
A History-based Verification of Distributed

Applications

Bruno Langenstein, Andreas Nonnengart, Georg Rock, and Werner Stephan

German Research Center for Artificial Intelligence (DFKI GmbH)
Saarbrücken, Germany

{langenstein,nonnengart,rock,stephan}@dfki.de

Abstract. Safety and security guarantees for individual applications in general depend
on assumptions on the given context provided by distributed instances of operating
systems, hardware platforms, and other application level programs that are executed on
these platforms. The problem for formal approaches is to formalize these assumptions
without having to look at the details of the (formal) model of the operating system
(including the machines that execute applications).
The work described in this paper presents a modular approach which uses histories of
observable events to specify runs of distributed instances of the system. The overall
verification approach decomposes the given verification problem into local tasks along
the lines of assume-guarantee reasoning. In this paper we focus on this methodology and
on its realization in the Verification Support Environment (VSE). We also illustrate the
proposed approach with the help of a suitable example, namely the specification and
verification of an SMTP server whose implementation makes extensive use of various
system calls as e.g. fork and socket commands.

1 Introduction

The theory developed in the following aims at a modular approach for the speci-
fication and verification of concurrent systems with heterogeneous components.
Concurrency typically results from the actual parallel execution of independent
systems and the abstraction from a concrete scheduler within the context of
a given platform. Like the systems themselves their formal models will consist
of various types of components specified by different types of state transition
systems. In the composed (global) system the components interact with each
other by certain communication mechanisms.

In this paper we consider an instantiation of the general approach which is
taken from the context of the Verisoft project where a pervasive formal model
of a distributed collection of hardware-software platforms with application level
programs running on each of these was established, [1].

Instead of verifying application level programs directly on the Verisoft model,
we propose to use traces of observable events that according to a given view are
attached to steps of computations (or runs) of the distributed system as they
have been formally defined in Verisoft. Since for a state in a run we collect all
events that have happened so far we call these (finite) lists of events histories.
The behavior of the global system as well as that of single components is then

A History-based Verification of Distributed Applications 71

specified by sets of histories thereby abstracting from the local state spaces of the
components. Like an input-output specification for a sequential piece of software
sets of histories describe the concurrent, typically non-terminating computation
of a global system or component thereof. Event traces defined by a certain view
on a given model provide an appropriate interface for an inductive analysis of
cryptographic protocols, [2, 3] or an information flow analysis [4].

Our approach is modular in the sense that the task of verifying a history
specification against runs of the global system can be decomposed into local
verification tasks for its components. Following the general assume-guarantee
approach, see [5] for comprehensive discussion of these approaches, for each
event specified in a history there is exactly one component which may violate

the specification at this point. Therefore, our events allow to determine the
component considered to be responsible for the event. Events in a history a
particular component is not responsible for are considered as assumptions of
that component w.r.t. its environment.

Each history specification, possibly obtained by a combination of sub-speci-
fications, has to be verified against all components of the overall model. Here
we focus on the verification of C01 machines that execute (and give meaning
to) C0 programs extended by external calls that allow to exchange information
with the corresponding operating system and, via a network component, with
C0 machines that run on different (remote) instances of the operating system.
As an example we consider the implementation of an e-mail system consisting
of an e-mail client, a (so-called) mail bag, a SMTP-server, and a SMTP-client.

In the next section we summarize the instantiation of the general approach
by the Verisoft model of distributed systems. As a concrete example in section
3 we provide the specification of the SMTP server by a set of histories. In
Section 4 we describe the verification of application-level C0 programs, like the
implementation of the SMTP server, by means of a transformation to abstract
sequential programs that replay and extend histories. Section 5 summarizes the
described approach and outlines possible future work.

2 Events and Histories

2.1 The Verisoft Model

In the Verisoft project a formal model of an operating system was developed
and verified with respect to its implementation, [6]. Application level programs
run on (abstract) machines that are part of the model. They interact by a kind
of RPC like mechanism and access resources (of the OS) by external calls.

1 C0 is an imperative C-like programming language with some restrictions compared to standard C.
In C0 there are besides others no side effects in expressions and pointers are strictly typed (see [1]
for a complete description of C0).

72 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

A model of a distributed system consists of instances of (the same) system
and an abstract network component connecting them. Each system is identified
by a unique network address na ∈ Na. It basically consists of two parts. The
simple operating system provides resources like input-output devices, a file sys-
tem, and sockets for the communication over the network component. A process

is identified by a process identifier pid ∈ Pid and the network address of the
system instance it is running on. For each process given by p = mk proc(pid, na)
a machine (interpreter) is part of the system na. In this paper we are interested
in applications implemented in C0, the subset of C considered in Verisoft. Hence
our processes represent abstract execution mechanisms where the program part
of a configuration is a C0 program π.

