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Abstract: We present an approach using medical expert knowledge represented in formal ontologies to check the results
of automatic medical object recognition algorithms for spatial plausibility. Our system is based on the com-
prehensive Foundation Model of Anatomy ontology which we extend with spatial relations between a number
of anatomical entities. These relations are learned inductively from an annotated corpus of 3D volume data
sets. The induction process is split into two parts. First, we generate a quantitative anatomical atlas using
fuzzy sets to represent inherent imprecision. From this atlas we then abstract the information further onto a
purely symbolic level to generate a generic qualitative model of the spatial relations in human anatomy. In
our evaluation we describe how this model can be used to check the results of a state-of-the-art medical object
recognition system for 3D CT volume data sets for spatial plausibility. Our results show that the combina-
tion of medical domain knowledge in formal ontologies and sub-symbolic object recognition yields improved
overall recognition precision.

1 INTRODUCTION

During the last decades a great deal of effort went
into the development of automatic object recognition
techniques for medical images. Today a huge vari-
ety of available algorithms solve this task very well.
The precision and sophistication of the different im-
age parsing techniques have improved immensely to
cope with the increasing complexity of medical imag-
ing data. There are numerous advanced object recog-
nition algorithms for the detection of particular ob-
jects on medical images. However, the results of the
different algorithms are neither stored in a common
format nor extensively integrated with patient and im-
age metadata.

At the same time the biomedical informatics com-
munity managed to represent enormous parts of med-
ical domain knowledge in formal ontologies. To-
day, comprehensive ontologies cover large parts of the
available taxonomical as well as mereological (part-
of) knowledge of human anatomy.

With the shift to the application of digital imaging
techniques for medical diagnosis, such as CT, MRI,

etc., the volume of digital images produced in modern
clinics increased tremendously. Our clinical partner,
the University Hospital Erlangen in Germany, has a
total of about 50 TB of medical images. Currently
they have about 150,000 medical examinations pro-
ducing 13 TB of data per year.

To cope with this data increase (semi-)automatic
image segmentation and understanding techniques
from computer vision are applied to ease the task
of radiological personnel during image assessment
and annotation. However, these systems are usually
based on statistical algorithms. Thus, detection and
localization of anatomical structures can only be per-
formed with limited precision or recall. The outcome
is a certain number of incorrect results.

Our approach is to augment medical domain on-
tologies and allow for an automatic detection of
anatomically implausible constellations in the re-
sults of a state-of-the-art system for automatic object
recognition in 3D CT scans. The output of our system
also provides feedback which anatomical entities are
most likely to have been located incorrectly. The nec-
essary spatio-anatomical knowledge is learned from a



large corpus of annotated medical image volume data
sets. The spatial knowledge is condensed into a dig-
ital anatomical atlas using fuzzy sets to represent the
inherent variability of human anatomy.

Our main contributions are (i) the inductive learn-
ing of a spatial atlas of human anatomy, (ii) its rep-
resentation as an extension of an existing biomedical
ontology, and (iii) an application of this knowledge in
an automatic semantic image annotation framework
to check the spatio-anatomical plausibility of the re-
sults of medical object recognition algorithms. Our
approach fuses a statistical object recognition and rea-
soning based on a formal ontology into a generic sys-
tem. In our evaluation we show that the combined
system is able to rule out incorrect detector results
with a precision of 85.6% and a recall of 65.5% and
can help to improve the overall performance of the
object recognition system.

2 RELATED WORK

Our primary source of medical domain knowledge
is the Foundational Model of Anatomy (FMA) (Rosse
and Mejino, 2007), the most comprehensive formal
ontology of human anatomy available. However, the
number of spatial relations in the FMA is very limited
and covers only selected body systems (Möller et al.,
2009). Thus, our approach is to infer additional spa-
tial relations between the concepts defined in the FMA
by learning from annotated medical volume data sets.

In (da Luz et al., 2006) the authors describe a
hybrid approach which also uses metadata extracted
from the medical image headers in combination with
low-level image features. However, their aim is to
speed up content-based image retrieval by restricting
the search space by leveraging metadata information.

The approach in (Hudelot et al., 2008) is comple-
mentary to our work in so far as the authors also pro-
pose to add spatial relations to an existing anatomical
ontology. Their use case is the automatic recognition
of brain structures in 3D MRI scans. However, they
generate the spatial relations manually, while a major
aspect of our approach is the automatic learning from
a large corpus.

