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Abstract. We implemented a generic dialogue shell that can be configiare
and applied to domain-specific dialogue applications. Tiakdue system works
robustly for a new domain when the application backend céonaatically infer
previously unknown knowledge (facts) and provide expliamatfor the inference
steps involved. For this purpose, we employ URDF, a querynerfgr uncertain
and potentially inconsistent RDF knowledge bases. URDPpaup rule-based,
first-order predicate logic as used in OWL-Lite and OWL-DLittwsimple and
effective top-down reasoning capabilities. This mecharééso generates expla-
nation graphs. These graphs can then be displayed in the Giealialogue
shell and help the user understand the underlying reasqnioggesses. We be-
lieve that proper explanations are a main factor for indrgathe level of user
trust in end-to-end human-computer interaction systems.

1 Introduction

Multimodal interaction with large and dynamic data reposiés is an important topic
for the next generation of human-computer interactionesyst Over the last several
years, we have focused on the idea that Semantic Web [Feradel2003] data struc-
tures provide new opportunities feemantically-enabled user interfac@he explicit
representation of themeaningof data allows us to (1) transcend traditional keyboard
and mouse interaction metaphors, and (2) provide reprasemtstructures for more
complex, collaborative interaction scenarios with morenptex result presentations.
Over the last years, we have adhered strictly to the devdlogle “No presentation
without representation,” in order to log the state of thdatjae system, the displayed
elements, and the user queries explicitly.

On the database side, a new area of information retrievali(# begun with the
advent of structured databases in Semantic Web RDF stascand respective query
languages. The dominant query language for these'RBpositories is the W3C rec-
ommendation SPARGL For the next generation of human-computer interaction sys
tems, explanation-based inference during data retriewdhbacertain knowledge plays
a major role. In order to implement these properties, we usefficient reasoning
framework for graph-based, non-schematic RDF knowledgedand SPARQL-like
gueries, Uncertain RDF (URDF). URDF augments first-ordasoaing by combining

! See http://www.w3.org/TR/rdf-primer/ and http://www.\e8y/TR/rdf-schema/.
2 http://www.w3.0rg/TR/rdf-spargl-query



soft rules, with Datalog-style recursive implicationsgdrard rules, in the shape of mu-
tually exclusive sets of facts. It incorporates the commassjble world semantics with
independent base facts as it is prevalent in current prbsibdatabase approaches.
And it supports semantically more expressive, probahilfaist-order representations,
like, for example, Markov Logic Networks.

In this paper, we discuss a prototype system which providkslague-based inter-
action with such a probabilistic advanced database whileviing the URDF model.
URDF allow us to infer and present uncertain knowledge frem&ntic Web databases
in the multimodal dialogue context. More precisely, we ggiaph-based knowledge
for dialogue-based explanations with confidences for ieftknowledge. While incor-
porating the URDF functionality into a dialogue system, wevide a first prototype
implementation of an explanation-aware multimodal dialwgystem (as implemented
in the Comet music retrieval system [Sonntag et al., 2006@]iarthe dialogue system
for the medical domain [Sonntag and Mdller, 2009], but withURDF and explana-
tion knowledge). Such dialogue systems can answer complegtipns and provide
additional multimedia material such as graphs or videos.

Generally speaking, dialogue-based question answeriAy &bws a user to pose
questions in natural speech, followed by answers presémtactoncise textual form
with multimedia material [Sonntag et al., 2007]. For exammpWho is the German
Chancellor?” The short answer is “Angela Merkel” accompdriy a picture. The user,
however, should not only be presented the factual answexsdio questions, but also
some explanations about the actual QA process. As [Glass 2088] show, proper
explanations are one main factor that influences the lewgdeftrust in complex (adap-
tive) artificial intelligence systems. Deriving and usingknations in dialogue-based
QA is a unigue opportunity for enhancing trust especiallyrigertain, inferred answers
in human-computer interaction systems.