From point of view of an application programmer the system context consists
of all operating systems and the network connecting them. Hence we consider
this complete context as a single component in our decomposition. It will be
denoted by the constant SOS.

The view we have chosen is depicted in Figure 1.

The communication between user pro-

Net

os@na

pid@na

system-context

Net

os@na

pid@na

system-context

Fig. 1. Verisoft Model

grams and the surrounding operating sys-
tem (instance) is by so called external calls.
External calls cext(τ̄ : z̄, res) take the same
syntax as ordinary function calls. We use τ̄
as a sequence of value parameters and z̄, res
as a sequence of return parameters. Typi-
cally the value of res will indicate success or
failure. Whenever a system call is reached
during the computation of a process p the

normal execution as given by the (small step) semantics RC0 ⊆ Conf × Conf
is interrupted (stopped) and a request is sent to the corresponding operating
system. With these steps of a global computation we associate events of the
form mk ev(p, SOS, m) where the message m encodes the particular call given
by cext and the values of the parameters (τ̄ : z̄) in mem′. For a call of socket
read socket read(sid : length, buffer, ec) the corresponding message will by
Sread(sid, length) where Sread is a constructor symbol for an abstract data
type and sid, length are the values of the programming variables sid, length in
mem′. They indicate the socket and the length of the string to be read.

To model the return of external calls the standard C0 machines have to be
extended by steps where the resulting configuration is determined by an answer
(message) from the corresponding operating system. The (answer) information
intended for process p will be written to the return parameters (of the pending
call). The event we associate with these steps is of the form mk ev(SOS, p, m)
where the message m represents the return information. For example a successful
call of socket read the message will be Succ sread(length, buffer) where length

A History-based Verification of Distributed Applications 73

indicates the elements in the fixed length array buffer that have actually been
read. These values uniquely determine the values of the result parameters after
return of that external call.

2.2 History Specifications

Having defined events for all external calls (and also RPC calls) we may specify
global system runs by a set (or unary predicate) H of finite sequences of events.
A global System SOS(π0, , . . . , πn−1) consisting of arbitrary many instances of
the operating system with arbitrary many C0-processes executing π0, , . . . , πn−1.

By SOS(π0, , . . . , πn−1) |= H we denote the fact that for each state in a
global run of SOS(π0, , . . . , πn−1) the sequence of events that have happened so
far satisfies H . Given an event e = mk ev(s, r, m) we say that s (the sender) is
responsible for that event. In addition we define that e is relevant for s as well as
the receiver r. By SOS(π0, , . . . , πn−1) ↓ i |= H we denote the fact that no process
p executing πi ∈ {π0, , . . . , πn−1} violates H first, i.e. in a step p is responsible
for. Similarly we use SOS(π0, , . . . , πn−1) ↓ SOS |= H for a projection to the
operating systems themselves.

To establish SOS(π0, , . . . , πn−1) ↓ i |= H locally outside the context of
a global system we transform πi into a program π̃i where the external calls
manipulate histories. Altogether π̃i replays and possibly extends histories.

Using π̃i |= H for the fact that π̃i preserves H , soundness of this method
(w.r.t. the verification of application level programs) is demonstrated by a kind of
simulation theorem that allows to conclude that π̃i |= H ⇒ SOS(π0, , . . . , πn−1) ↓
i |= H holds. The simulation theorem is application independent and established
by looking at the C0 execution mechanism. As opposed to that π̃i |= H is con-
cerned with the verification of individual programs.

Before we present the specification of the SMTP-server and the verification
technique given by the -̃transformation we have to discuss special events that
provide the binding between programs πi and processes in a given history.

2.3 Life Cycle Events

Histories cover the whole life cycle of processes. This includes the association of
process identifiers with the programs that are executed. This binding takes place
upon creation of a new process. The lifetime of a process ends by an explicit
termination event.

In the verification process we are interested in a particular program (text) π.
To associate programs with process identifiers we assume a fixed enumeration
of programs. In histories π = πi is then represented by the constant i.

Create events 〈SOS, p, Create(i)〉 are caused by the corresponding instance
of the SOS while the identifier for the new process p = mk proc(na, pid) is

74 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

considered as the recipient of the message indicating the program text πi to be
executed starting with a fixed initial state.

Clone create events 〈SOS, p, Clone Create(p′, b)〉 are caused by the corre-
sponding SOS as possible positive reaction to a call of fork. p = mk proc(na, pid)
indicates the child process which continues to execute the program of the parent

process given by p′ in the message. b ∈ {0, 1} is a flag indicating access to the
terminal. The initial state of p is the state of p′ reached before execution of fork.

