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Abstract. Verification of non-linear hybrid systems is a challenging
task. Unlike many other verification methods the deduction-based verifi-
cation approach we investigate in this paper avoids approximations and
operates directly on the original non-linear system specifications. This
approach, however, requires the solution of non-trivial mathematical sub-
tasks. We propose to model existing reasoning systems, such as computer
algebra systems and constraint solvers, as mathematical services and to
provide them in a network of mathematical tools in a way that they can
reasonably support subtasks as they may occur in formal methods ap-
plications. The motivation is to make it simpler to implement and test
verification approaches by out-sourcing complex but precisely identifi-
able mathematical subtasks for which specialised reasoners do already
exists.

1 Introduction

Hybrid systems are heterogenous dynamical systems characterised by interacting
continuous and discrete dynamics. The enormous presence of hybrid systems in
safety critical applications, such as automated highway systems [18], air traffic
management systems [22], embedded automotive controllers [3], and chemical
processes [9], increasingly calls for safety guarantees. Since traditional program
verification methods allow at best to approximate continuously changing envi-
ronments by discrete sampling, special verification methods for hybrid systems,
such as [15 17], have been developed. A frequently employed method is to model
hybrid systems by hybrid automata. A hybrid automaton is a closed system
with a built-in control structure determining when and how the system switches
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between its various discrete states. Thereby the continuous behaviour in each
discrete state is governed by a differential equation.

The verification method we will employ in our work is the deduction-based
model checking approach for hybrid systems described in [23]. Given a speci-
fication of a hybrid system H (a hybrid automaton) and a safety property &
the approach generates a second order formula [@]g such that the validity of
the latter guarantees that property @ is valid for H. To support the validation
of [®#]y this method eliminates second order location predicates in [@]y one
by one in order to transform [®]g into an equivalent first order formula ¥, if
possible. With the validation of ¥ the verification approach terminates.

For the above deduction-based model checking approach we have identified
the following mathematical subtasks: (1) The solution of sets of differential equa-
tions, (2) checking subsumption between sets of constraints, and (3) checking
consistency of sets of constraints.

In general, solving these tasks is feasible in case of linear constraints and
linear differential equations. Our aim, however, is to widen the spectrum of the
approach, for instance, by allowing also non-linear constraints and differential
equations. Mathematical tasks like (1)  (3) may also be relevant for other hy-
brid system verification approaches. For instance, [13] employed the computer
algebra system MATHEMATICA to solve linear constraints. MATHEMATICA was
later replaced by a more efficient implementation of a specialised constraint
solving algorithm [14]. However, multiple implementations of the same kinds of
mathematical services in different verification systems could and should best be
avoided, especially if their realization is complex and challenging, such as in our
context.

We propose to model existing reasoning systems, such as computer algebra
systems and constraint solvers, as mathematical services and to provide them
in a network of mathematical tools in a way that they can reasonably support
subtasks as they may occur in formal methods applications. The motivation is to
make it simpler to implement and test verification approaches by out-sourcing
complex but precisely identifiable mathematical subtasks for which specialised
reasoners do already exists. Allowedly, in case a verification approach later turns
out to be successful (see for instance [14]) it may be reasonable from efficiency
aspects and also from concession aspects to replace the connections to math-
ematical services again by fast re-implementations of the particularly needed
algorithms. However, starting with the latter may dramatically slow down a
quick development and implementation of new verification environments. This
is particularly true in case the automation of the mathematical subtasks is al-
ready on the edge of current research, such as given in our case. This motivates
our proposal to build up a network of mathematical reasoning services for formal
methods. The more services will be appropriately added to such a network the
more likely it will be that also other verification approaches can directly employ
them (in early development stages) for the same purpose.

In this paper we illustrate the kinds of mathematical subtasks which occur in
the verification approach [23] by looking at a simple non-linear hybrid system.



Our network of choice for providing the mathematical services is the mathemat-
ical software bus MathWeb-SB [20].

The outline of the paper is as follows: we first illustrate aspects of the
deduction-based elimination approach for hybrid system verification and mo-
tivate different kinds of mathematical subtasks involved. We then sketch the
mathematical software bus MathWeb-SB that is our mathematical network in-
frastructure of choice and, furthermore, discuss candidate systems suitable for
tackling the identified kinds of problems. Finally we give an outlook on some
first ideas and requirements on the modelling and solving of these problems in
the MathWeb-SB.