Quantitative spatial models are the foundation of
digital anatomical atlases. Fuzzy logic has been
proven as an appropriate formalism which allows for
quantitative representations of spatial models (Bloch,
2005). In (Krishnapuram et al., 1993) the authors ex-
pressed spatial features and relations of object regions
using fuzzy logic. In (Bloch and Ralescu, 2003) and
(Bloch, 1999b) the authors describe generalizations
of this approach and compare different options to ex-

press relative positions and distances between 3D ob-
jects with fuzzy logic.

3 SYSTEM ARCHITECTURE

Figure 1 shows an abstraction of the distributed
system architecture. It is roughly organized in the
order of the data processing horizontally from left
to right. All parsing results are stored in a custom-
tailored spatial database.

Medical 
Ontologies

Spatial Reasoning

Qualitative Anatomical Model

Image  Image  Medico Spatial

Quantitative Anatomical Atlas

Corpus Parser Server Database

Figure 1: System architecture overview

3.1 Image Parser

To represent the results of the automatic object recog-
nition algorithms in the format of our ontology we had
to integrate rather disparate techniques into a hybrid
system. The automatic object recognition performs
an abstraction process from simple low-level features
to concepts represented in the FMA.

For automatic object recognition we use a state-
of-the-art anatomical landmark detection system de-
scribed in (Seifert et al., 2010). It uses a network of
1D and 3D landmarks and is trained to quickly parse
3D CT volume data sets and estimate which organs
and landmarks are present as well as their most prob-
able locations and boundaries. Using this approach,
the segmentation of seven organs and detection of
19 body landmarks can be obtained in about 20 sec-
onds with state-of-the-art accuracy below 3 millime-
ters mean mesh error and has been validated on 80 CT
full or partial body scans (Seifert et al., 2010).

The image parsing algorithm generates two funda-
mentally different output formats: Point3D for land-
marks and Mesh for organs. Apart from their geomet-
ric features, they always point to a certain anatomical
concept which is hard-wired to the model that the de-
tection/segmentation algorithm has used to generate
them. A landmark is a point in 3D without spatial ex-
tension. Usually it represents an extremal point of an
anatomical entity with a spatial extension. Sometimes
these extremal points are not part of the official FMA.
In these cases we modeled the respective concepts as



described in (Möller et al., 2009). In total we were
able to detect 22 different landmarks from the trunk
of the human body. Examples are the bottom tip of
the sternum, the tip of the coccyx, or the top point of
the liver.

Organs, on the contrary, are approximated by
polyhedral surfaces. Such a surface, called mesh, is
a collection of vertices, edges, and faces defining the
shape of the object in 3D. For the case of the uri-
nary bladder, the organ segmentation algorithm uses
the prototype of a mesh with 506 vertices which are
then fitted to the organ surface of the current patient.
Usually, vertices are used for more than one triangle.
Here, these 506 vertices form 3,024 triangles. In con-
trast to the Point3D data, meshes are used to segment
organs. For our test, the following organs were avail-
able: left/right kidney, left/right lung, bladder, and
prostate.

3.2 Medico Server

In Figure 1 we show the overall architecture of our
approach for integrating manual and automatic image
annotation. One of the main challenges was to com-
bine the C++ code for volume parsing with the Java-
based libraries and applications for handling data in
Semantic Web formats. We developed a distributed
architecture with the MedicoServer acting as a mid-
dleware between the C++ and Java components us-
ing CORBA (Object Management Group, 2004).

3.3 Spatial Database

As we have seen in the section about the image pars-
ing algorithms, the automatic object recognition al-
gorithms generate several thousand points per volume
data set. Storage and efficient retrieval of this data for
further processing made a spatial database manage-
ment system necessary. Our review of available open-
source databases with support for spatial data types
revealed that most of them now also have support
for 3D coordinates. However, the built-in operations
ignore the third dimension and thus yield incorrect
results, e. g., for distance calculations between two
points in 3D. Eventually we decided to implement
a light-weight spatial database supporting the design
rationales of simplicity and scalability for large num-
bers of spatial entities.

