

Multimodal Dialogue

for Multimedia Databases

Workshop Goals

Workshop goals: Explore the interface between the world of multimodal database systems and multimodal dialogue systems - future database systems aid in finding the desired information through dialogues if the exact query is difficult to pose.

1970

- •Translate question and commands into relational—database commands
- Written language, ATN grammars, LUNAR system (Woods), SHRDLU system (Winograd)
- •Language descriptions correspond to simple combinations of (SQL) commands:
- •Instantiate DB-oriented retrieval patterns. (lexico-semantic patterns)

What is the location of the long red screwdrivers?

Select * from Tools where length = "long"

& class = "screwdriver"

2004

DB2 Text Information Extender V7.2

Fully integrated into DB2 Full-text search functionality using SQL:

- Text search functions
- Incremental and asynchronous full-text index
- Supports character data types, user-defined types, large objects and external files
- Boolean, wildcard, free-text and fuzzy search
- incorporated into DB2 Net Search Extender V8, use only recommended for UDB 7.2.
- text-search-specific extensions are based on the SQL/MM standard

MMDB Structure

MM Application Workflow

Figure 1: Text quality dimensions.

- Robust DB index for SRE, 00V models
- Show added value for complex HCI
- Compare to knowledge-based approaches (SW context)

SQLMM Query Operators

Query expansion operator	DB2	Oracle	SQL	Informix
			Server	
Fuzzy term matches to include words that are spelled	•	•	-	•
similarly to the query term.				
Taxonomy search to include more specific or more	•	• 1	-	-
general terms.				
Proximity search to test whether two words are close to	•	•	•	•
each other, i.e. near positions.				
Related term matches to expand the query by related	•	•	•	•
terms defined in a thesaurus.				
				•

TBL

Linguistic query expansion operator	D B 2	Oracle	SQL	Informix
			Server	
Stem match to search for terms that have the same	•	•	•	-
linguistic stem as the query term, e.g. runs->run, running				
->run				
Translation match to search for translated terms in a	-	•	-	-
different language, defined by a thesaurus.				

SRindex

Text summarization Automatic summarization of	-	•	-	-
documents based on key words and related				
sentences/paragraph (pseudo-semantic processing).				
Theme search/extraction Automatic extraction of the	-	•	-	-
text theme that can then be searched for.				
Decomposition match to decompose complex words into	•	• 1	-	-
their stems.				

Interaction Example

U (Query): Show me the mascot of the football WCS.

S (Clarification): Which year? 2006 2002 1998 1994 1990

U (Feedback): 2006

S (Multimodal): GOLEO

- U (Query): I need some texts about football rules.
- S (Intermediate Result):

Paragraph: Yellow card Paragraph: Red card Paragraph: Penalty shot

- U (Feedback): What does red and yellow card mean?
- S (Final Result)

Paragraph: Yellow, yellow-red, and red cards are shown ...

Impact

Feature Extraction Methods

	Concept	Feature extraction method	DB2	Oracle	Discovir
	level				
Color global	1/2	Global color histogram	•	•	•
	1/2	Global average color	•	-	•
	2	Color moment	-	-	•
	2	Color coherence vector	-	-	•
Color local	3	Local color histogram	-	•	•
	3	Local average color	•	-	-
Texture global	2	Homogeneity	-	-	•
	2	Entropy	-	-	•
	2	Probability	-	-	•
	2	inverse differential moment	-	-	•
	2	differential moment	-	-	•
	2	Contrast	•	-	-
	2	Edge direction	•	-	-
	2	Granularity/fineness	•	•	•
	2	Edge frequency	-	-	•
	2	Length of primitives/texture	-	-	•
Texture local	3	Locality of texture	-	•	-
Shape global	2	Geometric moment	-	-	•
	2	Eccentricity	-	-	•
	2	Invariant moment	-	-	•
	2	Legendre moment	-	-	•
	2	Zernike moment	-	-	•
	2	Edge direction histogram	-	-	•
	2	Color-based segmentation	-	•	-
Shape local	3/4	Locality of Shape	-	•	•

Meta Data Management

- What kind of Meta Data can be mined to allow for better answer selection?
- What kind of Meta Data can be mined for Answer Merging?
- What kind of Meta Data can be mined to allow for better context-sensitive Answer Filtering and Presentation?
- What kind of Meta Data can be exploited to allow for better reaction behaviour? Dialog management and turn taking behaviour should be adaptable to increase usability.
- How can context-dependency, i.e. linguistic-, multimodal-, architectural-, and dialog state -dependency be expressed by available Meta Data?
- The Dialogue Semantic Mediator Interface needs to communicate status messages about turn numbers, cancelling of ongoing retrieval tasks, turn commits and answer times

Meta Data Classes