2 Mathematical Subtasks in Hybrid System Verification

We briefly sketch the deduction-based model checking approach (DMC) of Non-
nengart described in [23], starting from the description of a hybrid system. We
also identify some of the mathematical subtasks that result from the application
of this approach. Our presentation follows a very simple example of a non-linear
hybrid system for which the deduction-based model checking approach results
in non-linear constraints.

2.1 Structure of a Hybrid System

Hybrid systems are typically modelled as hybrid automata that are presented as
finite graphs whose nodes correspond to global states (locations). The discrete
dynamics, i.e. the state transitions, of the automaton is modelled by the edges of
the graph. The continuous dynamics of the automaton is modelled by differential
equations associated with each state.

Falling Landed

s=0|T

Fig. 1. A simple hybrid automaton

Fig. 1 shows a simple hybrid automaton modelling Galilei’s gravity test:
Given a tower of height h, we assume to stand on top of this tower and let a
stone fall down. The stone falls until it reaches the bottom. Hence, we say, the
stone can be in two main states: Falling and Landed. At the beginning of our



experiment the clock counter ¢, which mirrors the flow of time ¢ in our system,
is set to 0, and we are dropping the stone from height A. Thus, the height of the
falling stone (at time ¢), which is represented by variable s, is initialised with h.

While the stone falls it accelerates according to the physical law of gravity:

5(t) = —gt, (1)
where g is the gravitational constant (g = 9.81m/sec?). This is represented as
the invariant § = —gc in the state Falling. Another invariant of Falling is

¢ = 1 expressing that the clock c is increasing linearly. s > 0, the last invariant
condition, says that the stone has not reached the ground yet. The condition for
a state transition to Landed simply is s = 0.

2.2 The Deduction-Based Model Checking Approach

We now apply the DMC to our example automaton in Fig. 1. Suppose we want
to know when the stone falling from the tower will reach the ground level. In
terms of a Integrator Computation Tree Logic (ICTL) [23] formula this means
to prove the property:

3O (Landed A ¢ < k), (2)

where k is a parameter to be instantiated by the proof procedure. A first task
in the DMC approach is the formalisation of the reachability theory for our
automaton. This theory formalises the conditions and invariants for staying in
the states Falling and Landed as well as the conditions causing a transition
from state Falling to Landed.

For the formalisation of this theory as a second order formula we, for in-
stance, have to solve the differential equation (1). Taking into consideration the
initialisation information we get:

c(t)=t, s(t) = h— 3gt% (3)
and thus
c(t+0) =c(t) + 0, s(t+08) =s(t) — gc(t)s? — 396> (4)

for any change in time J.

The complete reachability theory of the Galilei automaton is given as the
following conjunctive set of second order formulas (F and L are second order
variables)!:

F(s,c) — V. <520/\s'—sgc55952/\0'—c—|—5/\s/20HF(s’,c’))

!

(s,¢) > s>0

|

)
(s,c) = s=0— L(s,c)
L(s,c) =V¥5 (§>0As' =sAcd =c+d— L(s,c))

1 Some of the formulas are already somewhat simplified.



F(h,0) represents the initial state. Let us call this theory R. For the sake of
simplicity we consider now the dual of the property (2), namely VO(L — ¢ > k).
Hence, we have to prove

JF,L F(h,0) A\RAVs,cL(s,c) = [L—c>k]|ANF(s,¢) = [L—c>Fk]
which simplifies to
JF, L F(h,0) ARAVs,c L(s,c) — ¢ > k.

Let us first eliminate location F. We start with the fix-point computation over
the state Falling.

om=r
I''(Ty=s>0As=0— L(s,c)
I*(T)=V0.(6 20N =s—gcd — 290> N =c+0As >0—
§>0As =0— L(s,)) (5)
I3(T)=V6.(6 >0As =s—gcd — 396> N =c+ N8 >0—
V5’.(6’20/\3”=3’—gc’5’—%gé’g/\c”zc'—{—&’/\s”zO—»
8// 20/\8”:0_)11(8”76/,))

It is easy to see that in I™® the computation terminates (because I® — I'?).
Hence, with the insertion of the initial condition F'(h,0), the result is:

1
) (520/\5'—h2g62/\c'—5/\s' >0—c > k/\SI_OHL(SI,CI)>,
where ¢’ and s’ are universally quantified variables. This can be simplified to
1
d>0Ns =h— 596/2/\8/20—>Cl >kANs =0— L(s, ).