A process p (executing some πi) is terminated by exit or kill events. Exit
events are caused by p while kill events are caused by the corresponding instance
of the SOS.

A sub-history h0 of h is called a thread of p in h if there is exactly one create
event for p in h0 which is the first event (in h0) relevant for p. The thread is
called open if h0 does not contain a terminating event for p.

Now in defining π̃i |= H by a program π̃(i) that replays and (possibly)
extends histories h we have to consider all threads in h that execute πi. Since a
given specification H can only be violated if some h ∈ H is actually extended by
π̃ we restrict ourselves to open threads executing πi. It is a simple observation
that for each p there is at most one open thread in a given h. Therefore we
provide a (guess of) p as an argument to the replay and extend procedure. If
there is no open thread of p that executes πi, then the given history h is delivered
unchanged as the result.

Open threads chosen in this way include those where a child p of p′ is created
by an event 〈SOS, p, Clone Create(p′, b)〉 following a call of fork during the
execution of πi. Since we have to know the correct internal state the replay and
extend procedure has to start with the first ancestor p′′ of p. The computation
of this process is initiated by a create event 〈SOS, p′′, Create(i)〉 .

In the start of the replay and extend procedure for πi as well as in the im-
plementation of calls of fork we use the function anc(i, p, h) which computes the
sequence of ancestor threads for a given p and h. In case there is no open thread
of p in h executing πi anc(p, h) = []. For anc(p, h) = [h0, . . . , hn1

], hn1
is the open

thread of p in h with 〈SOS, p, Create(i)〉 or 〈SOS, p, Clone Create(p′, b)〉 as first
event and h0 is the first ancestor thread with first element 〈SOS, p′′, Create(i)〉.

3 SMTP-Server

As already mentioned earlier we considered a non-trivial example in the Verisoft
context, namely the full implementation (in a C-like language) and the full
specification (in terms of histories) of an SMTP-Server as part of an Simple
Mail Transfer Scenario. All in all this implementation required about 7.500 lines
of code.

The SMTP server listens for connections from SMTP clients. If a connection
has been established, it spawns a child process, which inherits the socket grant-

A History-based Verification of Distributed Applications 75

ing access to that new connection. The child communicates with the remote
SMTP client while obeying the so-called SMTP Protocol. In the meantime, the
main SMTP server process listens again for new connections and spawns child
processes to handle the session. This behaviour can be formalised by a step by
step description of the main process and its child processes. For the formalisation
we fix the constant SOS (Simple Operating System) representing the operating
system. Any process – and thus the SOS as well – is determined by a network
address (the host) and a process id on this host. We assume that – for a given
process p – we can access the network address by get na(p).

For simplicity we make use of the following definitions: For every history h
and process p we define h ↓ p as the projection of the history h on process p.
I. e.,

() ↓ p = ()
(〈s, r, m〉 ◦ h) ↓ p = 〈s, r, m〉 ◦ h ↓ p if s=p or r=p
(〈s, r, m〉 ◦ h) ↓ p = h ↓ p otherwise

With h+ = {h′ ∈ Hist | h′ ↓ p = h} we can describe (for a given history
h and an implicitly given process p) the set of histories whose projection on
p is just h. Recall that we defined the binary operator ◦ on histories as the
concatenation of its two arguments. In what follows we also use this operator for
the ”concatenation” of two history sets: H1 ◦H2 = {h1 ◦ h2 | h1 ∈ H1, h2 ∈ H2}.

The top-level specification (in terms of histories) of the SMTP-Server then
looks as follows: we consider the prefix-closure of the set HSMTP Server(p) where
HSMTP Server(p) = HINIT(p) ◦ HLOOP(p, sid) for some process p representing the
SMTP-Server process and some socket id sid.
The history set HINIT(p) describes the initialization phase of the SMTP-Server.
I. e., the SOS first creates the SMTP-process (represented by the message
Create(SMTP Server , SOS, 1)). Then the newly created SMTP-process sends
a message to the SOS that it wants a socket to be opened on port 25 (the stan-
dard SMTP-port). After the SOS successfully responds with a new socket id the
SMTP-Server requests to listen to this new socket. The history set HINIT(p) is
thus easily defined as

HINIT(p) = (〈SOS, p,Create(SMTP Server , SOS, 1)〉 ◦
〈p, SOS, Sopen(25)〉 ◦ 〈SOS, p, Succ sopen(sid)〉 ◦
〈p, SOS, Slisten(sid)〉 ◦ 〈SOS, p, Succ〉)+

for a process p representing the SMTP-Server process and a socket id sid. The
history set HLOOP(p, sid) is supposed to cover the parent process of the SMTP-
server together with all the children processes that might be initiated. It is