The paper is structured as follows: Section 2 discussetedVa@ork and Section 3
explains the dialogue system framework. The URDF framegopkesented in Section
4, followed by an example dialogue (Section 5) and our caichs (Section 6).

2 Reated Work

Prominent examples of dialogue platforms include OOA [lteet al., 1999], TRIPS
[Allen et al., 2000], and Galaxy Communicator [Seneff et B999]; these infrastruc-
tures mainly address the interconnection of heterogensoftware components. A
comprehensive overview of ontology-based dialogue psisgsand the systematic re-
alisation of these properties can be found in [Sonntag, R@i0D71-131. Many sys-
tems are available that translate natural language inpusinuctured ontological rep-
resentations (e.g., AqualLog [Lopez et al., 2005]), portahguage to specific domains,
e.g., ORAKEL [Cimiano et al., 2007], or use reformulated aatit structures NLION
[Ramachandran and Krishnamurthi, 2009]. AqualLog, for g¥anpresents a solution
for a rapid customisation of the system for a particular togg; with ORAKEL a sys-
tem engineer can adapt the natural language understamdit) componentin several
cycles thereby customising the interface to a certain kadgé domain; and NLION
uses shallow natural language processing techniquessfpell checking, stemming,



and compound detection) to realise a single semantic concem ontology property.
All of them support the translation to SPARQL queries in pifral. However, all of
them deal with written keywords or simple semantic relaiaang., XisDefinedAsY.
They do not focus on the much more complex explanation-bassdering process
while using a dialogue systemn.

As introduced, the dominant query language for RDF repoegas the W3C rec-
ommendation SPARQL. Similar RDF-based query languagesvarth mentioning,
such as RDQt or SERQI®. These languages are based on the notion of RDF triple
patterns, which can be connected via several query opsrsiich as “union” or “fil-
ter”. In previous implementations of dialogue system badsevithout URDF, we used
SPARQL queries because they are the de facto standard. W/assd the resources in
the Linked Data framework (see [Bizer, 2009]). The RDF #iptructure itself, which
is used in Linked Data, represents enough structure to Bedcal database index,
which maps a wildcard triple pattern onto the matching cetecdata triples. Although
the Linked Data sources are updated frequently, they carobsidered rather static,
i.e., OWL-style reasoning about these sources is normaliprovided. Moreover, the
SPARQL 2 specification (which most of these endpoints imglethprovides support
for operators such as “group by” or aggregate functions ,(EQUNT, MIN, MAX,
SUM). In the context of unstructured natural language iNnBPARQL also provides
convenient operator extension, i.e., the “filter” operatorspecify free test searches
and even regular expressions based on operations for regqgeessions. Examples of
how these operators can be used in the context of integraittkgd Data for semantic
dialogue and backend access can be found in [Sonntag anel K1640].

3 Dialogue System Framework

In earlier projects [Wabhlster, 2003,Reithinger et al., 2j0fe integrated different sub-
components to multimodal interaction systems. In the cdrdéthe new THESEUS
programmé, we then implemented a situation-aware dialogue shellfiorantic access
to image media, their annotations, and additional textusbmmal. We use a distributed,
ontology-based, dialogue system architecture, whergenajor component for speech
understanding, dialogue management, or speech synttasibecrun on a different
host, increasing the scalability of the overall system.shared representation and a
common knowledge base ease the dataflow within the systenawsid costly and
error-prone transformation processes (c.f. “No pres@mtatvithout representation”).
More precisely, an ontology-based representation of agiseny can be used to create
a query that can be posed to a (U)RDF endpoint.

% In addition, these systems directly transfer the input ® dsired SPARQL queries with-
out dealing with the complex influences of message passidglague frameworks or input
fusion.

4 http://www.w3.0rg/Submission/RDQL/

5 http://lwww.openrdf.org/doc/sesame/users/ch06.html

5 http://www.theseus-programm.de

" The dialogue system architecture is based on a generic frarkdor implementing multi-
modal dialogue systems (ODP platform, available at httpnit.semvox.de/).