Further simplification leads to

2h 2h
20Ny =2 —=d>kAd =[— — L(0,¢) (6)
g g

At this stage it would be necessary to eliminate L as well. In fact this is very
simple and therefore is omitted here. From formula 6 we can extract a constraint

on the variable k, namely: k < ,/%. And since we had a look at the negation
of the property to be proved, we finally end up with the result that the stone is

landed for all values of the clock of at least %. Thus the moment of landing

is exactly when ¢ = 4/ %.

We now point to three relevant mathematical subtasks that occur in the
context of the DMC approach:



(1) In the example we have to solve the differential equations ¢(t) = 1 and
5(t) = —gt. The solution is employed in the formalisation of the reachability
theory.

While this is trivial in our hybrid system, the solution of non-linear differen-
tial equations is generally complex and not easily computable.

(2) The DMC approach stepwise eliminates the second order state predicates
and thereby generates sets of constraints. As indicated above a subsequent task
is then to check the consistency of the generated constraint sets in order to show
that a model exists. In our example above, for instance, we are interested in
constraints like:

520/\5’:3—g(15—%g52/\
d=c+oNs>0—=c >k

The constraint variables are ¢ and s,while ¢, ¢/, s’ universally quantified pa-
rameters coming from the reachability theory.

(8) Generally the fix-point computations involved in the DMC approach are
not as trivial as in the example here. The detection of fix-points can then be
supported by checking the subsumption of the constraint sets of single iterations
in the fix-point computation.

The overall picture is that the verification tool, implementing the deduction-
based verification approach, is processing the main steps involved. This, for
instance, includes the formalisation of the reachability theory and the stepwise
elimination of second order variables. The verification tool is also responsible for
the generation and appropriate formulation of the concrete mathematical service
requests illustrated in (1) — (3) and for passing them to the MathWeb-SB. A
verification example that illustrates the work-sharing aspects of the sketched
verification approach in more detail is given in [4]. As long as the verification
tool is not fully implemented its tasks or parts of its tasks will be simulated by
hand.

In the remainder of this paper we will concentrate on the mathematical
service network MathWeb-SB, which is our network infrastructure of choice. We
will also present candidate systems for supporting the mathematical subtasks
we are interested in.

3 The MathWeb Software Bus

The MathWeb Software Bus (MathWeb-SB) [20] for distributed automated the-
orem proving supports the connection of a wide range of mathematical services
by a common software bus. The MathWeb-SB provides the functionality to turn
existing theorem proving systems, computer algebra systems, and miscellaneous
tools into mathematical services that are homogeneously integrated into a proof
development environment.



The MathWeb-SB is implemented in MozarRT Oz [11], a multi-paradigm
object-oriented programming language which fully supports concurrent and dis-
tributed programming and allows to simply distribute applications over the In-
ternet. The services of the MathWeb-SB are used permanently by client ap-
plications, such as the 2MEGA system [10]. The MathWeb-SB currently inte-
grates many different reasoning and computation systems, like, for instance,
automated theorem provers (e.g., OTTER, SPASS, etc.) and computer algebra
systems (CASs) (e.g., MAPLE, and GAP). Fig. 2 shows parts of the MathWeb-
SB as it is currently running. In the MathWeb-SB, service servers offer the
mathematical services (e.g., an ATP, or a CAS) to their local MathWeb-SB bro-
ker. MathWeb brokers register and unregister to other brokers, so called remote
brokers, running in the Internet and therefore build a dynamic web of brokers.
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Fig. 2. The MathWeb Software Bus

Client applications, like the {2MEGA system or a CGl-script, connect to one
of the MathWeb-SB brokers and request services. If the requested service is not
offered by a local server, the broker forwards the request to all remote brokers.
If the requested service is found, the client application receives a reference to a
newly created service object and can directly send messages to the object. The
MathWeb-SB currently offers three interfaces to connect to a broker, namely
MozART’s distributed programming interface, CGI-script access via an HTTP
server, and access via XML-RPC.

3.1 Solving Differential Equations

Amongst the available Computer Algebra Systems in the MathWeb-SB we choose
MAPLE [6] as a first candidate to support our tasks. MAPLE is a mathematical
problem-solving environment that supports a wide variety of mathematical op-
erations such as numerical analysis, symbolic algebra, and graphics. We intend



to use the module for differential equations, especially the dsolve function,
that is a part of MAPLE. This module has the capability to solve Ordinary
Differential Equations (ODEs). The dsolve function is good in solving linear
differential equations very efficiently and provides good results, but it is quite
weak in attacking non-linear systems. A better candidate for the non-linear case
is the module NODES (Non linear Ordinary Differential Equations Solver) (8],
which has been developed in context of the European ESPRIT contact group
CATHODE. The NODES module is implemented in the MAPLE programming
language and is specialised in the analysis of systems of non-linear ODEs. It is
based on the quasi-monomial transformation theory [24]. In that theory, a system
of ODEs is represented by a couple of matrices and only these are manipulated.
NODES identifies values of the parameters in the relative matrix representation
corresponding to the integrability property of the ODE system and builds the
associated first integrals.

