Domain Adaptive Relation Extraction for Big Text Data Analytics

Feiyu Xu
Outline

- Introduction to relation extraction and its applications
- Motivation of domain adaptation in big text data analytics
- Solutions
- Conclusion and future work
What is Relation Extraction

- Given an **unstructured** text, a relation extraction (RE) tool should be able to automatically recognize and extract relations among the relevant entities or concepts that are salient to the user's needs.

Nobel Peace Prize

Barack Obama

2009

RE

- Walter Kohn, Nobel, Chemistry, 1998
- J.M. Coetzee, Nobel, Literature, 2003
- Barack Obama, Nobel, Peace, 2009

Linguistic Patterns:

- `<prize>` be awarded to `<person>`
- `<person>` win `<prize>` in `<year>`
-
Mitten in der Euro-Krise geht **Altkanzler Helmut Kohl** mit **Angela Merkel** äußerst hart ins Gericht

-- Welt online, 25.08.2011
General application task 1:

✩ Information access for information finder
mapping unstructured textual queries of users to more structured formal query for search and answer engines
General application task 2:

- Information acquisition for information provider
- Extract structured information from big amount free texts to construct knowledge bases
Acquisition of Social Network of Pop Stars from Web

Social Network of “Madonna” (Depth = 1)
Social Network of “Madonna” (Depth = 3)
General application task 3: Big Data Analytics

- Enabling the linking between structured and unstructured data
 - Large-scale information monitoring
 - Analytics: analyses of areas, markets, trends
 - Watch: Scanning for relevant new developments
Example: Network of Innovation Keyplayers

AIR LIQUIDE

All Patents in Database:
- METHOD FOR LASER WELDING USING A NOZZLE CAPABLE OF STABILISING THE KEYHOLE (2006-09-03)
- Laser Beam Welding Method with a Metal Vapour Capillary Formation Control (2009-05-28)
 Laser beam welding method with a metal vapour capillary formation control (2008-10-22)
 Process for laser-ARC hybrid welding aluminium metal workpieces (2008-01-17)
 Laser arc hybrid welding method for surface coated metal parts, the surface coating containing aluminium (2008-01-16)
 Laser/MIG hybrid welding process with a high wire speed (2007-10-30)
 Laser or hybrid arc-laser welding with formation of a plasma on the back side (2006-11-29)
 LASER-MIG HYBRID WELDING PROCESS WITH A HIGH WIRE SPEED (2006-05-19)
 Hybrid laser/Metal in Gas welding with a elevated welding and filler wire supply speeds and a high welding current, quality for codewelding
Outline

- Introduction to relation extraction and its applications
- Motivation of domain adaptation in big text data analytics
- Solutions
- Conclusion and future work
Text Analytics for Big Textual Data

- Three main features of big data
 - *Volume*: large-scale in volume
 - *Variety*: with respect to heterogeneous domains and formats
 - *Velocity*: because of its rapid and steady growing.

- Requirements of text analytics technologies for big data
 - *efficient*
 - *robust*
 - *scalable*
 - *domain-adaptive*
Domain Adaptation is Essential for Big Data!

- Among the three big data features, **variety** and **velocity** are even more challenging than the sheer size **volume**
Reasons:

- New domains have been constantly emerging, rapidly growing in size.

- Domains can differ in
 - **topics** (e.g., medicine, chemistry or mechanics)
 - **genres** (e.g., news, novels, blogs, scientific publications or patents)
 - **targets** (e.g., different relations such as marriage, person-parent relation, disease-symptom relation)
 - **data internal properties** (e.g., size or redundancy or connectivity).

- Systems, methods or strategies developed or trained for so-called general purpose or one specific domain can often not be directly taken over by other domains, because
 - each domain needs its own domain knowledge and
 - each application data has its own special properties.
Relevant Strategies for Domain Adaptation

- Minimally dependent on the labeled training data
 - Minimally or weakly supervised machine learning methods

- Strategies for
 - confidence estimation of automatically learned information and knowledge
 - filtering of irrelevant and wrong information

- Domain adaptation of generic systems for specific applications
Outline

- Introduction to relation extraction and its applications
- Motivation of domain adaptation in big text data analytics
- Solutions
- Conclusion and future work
Our solutions (1)

- minimally supervised and distantly supervised automatic learning of domain-specific grammar-based pattern rules for n-ary RE: DARE and Web-DARE Systems

 - Hans Uszkoreit, Feiyu Xu, Hong Li. “Analysis and Improvement of Minimally Supervised Machine Learning for Relation Extraction”. In NLDB 2009.