76 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

defined as the smallest set of histories that satisfies the equation

HLOOP(p, sid) = (〈p, SOS, Saccept(sid)〉)+ ∪
(HACC(p, sid, sid′) ◦ HFORK CALL(p) ◦

((HFORK ANS C(p′) ◦ HCHILD(p′, sid)) ∩
(HFORK ANS P(p) ◦ HCLOSE(p, sid′) ◦ HLOOP(p, sid))))

for some socket id sid′ 6= sid and some process p′ 6= p .
This history set HLOOP(p, sid) might require some more explanation. First the
SMTP-Server issues a socket-accept command. This command might never be
answered and thus the SMTP-Server might wait forever (first line in the defi-
nition of HLOOP(p, sid)). If, however, there is an answer to the accept-request
(another process issued a corresponding connect-request) then the SMTP-Server
calls a fork-command, thus producing a child of its own process. Now, both the
SMTP-Server and its child run concurrently as indicated by the intersection of
the two history sets in the last two lines of the HLOOP(p, sid) definition.

With this explanation the definition of the history sets HACC(p, sid, sid′),
HFORK(p), and HCLOSE(p, sid′) should be fairly obvious, namely

HACC(p, sid, sid′) = (〈p, SOS, Saccept(sid)〉〈SOS, p,Succ saccept (sid′, rna, rpn)〉)+

for some remote network address rna and port number rpn

HFORK CALL(p) = (〈p, SOS, Afork(1)〉)+

HFORK ANS P(p) = (〈SOS, p,Succ afork(hdl)〉)+ for some handle hdl 6= none

HFORK ANS C(p) = (〈SOS, p,Create Clone(iC , p, 1)〉〈SOS, p,Succ afork(none)〉)+

HCLOSE(p, sid) = (〈p, SOS, Sclose(sid)〉〈SOS, p,Succ〉)+

Note that the first argument of the Create Clone message indicates the (index
of the) program that is supposed to run as the child process.
Remains the most complicated case, namely the specification of the child process
which is responsible for carrying out the SMTP protocol. As above, we consider
only the successful case here.

HCHILD(p, sid) = HGREETING(p, sid) ◦ HReadEmails(p, sid) ◦
HQUIT(p, sid) ◦ HCLOSE(p, sid)

The history set for HCLOSE(p,sid) is already defined above. HGREETING(p, sid)
and HQUIT(p, sid) look as follows:

HGREETING(p, sid) = HREADY(p, sid) ◦ HReadLine(p, sid, ”EHLO ” + ipr) ◦
HGREETS(p, sid, ipr) for some remote ip address ipr

HREADY(p, sid) = (〈p, SOS, Swrite(sid, ”220 ” + get na(p) +
” SMT Service Ready”)〉〈SOS, p,Succ〉)+

HGREETS(p, sid, ipr) = (〈p, SOS, Swrite(sid, ”250 ” + get na(p) + ” greets ” + ipr)〉
〈SOS, p,Succ〉)+

HQUIT(p, sid) = HReadLine(p, sid, ”QUIT”) ◦
(〈p, SOS, Swrite(sid, ”221 ” + p + ” closing”)〉 ◦
〈SOS, p,Succ〉 ◦ 〈p, SOS, Exit〉)+

ReadLine consists essentially of successively reading one character after the
other. A slight complication arises as it may be possible that the attempt to

A History-based Verification of Distributed Applications 77

read a single character may be successful, yet results in an empty string (i. e.,
we assume the socket-read command to be non-blocking).

HReadLine(p, sid, string) =

8

<

:

HReadString(p, sid, string) if ∃s : string = sˆCRˆLF

and s does not contain CRˆLF

Ø otherwise

i. e., reading a line means to read a string that (uniquely) ends with a carriage
return (CR) followed by a line feed (LF).
HReadString is defined as the smallest set satisfying the equations

HReadString(p, sid, ””) = ()+

HReadString(p, sid, cˆs) = HReadChar(p, sid, c) ◦ HReadString(p, sid, s)

where

HReadChar(p, sid, c) = HReadEmpty(p, sid) ◦ HReadChar1(p, sid, c)
HReadChar1(p, sid, c) = (〈p, SOS, Sread(sid, 1)〉〈SOS, p, Succ sread(1, ”c”)〉)+

and HReadEmpty(p, sid) = µH.(H = ()+ ∪ HReadEmpty1(p, sid) ◦ H) where

HReadEmpty1(p, sid) = (〈p, SOS, Sread(sid, 1)〉〈SOS, p, Succ sread(0, ””)〉)+

Remains to specify the history set HReadEmails (which in addition covers writ-
ing the email to the Inbox file). HReadEmails is the smallest set satisfying the
equation HReadEmails(p, sid) = ()+ ∪