The dialogue system acts as the middleware between théschen the backend
services (i.e., the RDF repositories with an online APIY} thide complexity from the
user by presenting aggregated ontological data. Figureovshhe dialogue system
architecture. The client provides means to connect to tleglie system via thevent
bus to notify it of occurred events, to record and play back awstieams, and to render
the received display data obtained from thialogue system/dialogue managdihe
generated (U)RDF queries are then processed by the backstains(Remote RDF
Repository) in order to retrieve the requested entities.
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Fig. 1: Dialogue System Architecture

A central building block for component development and dagral part of the di-
alogue middleware is the included application programnnigrface for the efficient
representation of ontology-based data using extendediTypature Structures (eTFS).
As described in [Schehl et al., 2008], the eTFS API is tighttggrated into a produc-
tion rule system which enables a declarative specificatioime processing logic in
terms of production rules. While processing the user inpthé dialogue system, the
output of the fusion stépis transferred to the backend system. Figure 2 provides a
high-level view and rough sketch of the basic processingnciéthin the typical QA
process. In this work, the backend access has been extepaeitiiessing URDF. We
use an Apache Tomcat ser¥dor this purpose. The presentation has to be adapted to
the result of the URDF process, i.e., graph-based exptamsati

8 A modality fusion component keeps track of the ongoing disse, completes different types
of anaphora, and merges input from different modalities.0ake a production rule system,
FADE, which is part of the ODP distribution.

% http://tomcat.apache.org/
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Fig. 2: Basic building blocks and core workflow of multimoddlogue processing

4 URDF Framework

The URDF project, which is currently under development atMeax Planck Institute
for Informatics, aims to enhance SPARQL-style query prsicgsover RDF knowledge
bases with simple and effective, top-down reasoning céipiebi Specifically, URDF
supports rule-based, first-order reasoning concepts kifimsam OWL-Lite and OWL-
DL, thus capturing a decidable subset of first-order preditagic. Moreover, since
information extraction on the Web is often an iterative amldeirently noisy process,
URDF explicitly targets the resolution aiconsistenciebetween the underlying RDF
facts and the inference rules. URDF also augments firstroedsoning by combining
soft rules which may be violated by some instances (facts) in the kedge base, and
hard rules which may not be violated by any instance and can thereferenyployed
as hard consistency constrains, e.g., for capturing fanatiproperties in OWL-Lite.
Key to our approach for reasoning over uncertain data amalviag inconsistencies
directly at query time is a novel and efficient approximatagorithm for a gener-
alised version of the Weighted MAX-SAT problem, which aloWRDF to dynami-
cally cope with noisy data and/or evolving knowledge baseksadanging domain con-
straints (rules). A further key feature of URDF is the akilib capture the resolution
steps employed to infer answers by the reasoner in the foram @fcyclic derivation
graph over grounded rules (aka data “provenance” [Bunemdfan, 2007] or “lin-
eage” [Benjelloun et al., 2008]). This directed acyclicgirdDAG, cf. answer graphs)
structure connects both base and derived facts via thethdesere used for grounding,

which can be used texplainthe answers given to a query and represent this explanation

in graphical form to the user.

4.1 Representation Model and Expressiveness

URDF considers &nowledge bas&B = {F,C,S} as a triple consisting of RDF
base factsF, soft clauseg’, and hard (i.e., strict) ruleS. An RDF graphis a directed,

labeled multi-graph, in which nodes are entities (such dwiduals and literals), and
labeled edges represent relationships between the enktie example, an RDF graph



can have an edge between the ertitynanand the entitystanford This edge would be
labeled with the relation nameorksAt More formally, an RDF graph over a finite set
of relationsRel and a finite set of entitieBnt O Rel is a set of triplets (or factsf C
(Rel x Ent x Ent). RDF allows two entities to be connected by multiple relasi¢e.g.,
two people can be colleagues and friends at the same time$, Tdcts express binary
relationships between entities. For readability, we witlteva fact(x,r,y) in common
prefix notation as(x,y).