Our solutions (2)

- Various filtering and confidence estimation methods for high-performance and large-scale relation extraction
 - Sebastian Krause, Hong Li, Hans Uszkoreit, Feiyu Xu, “Large-Scale Learning of Relation-Extraction Rules with Distant Supervision from the Web”. In Proceedings of the 11th International Semantic Web Conference (ISWC 2012)
Our solutions (3)

- **Automatic adaptation and improvement of generic parsing results for specific domains**
Automatic generation of domain-specific linguistic knowledge resources

- Open source: sargraph.dfki.de
Web-DARE
Distant-supervised Web-scale RE
Web-DARE: Distant Supervision based RE

- Large number of RE rules are automatically learned by using Freebase as seed knowledge and Web as training corpus

- Goal:
 - covering most linguistic variants for expressing a relation
 - thus solving the notorious long-tail problem of real-world NL applications
Data Set

- rules learned for 39 relations
 - n-ary relations \(n \geq 2 \)
- three domains: business, awards and people
- 2.8 million relation instances retrieved from Freebase as seed
- 20 million web documents as training corpus
Example in Nobel Prize Award Domain

- Seed example

<Mohamed ElBaradei/Person, Nobel/Prize, Peace/Area, 2005/Year>

- Sentence matched with the seed

Mohamed ElBaradei won the 2005 Nobel Prize for Peace on Friday...
Dependency Parse Result

Subject: Person

Object: Prize

- lex-mod: Year
- lex-mod: PrizeName
- mod: for
 pcomp-n: Area

win
Bottom Up Rule Learning

Rule (1)

Subject: Person

Object: Prize

win

lex-mod: Year lex-mod: PrizeName

mod: for

pcomp-n: Area
Bottom Up Rule Learning

Subject: Person

win

Object: Prize

lex-mod: Year, lex-mod: PrizeName

mod: for

pcomp-n: Area

Rule (1)

Rule (2)
Bottom Up Rule Learning

Rule (1)

Rule (2)

Rule (3)
Some Statistics of Web-DARE Rules

<table>
<thead>
<tr>
<th>Relation</th>
<th># Sentences used</th>
<th># Sentences w/ a learned rule</th>
<th># Rules</th>
<th># Rules w/o duplicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>award nomination</td>
<td>13,966</td>
<td>13,149</td>
<td>23,987</td>
<td>7,800</td>
</tr>
<tr>
<td>award honor</td>
<td>50,550</td>
<td>49,001</td>
<td>106,550</td>
<td>40,578</td>
</tr>
<tr>
<td>hall of fame induction</td>
<td>31,244</td>
<td>28,278</td>
<td>44,920</td>
<td>17,450</td>
</tr>
<tr>
<td>organization relationship</td>
<td>46,331</td>
<td>42,824</td>
<td>60,379</td>
<td>28,903</td>
</tr>
<tr>
<td>acquisition</td>
<td>63,967</td>
<td>60,903</td>
<td>96,747</td>
<td>50,544</td>
</tr>
<tr>
<td>organization merger</td>
<td>2,996</td>
<td>1,521</td>
<td>3,243</td>
<td>1,758</td>
</tr>
<tr>
<td>company name change</td>
<td>9,433</td>
<td>9,132</td>
<td>15,619</td>
<td>6,910</td>
</tr>
<tr>
<td>spin off</td>
<td>5,247</td>
<td>5,094</td>
<td>8,319</td>
<td>4,798</td>
</tr>
<tr>
<td>marriage</td>
<td>342,895</td>
<td>335,313</td>
<td>557,478</td>
<td>176,949</td>
</tr>
<tr>
<td>sibling relationship</td>
<td>167,611</td>
<td>160,893</td>
<td>255,788</td>
<td>69,596</td>
</tr>
<tr>
<td>romantic relationship</td>
<td>155,335</td>
<td>152,878</td>
<td>229,393</td>
<td>74,895</td>
</tr>
<tr>
<td>person parent</td>
<td>192,610</td>
<td>186,834</td>
<td>390,878</td>
<td>119,238</td>
</tr>
<tr>
<td>average of 39 relations</td>
<td>66,545</td>
<td>66,509</td>
<td>109,435</td>
<td>41,620</td>
</tr>
</tbody>
</table>
Problems of Large-Scale Approach