4 CORPUS

The volume data sets of our image corpus were
selected primarily by the first use case of MEDICO

which is support for lymphoma diagnosis. The se-
lected data sets were picked randomly from a list of
all available studies in the medical image reposito-
ries of the University Hospital in Erlangen, Germany.
The selection process was performed by radiologists
at the clinic. All images were available in the Digital
Imaging and Communications in Medicine (DICOM)
format, a world wide established format for storage
and exchange of medical images (Mildenberger et al.,
2002).

volume data available in total 777 GB
number of distinct patients 377
volumes (total) 6,611
volumes (modality CT) 5,180
volumes (parseable) 3,604
volumes (w/o duplicates) 2,924
landmarks 37,180
organs 7,031

Table 1: Summary of corpus features

Table 1 summarizes major quantitative features
of the available corpus. Out of 6,611 volume data
sets in total only 5,180 belonged to the modality CT
which is the only one currently processible by our
volume parser. Out of these, the number of volumes
in which at least one anatomical entity was detected
by the parser was 3,604. This results from the ratio-
nale of the parser which was in favor of precision and
against recall. In our subsequent analysis we found
that our corpus contained several DICOM volume data
sets with identical Series ID. The most likely reason
for this is that an error occurred during the data export
from the clinical image archive to the directory struc-
ture we used to store the image corpus. To guaran-
tee for consistent spatial entity locations, we decided
to delete all detector results for duplicate identifiers.
This further reduced the number of available volume
data sets to 2,924.

Controlled Corpus

Due to the statistical nature of the object detection al-
gorithm used for annotating the volume data sets, we
have to assume that we have to deal with partially in-
correct results. Hence, we decided to conduct man-
ual corpus inspections using a 3D detect result visu-
alization. The goal was to identify a reasonable set of
controlled training examples suitable for generation
and evaluation of a quantitative anatomical atlas and
a qualitative model. These manual inspections turned
out to be very time consuming. For each volume in
the corpus a 3D visualization had to be generated and



(a) (b) (c)

Figure 2: Visualizations of detector results: (a) incorrect; (b) sufficient; (c) perfect

manually navigated to verify the correct location of
landmarks and organ meshes. After some training we
were able to process approximately 100 volume data
sets per hour. For higher accuracy, all manual inspec-
tion results were double checked by a second person
resulting in a bisection of the per-head processing rate
to about 50 per hour.

During our inspection we found that the quality of
the detector results exhibits a high variability. Subse-
quently, we distinguish three quality classes: clearly
incorrect, sufficiently correct, and perfectly correct.
The visualizations in Figure 2 show one example for
each class.

To have a solid basis for the generation of the
spatio-anatomical model we decided to label a rea-
sonable subset of the available volume data sets man-
ually. We ended up with more than 1,000 manually
labeled volume data sets. Table 2 summarizes the
results quantitatively. All quantitative evaluations of
the performance of the spatial consistency check are
based on this corpus.

detector results inspected in total 1,119
apparently incorrect volume data sets 482 (43%)
sufficiently correct detector results 388 (34%)
perfect detector results 147 (13%)

volumes containing meshes 946 (85%)
volumes containing landmarks 662 (59%)

Table 2: Summary of the manual corpus inspection

We consider a detector result incorrect if a spatial
entity configuration has been detected that is clearly
contradictory to human anatomy. Figure 2 (a) shows
such an example with arbitrarily deformed lungs.
Normally, the lungs should be located vertically at

about the same level. Here, this is not the case. Addi-
tionally, the prostate has been located on the top right
side of the right lung although it belongs to a com-
pletely different body region.

A detector result is considered as sufficiently cor-
rect if it contains a reasonable number of landmarks
and/or meshes. The following flaws distinguish them
from perfect detector results (at least one condition
is met): (i) It contains either only landmarks or only
meshes. (ii) A minor number of anatomical entities
has been detected at slightly incorrect positions. (iii)
The overall number of detected anatomical entities in
the detector result is rather low.

A perfectly correct detector result has to contain
both landmarks and meshes. In addition, none of the
landmarks or meshes is allowed to be located incor-
rectly. The anatomical atlas is learned only from de-
tector results labeled as either sufficiently or perfectly
correct. Incorrect detector results are discarded dur-
ing model generation.

5 QUANTITATIVE ANATOMICAL
ATLAS

Based on the spatial entities in the corpus we dis-
tinguish between two different types of relations to
build up a quantitative atlas, namely: (i) elementary
relations directly extracted from 3D data and repre-
sented as fuzzy sets, and (ii) derived relations which
are defined using fuzzy logic and based on one or
more elementary relations.



