

10. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18(8) (1997) 689 – 694

11. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern recognition letters (1998) 255–259

12. Juchmes, R., Leclercq, P., Azar, S.: A multi-agent system for the interpretation of
architectural sketches. In: EG Workshop on Sketch-Based Interfaces and Modeling.
(2004) 53–61

13. Blümel, I., Berndt, R., Ochmann, S., Vock, R., Wessel, R.: Supporting planning
through content-based indexing and 3d shape retrieval. In: 10th Int. Conf. on
Design & Decision Support Systems in Architecture and Urban Planning. (2010)

14. Wessel, R., Blümel, I., Klein, R.: The room connectivity graph: Shape retrieval
in the architectural domain. In Skala, V., ed.: The 16-th Int. Conf. in Central
Europe on Computer Graphics, Visualization and Computer Vision’2008, UNION
Agency-Science Press (2008)

15. Rosen, K.H.: Discrete mathematics and its applications (2nd ed.). McGraw-Hill,
Inc., New York, NY, USA (1991)