As opposed to OWL, RDF cannot directly express relatiorsshgiween facts (i.e.,
“facts over facts”). Relationships with higher arity cannever be represented by in-
troducing anrevent entityi.e., a new entity that stands in binary relationships \aith
arguments of the-ary fact. Alternativelyn-ary relationships can be represented using
reification[Suchanek et al., 2008]. In RDF graphs, there is a distindbietween indi-
vidual entities (such a8lbert Einstein and class entities (such as the clphgsicisj}.
Individuals are linked by théyperelationship to their class. For examphdbert Ein-
steinis linked to the clasphysicistby a statemenfAlbertEinstein, type, physicisfyhe
classes themselves form a hierarchy. More general clasgel @sscientis} include
more specific classes (such@sysicisj. This hierarchy is expressed in RDF by edges
with the subclassOfelationship{artist, subclassOf, singer)

Soft Rules We consider first-order logic rules over RDF factsgfunded soft rule
over a setF of RDF facts is a seC C F of facts, where each atomic fagte C
is marked as either positive or negative and thus beconiigsral. For example, a
grounded rule could be:

{—~worksAt(Uliman, Stanford)livesin(Ullman, Stanford}, 4

Each soft rule is assigned a non-negative, real-valuedhiuedghigher weight indi-
cates that matching the rules is of higher importance thawchiray a rule with a lower
weight. To simplify talking about grounded rules of the sashape, we introduceon-
grounded rulesA non-grounded rul€’ is a grounded rul€ over a set of facts itF,
where one or more entities are replaced by variables. A moargled ruleC’ over 7
implicitly stands for all grounded ruleS that can be obtained by substituting the vari-
ables inC’ by entities. Thus, the following rule subsumes the aforeioead grounded
rule:

{—worksAt(Uliman, x) livesIn(Ullman, X} o.4;

When grounded, the weight of the ungrounded rule is progagatall its ground-
ings. We use non-grounded rules solely to increase redgabile allow only Horn
rules i.e., rules where at most one literal is positive. Horn suéth exactly one posi-
tive literal can equivalently be rewritten as implicatipimwhich all literals are positive.
When written as implication, thieodyof a rule is a conjunction and theadconsists
of a single literal. In a first-order representation, onimpgie literals with no nested
predicates or function calls are allowed in the rules. We bawever, extend the ex-
pressiveness of our reasoner (and yet remain in first-obyegjlowing also rules with
simplearithmetic predicateswhich are “closed” within the rule, i.e., they can be eval-
uated (and thus be grounded) on-the-fly from the given viriaindings when the rule



is processed. A grounded soft rule corresponds to a dispmof literals, a so-called
clause

Hard Rules Hard rules are a distinct set of rules which definetually exclusiveets
of facts. Similarly to soft rules, hard rules can be exprédss®h in grounded and non-
grounded form. Agrounded hard rulés a set of factss' C F (also called a&ompetitor
se) that enforces the following constraint: a possible wertdF — {true, false} can
assigntrue to at most one facf € S. For example, the following hard rule

{ bornin(AngelaMerkel, Hamburg)
bornin(AngelaMerkel, Miinchen)
bornin(AngelaMerkel, Stuttgart)} m

specifies thaAngela Merketould be born in at most one out of the above cities. Sim-
ilarly to soft rules, we introduceon-grounded hard rulesvhere constants may be
replaced by variables. For exampernin(AngelaMerkel,x)may be used to mark all
the possible birth places @&ngela Merkelin the knowledge base as mutually exclu-
sive. Hard rules may not be violated and thus have no weigisig@ed (hence they are
marked by am). For expressing these mutual-exclusion constraintshénd rules en-
code special Horn clauses with only negatived literals.igadently, they can be rewrit-
ten as a number of conjunctions over binary Horn clauses paih-wisely negated
literals.