(
HReadEmail(p, sid) ◦ HReadEmails(p,sid)

)
, i. e.,

HReadEmails(p, sid) = µH.
(
H = ()+ ∪ HReadEmail(p, sid) ◦ H

)

where HReadEmail(p, sid) splits into several parts, namely in reading the sender’s
address, the recipient’s address, the email data and the writing of the email to
the file system.

HReadEmail(p, sid) = HReadS(p, sid, s) ◦ HReadR(p, sid, r) ◦ HReadD(p, sid, d) ◦
HWriteEmail(p, sˆrˆd) for some s, r, d

HReadS(p, sid, s) = HReadLine(p, sid, ”MAIL FROM: ” + s) ◦
(〈p, SOS,Swrite(sid, ”OK”)〉 ◦ 〈SOS, p,Succ〉)+

HReadR(p, sid, r) = HReadLine(p, sid, ”RCPT TO: ” + r) ◦
(〈p, SOS,Swrite(sid, ”OK”)〉 ◦ 〈SOS, p,Succ〉)+

HReadD(p, sid, d) = HReadLine(p, sid, ”DATA:”) ◦
(〈p, SOS,Swrite(sid, ”354 Start mail input;

end with CRLF .CRLF”)〉 ◦ 〈SOS, p,Succ〉)+ ◦
HReadD′(p, sid, d) ◦
(〈p, SOS,Swrite(sid, ”OK”)〉 ◦ 〈SOS, p,Succ〉)+

HReadD′(p, sid, ”.”) = HReadLine(p, sid, ”.”)
HReadD′(p, sid, lˆd) = HReadLine(p, sid, l) ◦ HReadD′(p, sid, d) provided l 6= ”.”

The final step is to specify HWriteEmail.

HWriteEmail(p, e) = (〈p, SOS, Flock(Inbox)〉〈SOS, p,Succ〉 ◦
〈p, SOS, Fseek (Inbox, 1, 0)〉〈SOS, p,Succ fseek(pos1)〉 ◦
〈p, SOS, Fwrite(Inbox, e)〉〈SOS, p,Succ fwrite(pos2, n)〉 ◦
〈p, SOS, Funlock(Inbox)〉〈SOS, p,Succ〉)+

78 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

for some file positions pos1 and pos2.
It is certainly out of the scope of this paper to show all the verification

details for the whole SMTP-Server. Instead, we emphasise on a small portion of
it, namely the readLine procedure as specified above.
In a VSE-like fashion the procedure is listed below:

PROCEDURE readLine(sid:length,buffer,res)

int length, ec;

buffer buffer_array;

char c, cprevious;

bool res;

BEGIN length := 1; res := true; c := null; cprevious := null;

cl := nil;

WHILE ((cprevious /= CR OR c /= LF) AND res = true) DO

length := 1; socket_read(sid:length,buffer,ec);

if (ec = SUCC) then res := true else res := false fi;

if (length = 1 and res = t) then

cprevious := c; c := buffer[0]; cl := write(cl,c) fi

OD;

END

The readline procedure is supposed to read characters from the given TCP/IP
socket until it finds a CR followed by a LF. This behaviour is described by the
history set HReadLine(p, sid, cl) for a procedure identifier p, socket id sid and a list
of characters (string) cl. The segments of the histories that are members of this
set are the results of calling the readLine procedure from above. Therefore, for
the verification of the SMTP server, we need to make sure that this procedure
(implementation) meets its intended semantics (the corresponding history sets
from above).

According to the technique described above we have to prove the following
property:

h0
c = hc ∧ h0

out = hout ∧ mode = fin
→ 〈readLine(p, sid : hc, hout, mode, cl, res)〉

mode 6= stop →
∃h : hout = h0

out ◦ h ∧ ((mode = fin ∧ res = t) ↔ h ∈ HReadLine(p, sid, cl))

The proof of this property is split into three main lemmas (and several small
lemmas about the data structures used): The first lemma is formulated close to
an invariant used to deal with the (single) while loop occurring in the body of
readLine.

h0
out = hout ∧ mode = fin

→ 〈readLine(p, sid : hc, hout, mode, cl, res)〉
mode 6= stop
→ ∃h : hout = h0

out = h ∧
((mode = fin ∧ res = t)
→ h ∈ HReadString(p, sid, cl) ◦ HReadEmpty(p, sid)) ∧