- Very low precision
 - a lot of noisy rules
 - many rules are learned from more than one relation
Euler Diagram for Four People-Relations

- Rules of marriage: 160,853
- Rules of person parent: 107,381
- Rules of romantic relationship: 64,515
- Rules of sibling relationship: 61,176
Various Filtering Strategies for High-Performance Web-Scale RE
Frequency-Driven Rule Filters

- Merged Filter:

\[\text{valid}^R_m(r) = \text{valid}^R_{freq}(r) \land \text{valid}^R_{inter}(r) \]

1) **absolute frequency filtering**: a threshold to exclude rules with low occurrence
Rule Frequency Driven Filters

- Merged Filter:

\[
valid^R_m(r) = valid^R_{\text{freq}}(r) \land valid^R_{\text{inter}}(r)
\]

1) **absolute frequency filtering**: a threshold to exclude rules with low occurrence

2) **inter-relation filter** (Overlap Filter – FO Filter):
 - based on mutual exclusiveness of relations with similar entity-type signatures.
 - a rule is only valid for a relation, if its relative frequency is higher than any other relations with similar entity type signatures.

\[
valid^R_{\text{inter}}(r) =
\begin{cases}
 \text{true} & \text{if } \forall R' \in \mathbb{R}\setminus\{R\} : rf_{r,R} > rf_{r,R'} \\
 \text{false} & \text{otherwise}
\end{cases}
\]
Weakness of Filtering with Frequency

- Undetected low-quality patterns:
 - high frequency in target relation, low frequency in coupled relations
Weakness of Filtering with Rule Frequency

- Undetected low-quality patterns:
 - high frequency in target relation, low frequency in coupled relations
Weakness of Filtering with Rule Frequency

- Undetected low-quality patterns:
 - high frequency in target relation, low frequency in coupled relations

- Erroneously-deleted good patterns:
 - infrequent patterns

```
PERSON  Verb: “meet”  PERSON

PERSON  Noun: “widower”  PERSON
```
Lexical Semantics can help!

Relation-specific lexical semantic graphs

World Wide Web

Candidate RE Patterns

Unsupervised Classification

High-quality RE Patterns
Automatic learning of relation-specific lexical semantic network

Generic Lexical Semantic Network (BabelNet)

automatically learned unfiltered RE rules and their mentions
Automatic learning of relation-specific lexical semantic network

Generic Lexical Semantic Network (BabelNet)

automatically learned unfiltered RE rules and their mentions

Word Sense Disambiguation
The Relation-Specific Semantic Graph

An excerpt of the semantic graph for the relation *marriage*
Extrinsic Eval. – Web-DARE

- Relative Recall
- Baseline
- S-Filter (WordNet)
- FO-Filter
- S-Filter (BabelNet)
Parse-Reranking for Domain-adaptive RE
Error Types of Extracted Wrong Instances

<table>
<thead>
<tr>
<th>Content Modality</th>
<th>Named Entity Recognition (NER)</th>
<th>Parsing</th>
<th>NER & Parsing</th>
<th>DARE Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.8% 17.6%</td>
<td>5.9%</td>
<td>38.2%</td>
<td>11.8%</td>
<td>14.7%</td>
</tr>
</tbody>
</table>
Egyptian scientist Ahmed Zewail won the 1999 Nobel Prize for chemistry.
Egyptian scientist Ahmed Zewail won the 1999 Nobel Prize for chemistry.
Reranking Architecture

N-best parses → DARE → RE rules with confidence values

Parse Reranking

Reranked parses
Baseline: before Re-ranking

- **Best reading**: high precision, low recall, low F-measure
- **500 readings**: lower precision, higher recall, higher F-measure
After Re-Ranking:

- Re-ranked top readings match more sentence mentions containing RE instances
- Improvements of Recall and F-Measure
Conclusion

- The performance of large-scale RE for each application is dependent on the performance of domain-adaptation methods

- Three original contributions (among others):
 - Extension of relation extraction to n-ary relations
 - Semantic filtering with large lexical knowledge bases
 - Parser improvement for the specific RE task by reranking

- For our work we received a Google Focused Research Award
Planned Future Work

- Immediate next step of big text data analytics is to integrate the existing NLP and IE components into big data analytics platforms.

- Entity linking and RE will play an essential role for semantic interoperability between structured and unstructured data.

- Extension and Application of our IE technologies to the new Smart Data projects:
 - Smart Data Web: Industry 4.0
 - Smart Data for Mobility: Mobility