4.2 Reasoning Framework

The URDF reasoning framework combines classic first-ordasoning with a gener-
alised Weighted MAX-SAT solver over both soft and hard ru@sery processing with
URDF consists of two phases: 1) lookups of basic query pattagainst the knowl-
edge base, which involves both direct lookups of base factheé knowledge base,
but also recursively grounding rules and inferring newdaend 2) resolving poten-
tial inconsistencies by a second reasoning step in the féran\ileighted MAX-SAT
solver, which yields the final truth assignments to cane@idaiswers obtained from the
previous grounding step. That is, given a query in the forma et of non-grounded
atoms, we aim to find an assignment of truth values to the gtediquery atoms (and
all other grounded facts that are relevant for answeringthegy), such that the sum of
the weights over the satisfied soft rules is maximised, witlviolating any of the hard
constraints.

SL D Resolution and Dependency Graph Construction In the absence of any rules,
URDF conforms to a standard (conjunctive) SPARQL engin#é) tie returned facts
consisting only of grounded query atoms over base f&ct§/RDF, however, allows
for the formulation of recursive rules (i.e., with the santedicate occurring in the
head as well as in the body of a rule), as well as mutually sdeaisets of rules (i.e.,
with one rule producing grounded facts as input to anothej rRather than reasoning
about all facts in the knowledge base (which would be infdasit query time), URDF
investigates efficient top-down resolution algorithms goounding rules against the



knowledge base. Instead, we compute the so-calgendency graphvhich consists
only of facts in the knowledge base which are relevant fonenimg the query (includ-
ing lineage pointers to grounded rules for the derived Ja@dependency graph con-
struction is performed via SLD resolution [Apt and van EmdE3B2], which is similar
to the resolution strategy used in Prolog and Datalog. [eambre, SLD resolution
over soft rules is also extended by a separate groundinggeghashe hard rules (see
[Theobald et al., 2010] for algorithmic details).

Resolving Inconsistencies After dependency graph construction, URDF constructs a
propositional Boolean formula in conjunctive normal for@NF) from all the lineage
pointers to the grounded soft and hard rules, as well as tbe fa@ts inF used for
grounding the rules. Since all rules are readily availablelorn clause form, the CNF
can efficiently be constructed as a conjunction of all ruléscty are embedded in the
dependency graph after the grounding phase. URDF emplog§fiaient approxima-
tion algorithm for a variant of the well-known Weighted MASAT problem, which is
specifically tailored to our setting, i.e., by consideringemeralisation that is able to
capture the presence of both soft rules (which may be vidlat¢he MAX-SAT solu-
tion) and hard rules (which may not be violated by the sohjtidhe MAX-SAT solver
finally assigngrue to only a subset of answer facts which are free of inconsigten

5 Example Dialogue

The following dialogue illustrates a user’s practical net& in using a dialogue interface
on top of a semantic URDF search engine for answering natumgliage questions.
The dialogue concentrates around the questions about tbd-ldBntents, i.e., factoid
questions about celebrities, and the multimodal presentaf answer content. We use
a big touchscreen installation for the presentation of fheesh-based user requests
(similar to our installation in [Sonntag et al., 2009]). @ touchscreen (cf. Figure 3),
we display so-called semantic interface elements (SIES)EAs a window on the GUI
which displays aggregated multimedia results. For exanipéeVideo SIE (Figure 3,
left) displays videos from a YouTube API
1 U: “Where is Angela Merkel born?”
2 S. Shows corresponding result in a SIE.
3 U: “What do Angela Merkel and Al Gore have in common?”
4 S: Shows corresponding relation graph.
5 U: "Where does he live?”
6 S. Shows corresponding relation graph.

*Synthesises a summary of the graph’s interpretation.*

In the example dialogue, turn (1) results in a structuredltetisplay (Figure 4,
“Hamburg” is also synthesised) according to factoid QA pagen. The answer can be
looked up directly in the URDF database (only hard rulesyapptase of inconsistent
knowledge). Turn (3) results in the display of a relationpdrgsimilar to the graph in
Figure 3, right). The last user turn (5) “Where does he livis?23f particular interest

10 http://code.google.com/apis/youtube/overview.html
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Fig. 3: Touchscreen surface with several semantic interfédements (SIEs)

from both a linguistic and database standpoint. We intépeeutterance as a deictic
one, where the determination of the (celebrity) referenlieigendent on the context in
which it is said. Here, of course, the context is the refef8htGore”, stored in the
discourse context. In addition, the result is a complex axalion graph (Figure 5)
derived from soft rules.