(h ∈ HReadString(p, sid, cl) ◦ HReadEmpty(p, sid) ∧ cl 6= 〈〉
→ (mode = fin ∧ res = t))

A History-based Verification of Distributed Applications 79

The following lemma states that we can drop the history sets HReadEmpty,
because HReadEmpty(p, sid) \ HReadEmpty1(p, sid) = {[]}.

h0
out = hout ∧ mode = fin

→ 〈readLine(p, sid : hc, hout, mode, cl, res)〉
mode 6= stop → ∃h : hout = h0

out ◦ h ∧
((mode = fin ∧ res = t) → h /∈ HReadEmpty1(p, sid) ◦ H)

Finally, we need a lemma that deals with the fact that end of lines are marked
with 〈CR, LF 〉. Notably, the proof for this lemma does not require any knowl-
edge about the external call simulation socket read sim. Thus this example
shows how a proof can be separated into parts dealing with concurrent commu-
nication and those dealing with properties independent of the communication,
even if the properties are not separated by the program structure.

〈readLine(p, sid : hc, hout, mode, cl, res)〉

mode = fin ∧ res = t → ∃cl0 : cl = cl0 ◦ 〈CR, LF 〉

4 Application Level Programs

In this section we describe the construction of π̃i out of πi. The C0 program π
with external calls is transformed into a program π̃ that takes histories as input
and produces histories as output but uses only standard function calls. Since
histories describe initial segments of nonterminating behaviors the new program
is intended always to terminate. We consider its result as an approximation of
the computation of π following the general replay and extend strategy outline
above.

We suggest a uniform transformation of the program into an approximation
exhibiting the same behavior as the original program with respect to prefixes
of event histories. The transformation preserves the structure of the program.
Thus it is possible to use a verification approach that follows the structure of
the implementation. Moreover this approach enables us to employ well known
verification techniques for sequential programs as described in, for instance, [7]
and [8]. The latter system has been used for the verification of SMTP.

4.1 Computing Approximations

In this section the uniform procedure to convert programs πi into their approx-
imations π̃i is described. Let the program πi be given as πi = (δi|αi(x̄)), where
x̄ are the (program) variables occurring free in αi and δi is the list of procedure

80 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

declarations used in αi. The function approxπi
(p0, h0) will be computed by the

program π̃i given by

(approx i(p, hin : hout, mode) ⇐ declare hc := hin; x̄ := σ̄

begin mode := fin; hout := []; start i(: p, hc, hout); α̃i(x̄);

stop(: hout, hc, mode) end,

ext call(πi), δ̃i | approx i(p0, h0 : h1, m0))

where the initial values of h1 and m0 (used to return the results) are not relevant.

The sequence ext call(πi) contains declarations for the procedures that sim-
ulate the external calls occurring in πi together with additional start and stop
procedure, start i and stop, respectively.

In the computation of the approximation a local variable hc is used that
contains the currently remaining history during the execution of α̃i. It is set to
hin initially. The output history is collected in hout as the computation proceeds
while the mode is kept in mode.

The construction is guided by the following general idea. An initial segment
of the computation of αi executed by p is replayed using (consuming) h and
extending hout.

External calls c(τ̄ : z̄, res) are replaced (or simulated) by procedures with
declarations c sim(p, x̄ : ȳ, res, hc, hout, mode) ⇐ bodyc. The simulating pro-
cedures analyze and shorten (consume) the current history h and extend the
current output hout. The first argument indicates the process that is executing
αi. Let v̄ and w̄ be the values of τ̄ and z̄, respectively.

If in hc there is no event generated by p, then the computation (of α̃i) stops
with hout ◦ h ◦ [evc(p, v̄ : w̄)] as final output, where evc(p, v̄ : w̄) is the event
generated by this call of c.

If in hc there is a further event generated by p, then it has to be evc(p, v̄ : w̄).
Otherwise the computation stops signalling a failure. In that case the particular
hc is not realized by πi (and π̃i) which might happen due to over specification.

For hc = h0 ◦ h′

1, where in h0 there is no event generated by p and fst(h′

1) =
evc(p, v̄ : w̄), h′

1 is scanned for a matching answer event. If there is no such
answer, then the computation stops with hout ◦h as the final output history and
mode being set to stop.

In all these cases the procedure simulating the external call leaves the result
parameters untouched since they are not needed anymore.

