Übersicht zur Deutsch-Französischen Kooperation am DFKI

Am 22. Januar 2020, dem ersten Jahrestag des Aachener Vertrags, unterzeichneten das französische nationale Institut für Informationstechnologie, Inria, und das DFKI ein Memorandum of Understanding. Darin verabredeten die beiden wissenschaftlichen Einrichtungen, ihre Zusammenarbeit im Bereich der KI deutlich zu verstärken, ihre langjährige wissenschaftliche Zusammenarbeit zu strukturieren und zu formalisieren.

Inria und DFKI werden im Rahmen einer gemeinsamen strategischen Forschungs- und Innovationsagenda in den Bereichen KI für Industrie 4.0, KI-Infrastrukturen, KI und Cybersicherheit, Mensch-Roboter-Kooperation, Wearables und anderen Bereichen zusammenarbeiten. Im Kern der Vereinbarung steht auch ein starkes gemeinsames Engagement für die europäische KI-Initiative CLAIRE (Confederation of Labs for AI Research in Europe), um die europäischen KI-Forscher enger miteinander zu vernetzen und gemeinsam die europäische Forschung für eine KI voranzubringen, die dem Menschen nutzt und dabei die europäischen Grundwerte berücksichtigt.

Zu den konkreten Maßnahmen gehört die Durchführung von gemeinsamen Forschungs- und Innovationsprojekten, die teilweise auf bestehenden Vorhaben beider Organisationen aufbauen sowie neuen Themen, die in gemeinsamen Workshops definiert und ausgearbeitet werden.

Im Pilotjahr 2020 sind die ersten Projekte gestartet.
 

Projekte

CLIMACTIC – Dynamische Planung in der individuellen Fertigung entlang der Supply Chain

Die Erfüllung individueller Kundenwünsche wird zunehmend zu einem entscheidenden Faktor, wenn man die Wettbewerbsfähigkeit von Unternehmen betrachtet. Die damit einhergehende Auftragsfertigung hat nicht nur Auswirkungen auf den Herstellungsprozess, sondern auf die gesamte Wertschöpfungskette des Produkts - begonnen beim Rohstofflieferanten bis hin zum Endkunden. Im Vergleich zur Mehrfachfertigung (Serienfertigung, Massenfertigung) birgt diese Dynamik Herausforderungen an die Supply Chain- eine kontinuierliche Anpassung an Bedarfen über die gesamte Lieferkette. Dies ist mit statischen Optimierungsmethoden nicht mehr handhabbar. Unter Einbezug von Echtzeitdaten und Methoden der Künstlichen Intelligenz soll ein intelligentes System entwickelt werden, das eine proaktive und teilautomatisierte Anpassung und Optimierung von Fertigungsprozessen unter Berücksichtigung aktueller und prognostizierter externer und interner Geschäftsereignisse und -situationen ermöglicht.

 

IMPRESS – Verbesserte Wort- und Satzeinbettung mithilfe semantischen Wissens

Praktisch alle NLP-Systeme verwenden heutzutage Vektordarstellungen von Wörtern und Sätze, a.k.a. Wort- und Satzeinbettungen. In ähnlicher Weise werden bei der Verarbeitung von Sprache in Kombination mit Vision oder anderen sensorischen Modalitäten multimodale Einbettungen verwendet. Während Einbettungen irgendeine Form von semantischer Verwandtschaft verkörpern, bleibt die genaue Natur der letzteren unklar. Dieser Verlust präziser semantischer Deutlichkeit kann sich auf nachgelagerte Aufgaben auswirken. Ziel von IMPRESS ist es, die Integration von semantischem Wissen in sprachliche und multimodale Einbettungen und die Auswirkungen auf ausgewählte nachgelagerte Aufgaben zu untersuchen.

 

MePheSTO – Digital Phenotyping 4 Psychiatric Disorders from Social Interaction

MePheSTO ist ein interdisziplinäres Forschungsprojekt, das eine wissenschaftlich fundierte, auf Methoden der Künstlichen Intelligenz basierende Methodik zur Identifizierung und Klassifizierung messbarer, und damit objektiver, digitaler Phänotypen psychiatrischer Störungen vorsieht. Ziel des Projekts ist die Entwicklung einer technologischen Plattform für die wissenschaftlich fundierte Validierung von Phänotypen für psychiatrische Störungen auf der Grundlage multimodaler Eingaben wie Sprache, Video und Biosignale aus klinischen sozialen Interaktionen. Dazu sammeln die Forscherinnen und Forscher Daten aus Videoaufzeichnungen, Gesprächen, aber auch aus der Gehirn- oder Herzaktivität (EEG, EKG).

 

MOVEON – Visuelles robustes räumliches Szenenverständnis in dynamischen Umgebungen unter Verwendung von intermediären Darstellungen

Die visuelle 3D-Erfassung einer Szene in Echtzeit und die gleichzeitige Bestimmung der Position und Orientierung der Kamera (6DoF, Freiheitsgrad) im Raum ist eine Kerntechnologie, die in zahlreichen Bereichen wie dem autonomen Fahren, der Robotik oder der Medizintechnik Anwendung findet. Das Ziel des MOVEON-Projekts ist die Entwicklung einer neuartigen Generation von visuellen Positionierungssystemen, die über die klassische Lokalisierung und Kartierung hinausgeht, die sich derzeit nur auf die Rekonstruktion von Punktwolken konzentriert.

 

Inria-Koordinator am DFKI

Prof. Dr. Philipp Slusallek

Tel.: +49 681 85775 5377
E-Mail: Philipp.Slusallek@dfki.de

Kontakt

Dr. Anselm Blocher

Operativer DFKI-Koordinator Deutsch-Französische KI-Zusammenarbeit

Tel.: +49 681 85775 5262
E-Mail: Anselm.Blocher@dfki.de

Deutsches Forschungszentrum für Künstliche Intelligenz
German Research Center for Artificial Intelligence