3.2 Checking Consistency of Constraints

The Rewrite and Decision procedure Laboratory (RDL) [1] simplifies clauses in
a quantifier-free first-order logic with equality using a tight integration between
rewriting and decision procedures. RDL is based on CCR (Constraint Contex-
tual Rewriting) [2], a formally specified integration schema between (ordered)
conditional rewriting and a satisfiability decision procedure. As a consequence,
RDL is sound, terminating and fully automatic.

RDL is an open system which can be modularly extended with new decision
procedures provided these offer certain interface functionalities. In its current
version, RDL offers ’plug and play’ decision procedures for the theories of Uni-
versal Presburger Arithmetic over Integers (UPAI), Universal Theory of Equality
(UTE), and UPAI extended with uninterpreted function symbols. Last but not
least, RDL implements instances of a generic extension schema for decision pro-
cedures. The key ingredient of such a schema is a lemma speculation mechanism
which ’reduces’ the satisfiability problem of a given theory to the satisfiability
problem of one of its sub-theories for which a decision procedure is available.
In the following we explain in few words how the lemma speculation works on
constraint sets.

In the context of our subtask, subsumption and checking of constraints can
be attacked in two ways. If the set of constraints looks like a set of polynomial
or trigonometric functions we can simplify them using highly efficient arithmetic
libraries. Due to this, we can handle constraints containing trigonometric func-
tions such as sin(z), cos(x), etc. In case that arithmetic is unable to simplify
the constraint set, we can attack the problem using the quantifier elimination
approach. The mechanism that allows RDL to decide which is the best choice
for the solving of the problem is Lemma Speculation. Here we sketch briefly how
this mechanism works for constraint subsumption.

Lemma speculation. The goal of this mechanism is to feed the decision proce-
dure with new facts about function symbols which are otherwise uninterpreted



in the theory T decided by the decision procedure. In other words, it inspects
the context C' and returns a set of ground facts entailed by C using 1" as the
background theory. In RDL there are three kinds of lemma speculation: the sim-
plest is augment that finds instances of the conclusions among the conditional
lemmas which can promote further inference steps in the decision procedure; an
improvement of the augment method is affinize that implements the ’on the fly’
generation of lemmas about multiplication over integers. Affinization is particu-
larly useful for non-linear inequalities and doesn’t require any user intervention.
As most powerful choice, there is the combination of the two mechanisms men-
tioned above. RDL combines augmentation and affinization by considering the
function symbols occurring in the context C. For example, the top-most function
symbol of the largest literal in C' triggers the invocation of either mechanisms.

4 Work Plan

We will investigate whether the sketched approach is applicable to industrial-
strength examples. To gain evidence for this we want to pursue case studies
like air traffic management [21,22] and the steam-boiler problem [12]. Starting
with an appropriate representation of the automata we will apply the DMC
approach and identify the concrete instances of the mathematical subtasks de-
scribed above. We then analyse whether and how these subtasks can actually
be attacked by the systems already available in the MathWeb-SB. The aim then
is to suitably model the subtasks as service requests to the MathWeb-SB. We
might possibly have to integrate new systems into the MathWeb-SB like, for
instance, the RDL system.

In the current implementation of the MathWeb-SB, the services requested by
client applications are whole reasoning systems (e.g. the CAS MAPLE or ATPs
such as OTTER). The service objects offer interface methods for using the sys-
tem’s reasoning capabilities, for instance the method eval in the case of CASs
or prove in the case of ATPs. For our work, we have to extend the MathWeb-SB
such that also abstract reasoning services, e.g. solving differential equations, can
be defined, offered to MathWeb brokers, and requested by clients. We plan an
implementation of abstract reasoning service as new interface methods of the
services objects. We also intend to use a service description language to describe
reasoning services independent of a concrete implementation. This language will
be based on XML-standards WSDL [7], OPENMATH [5], and OMDoc [19]. Ab-
stract service descriptions can then be mapped to interface method calls.
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