In the explanation (lineage) of the answwrnin(ALGore, WashingtoiD.C.), we
can see that this fact could be derived from two different sdés:

C1 : livesin(a,b) — marriedTo(a,c) livesin(c,b)
Cs : livesin(a,b) — marriedTo(a,c)\ bornin(a,b)A bornin(c,b)

The two derivations of the fadiornin(ALGore, WashingtorD.C.) are therefore con-
nected by an OR-node in the graph which denotes a disjunbgtomeen the two sub-
graphs (while literals in the body of a rule would be consédieconjunctive). The first
derivation (in grey) denotes that Al Gore likely lives in Waggton, D.C., because he
is married to Tipper Gore, and rue, expresses that married couples likely live at the
same place. The place where Tipper Gore lives, on the othnet, ladso is not directly
known in the knowledge base but is derived from similar iafere steps and further
groundings steps of different rules deployed in URDF. ONetfsis subgraph reaches
a recursion level of depth 4 for the inference about where édeGnight actually live.
The second derivation (in red) however shows that theresis almuch shorter way
of deriving the place where Al Gore lives, namely via rdle which expresses that if
two people are married and both were born in the same placg€aj, then the former
person also likely lives in the same place (or area). In otlwds, people might have
strong ties to their birth place, which clearly is a form o6ft§ inference. In this latter
case, all the grounded facts that implgrnin(ALGore, WashingtorD.C.) can directly
be grounded against base facts in the knowledge base ingusgjla inference step.



Fig. 4: Factoid answer SIE for the question “Where is Angekxihél born?”

I (Al_Gore, _D.C.)[T|0.514]
BECAUSE $10:0.044:[isMarriedTo(?X,?Y), livesIn(?X,?Z)]=>livesIn(?Y,?Z)

N6:livesIn(Tipper_Gore,Washington,_D.C.)[T|0.264]

edge

N9:livesIn(Tipper_Gore,Washington,_D.C.)[T|0.264]

edge ~ | BECAUSE $10:0.044:[isMarriedTo(?X.?Y), livesIn(?X,?Z)]=>livesIn(?Y,?Z)

N17:livesIn(Vice_Presidency_of_Al_Gore Washington,_D.C.)[T|0.249] ‘

Fig. 5: Complex explanation graph for the question “Wheresdae (Al Gore) live?”



6 Conclusion

We have discussed explanations in dialogue systems thridaghrtain RDF knowl-
edge bases and presented URDF, a query engine for uncemtiaipodentially incon-
sistent RDF knowledge bases. This new backend can be itéegrao a speech-based
dialogue system to answer questions about a specific doMéiareas factoid ques-
tions can be answered by state-of-the-art backend repiesiteia SPARQL queries,
URDF provides the unique opportunity to also reason abocerain knowledge and
provide explanation graphs in the context of multimodal QA.

In our multimodal application scenario, a more complex aghter integration of
the provided result graphs has to be investigated. By ekigrtle functional dialogue
shell modules for a more complex dialogue behaviour on thatstructures, we should
be able to not only display the result graphs, but to paraghtize result contents in nat-
ural language form as well. For example, the result graplddeeipresented in conjunc-
tion with the speech synthesis “I think he lives in Washimgtd.C., because his wife,
Tipper Gore, also lives there.” This would, however, haagitceed our current natural
language generation capabilities, but pave the way towsrdch-based explanations, a
main factor for increasing the level of user trust in encetat human-computer interac-
tion systems. Automatically inferred knowledge by URDF\pdes a new data stream
and explanations for future, artificial intelligence baggdraction systems.
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