In the following paragraph we make use of the predicate Match ev(e1, e2)
which checks whether the event e2 represents a matching answer for the event e1.
〈p, SOS, Sread(sid, 1)〉 and 〈SOS, p, Succ sread(1, ”c”)〉 represents an example
for a pair of matching messages. These two messages represent the call of a
socket read on the socket identified by sid and the corresponding answer message
containing the read string c (see also chapter 3).

A History-based Verification of Distributed Applications 81

For h′

1 = h1 ◦ h2, where rst(h1) contains no answer matching fst(h′

1) =
fst(h1) = evc(p, v̄ : w̄) and fst(h2) = e such that Match ev(evc(p, v̄ : w̄), e)
the procedure returns values for the result parameters according to the message
contained in e and the computation of α̃i continues with rst(h2) as the new
remaining history and hout ◦ h0 ◦ h1 ◦ [fst(h2)] as the new current output.

The above mentioned analysis of the current history h with respect to an
external call c(τ̄ : z̄, res) of p is given by parsec(p, h, v̄, w̄) ∈ His × His × His,
where again v̄ and w̄ are the values of τ̄ and z̄, respectively.

parsec(p, h, v̄, w̄) = (h0, h1, h2) ↔ (h = h0 ◦ h1 ◦ h2 ∧

evc(p, v̄ : w̄) 6∈ h0 ∧

(h1 6= [] → (fst(h1) = evc(p, v̄ : w̄) ∧

∀e ∈ rst(h1).¬Match ev(evc(p, v̄ : w̄), e))) ∧

(h2 6= [] → Match ev(evc(p, v̄ : w̄), fst(h2))))

The body of the procedure is given below.

bodyc :≡ declare h0 := parsec(p, hc, x̄, ȳ).0;

h1 := parsec(p, hc, x̄, ȳ).1;

h2 := parsec(p, hc, x̄, ȳ).2

begin

if mode 6= fin then skip else

if ∃e ∈ h0.Gen(p, e) then mode := fail else

if h2 = [] then mode := stop;

if h1 = [] then

hout := hout ◦ h ◦ [evc(p, x̄, ȳ)];

hc := [] fi

else

hout := hout ◦ h0 ◦ h1 ◦ [fst(h2)];

hc := rst(h2); y0 := ret val1c (fst(h2))

. . .

yn−1 := ret valn−1
c (fst(h2))

res := ret resc(fst(h2))

fi fi fi

where Gen(p, e) is true if the event e is generated by the process represented by
p. The function ret valic(e) extracts the result parameters from the event e and
ret resc(e) returns the result value of the corresponding external call c.

82 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

Before the execution of α̃i is started the begin of an active thread of p has
to be determined by the start procedure, or if p has been started by a fork call,
the start of the ancestor’s thread who was running the very beginning of the
program has to be found. If there is no p-thread executing πi (or no suitable
ancestor), then the given input history is returned as output and mode is set to
term.

The procedure that simulates the start of a process πi is given by the dec-
laration start i(: p, hc, h out, mode) ⇐ bodystart i. It parses the given history h
according to the definition of Proc.

parsestart i(p, hc) = (h0, h1) ↔ h = h0 ◦ h1 ∧

(h1 6= [] → (Create(i, p, fst(h1)) ∧

∀e ∈ rst(h1).¬Term(i, p, e)))

The procedure body then is given below.

bodystart i :≡ declare ah := anc(i, p, h); h0 := []; h1 := [];

begin

if ah = [] then mode := term; hout := hc; else

h1 := fst(ah); h0 := ∆(hc, h1);

hc := rst(h1); hout := h0 ◦ [fst(h1)];

p := get rec(fst(h1))

fi

Finally we need a stop procedure stop(: hout, h, mode) ⇐ bodystop that final-
izes the simulation. It restores the original history by appending the remaining
h to hout. Note that in those cases where a new (final) event was generated hc

will be []. If we have reached the end of α̃i, indicated by mode = fin, we check
whether according to the remaining history something needs to be done a sig-
nal the result by setting mode to fin or term, respectively. This information is
needed for decomposing verification problems. The body of the stop procedure
is then given as

bodystop :≡ hout := hout ◦ h;

if mode = fin ∧ ∀e ∈ h.¬Gen(p, e) then mode := term fi

Whenever mode is changed (to m ∈ {stop, fail}) by a procedure simulating
an external call the rest of α̃i has to be skipped. This is achieved by adding a
kind of guards to while loops and (possibly) recursive procedures. In addition h,
hout, and mode have to be passed as arguments to the procedures declared in δi.

A History-based Verification of Distributed Applications 83

For declarations we have

∅ 7→∼ ∅

q(x̄ : ȳ) ⇐ β , δ 7→∼ q̃(x̄ : ȳ, hc, hout, mode) ⇐

if mode 6= fin then skip else β̃ fi , δ̃

Commands are modified as follows.

skip 7→∼ skip

x := τ 7→∼ x := τ

α0; α1 7→∼ α̃0; α̃1

if ǫ then α0 else α1 fi 7→∼ if ǫ then α̃0 else α̃1 fi

while ǫ do α od 7→∼ while ǫ ∧ mode 6= fin do α̃ od

q(τ̄ : z̄) 7→∼ q̃(τ̄ : z̄, hc, hout, mode)

c(τ̄ : z̄, res) 7→∼ c sim(p, τ̄ : z̄, res, hc, hout, mode)

5 Conclusion and Related Work

Our work was motivated by the problem of verifying application level programs
with certain communication primitives given a complex formal model for dis-
tributed instances of an operating system that are connected by a network and
include machines for the interpretation of C0 programs. Instead of working di-
rectly on the model we have introduced sets of (finite) sequences H of commu-
nication events to specify open distributed systems. This is a particular kind of
stream specification as discussed in [9]. However, we restrict ourselves to prefix
closed sets expressing safety properties.

Apart from abstracting from the local state spaces these histories were used
for a reduction to local verification problems (compositionality). In case of ap-
plication level programs this reduction is provided by a uniform transformation
π 7→ π̃. Once and for all we had to establish a relation to the original model
by a simulation theorem. This proof is based on the Verisoft C0 interpreter and
is the only semantic consideration necessary in our approach. As opposed to
the Hoare-style proof system presented in [10] we do not need a new semantic
interpretation for π̃.

An earlier attempt to map the Verisoft model to the temporal framework
implemented in VSE failed. Temporal verification techniques, like those men-
tioned in [11], turned out not to be appropriate for large programs (more than
7.500 lines) and complex internal data structures. The results of the verification
of π̃ can be viewed as properties of a (total!) function approxπ : Hist → Hist
that (possibly) extends a given history h by a further event (step). Turning this
function into an action of TLA, [12], (manipulating variables for histories) al-
lows for a temporal treatment of liveness and reactivity. The underlying safety
assertion, 2h ∈ H has already been established outside temporal logic.

84 Bruno Langenstein, Andreas Nonnengart, Georg Rock, Werner Stephan

Despite many technical differences the basic idea for the reduction to π̃ is
similar to the use of (prefix closed) time diagrams in [10]. In particular this holds
for the distinction between events caused by π̃ and those caused by the envi-
ronment. However, neither do we need a special semantics for the transformed
program π̃ nor an explicit composition theorem for the concurrent execution of
programs. Composition as well as the inference of additional properties is done
entirely at the level of history specifications H . For the latter we might use func-
tions that extract (as a first-order data structure) for example ”the last e-mail
that was sent” from a given history h.

References

1. The Verisoft Consortium: The verisoft project http://www.verisoft.de.
2. Cheikhrouhou, L., Rock, G., Stephan, W., Schwan, M., Lassmann, G.: Verifying a chip-card-based

biometric identification protocol in vse. In: The 25th International Conference on Computer
Safety, Security and Reliability (SAFECOMP 2006). (2006)

3. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Computer
Security 6 (1998) 85–128

4. Mantel, H.: Information flow control and applications — bridging a gap. Lecture Notes in
Computer Science 2021 (2001)

5. de Roever, W.P.: Concurrency Verification – Introduction to Compositional and Noncomposi-
tional Methods. Cambridge University Press (2001)

6. Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of operating system
kernels. In Hurd, J., Melham, T.F., eds.: Proceedings of the TPHOLs 05, Springer (2005) 1–16

7. Schirmer, N.: A verification environment for sequential imperative programs in isabelle/hol. In
Baader, F., Voronkov, A., eds.: Proceedings of the LPAR 04, Springer (2005) 398–414

8. Hutter, D., Langenstein, B., Sengler, C., Siekmann, J.H., Stephan, W., Wolpers, A.: Deduction
in the Verification Support Environment (VSE). In: Proceedings FME96. Volume 1051., Springer
(1996)

9. Broy, M., Stolen, K.: Specification and Development of Interactive Systems: FOCUS on Streams,
Interfaces and Refinement. Springer (2001)

10. de Boer, F.S., Hannemann, U., de Roever, W.P.: Hoare-style compositional proof systems for
reactive shared variable concurency. In: Proceedings of the 17th Conference on Foundations of
Software Technology and Theoretical Computer Science, London, UK, Springer-Verlag (1997)
267–283

11. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer (1991)
12. Lamport, L.: Specifying Systems – The TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley (2003)