5.1 Elementary Relations

5.1.1 Orientation

The orientation or relative position of objects to each
other is important to describe spatial coherencies.
Typically, the fuzzy representation of the orientation
depends on two angles used to rotate two objects on
one another (Bloch, 1999a). The fuzzy set is thereby
defined using six linguistic variables specifying the
general relative positions: above, below, left, right, in
front of, and behind. Their membership functions are
basically the same.

µrel(α1,α2)=

{
cos2(α1)cos2(α2) if α1,2 ∈

[
−π

2 ,
π

2

]
0 otherwise

They only vary in a direction angle denoting the ref-
erence direction, e. g., for left the angle is π.

µle f t(α1,α2) = µrel(α1−π,α2)

More details about this approach can be found in
(Bloch, 1999a). The definition of complex objects’
relative positions is not straightforward. One possi-
bility is to use centroids. Mirtich et al. describe a
fast procedure for the computation of centroids (Mir-
tich, 2005). However, complex objects are reduced
to single points and therefore information is lost. As
the authors of (Berretti and Bimbo, 2006) state: “This
still limits the capability to distinguish perceptually
dissimilar configurations.” For this reason we decided
to use 3D angle histograms providing a richer quanti-
tative representation for the orientation. A histogram
HR

A stores the relative number of all angles between
a reference object R and a target A. The degree of
membership is then obtained by computing the fuzzy
compatibility between HR

A and a particular directional
relation µrel . Thus, we achieve a compatibility fuzzy
set describing the membership degree.

µCP(µrel ,H)(u)=

0 if HR
A
−1
(α1,α2) = 0

sup
(α1,α2),u=HR

A (α1,α2)

µrel(α1,α2) ⊥

To compute a single value the center of gravity of
µCP(µrel ,H) is determined by

µR
rel(A) =

1∫
0

uµCP(µrel ,H)(u)du

1∫
0

µCP(µrel ,H)(u)du

Using this approach the orientation relations are now
depending on the entire shape of the spatial entities.
In addition, these histograms capture distance infor-
mation. For example, if one object is moved closer or

further away from another, the angles will also change
according to the distance. Unfortunately, the member-
ship degree computation is more complex compared
to using centroids. However, since we are relying ex-
clusively on the surface points of meshes, the compu-
tation time is acceptable with an average of 33 sec-
onds for an entire volume.

5.1.2 Intersection

The detection of organ borders is a very difficult task
in medical image understanding because it is mainly
based on the tissue density (Bankman, 2000). How-
ever, adjacent organs can have very similar densities.
Thus, detection is sometimes error-prone and objects
may intersect. To check for such inconsistencies we
are determining the degree of intersection between
two spatial entities A and B. On that account, a new
mesh or point is generated describing the intersection
Int, so that the degree of intersection is determined by
dividing the volume of Int with the minimum volume
of A and B.

µint(A,B) =
VInt

min{VA,VB}

5.1.3 Inclusion

The inclusion of two spatial entities is similarly de-
fined as the intersection. We say that a spatial entity
B is included in an entity A, if

µinc(A,B) =
VInt

VB

Compared to intersection inclusion only considers the
volume of the entity being included. For that reason
this relation is not symmetrical contrary to all other
relations described in this work.

5.2 Derived Relations

5.2.1 Adjacency

Many anatomical entities in the human body exist
which share a common border or adjoin to each other,
e. g., the border of the prostate and urinary bladder.
These adjacent coherencies are represented using a
trapezoid neighborhood measure depicted in Figure 3.
Two spatial entities are fully neighbored if the dis-
tance between them is less than 2 millimeters. After
that border the neighborhood decreases to a distance
of 4.5 millimeters at which spatial entities are not con-
sidered as neighbored anymore. However, for an ap-
propriate representation of adjacency the intersection
between two objects has to be incorporated. This is
important since if two spatial entities intersect, they



>Goedel >prod >Lukas
Relation avg stddev avg stddev avg stddev
Bronchial bifurcation, Right lung 0.0485 0.2001 0.0485 0.2001 0.0485 0.2001
Hilum of left kidney, Left kidney 0.0043 0.0594 0.0043 0.0594 0.0043 0.0594
Hilum of right kidney, Right kidney 0.0032 0.0444 0.0032 0.0444 0.0032 0.0444
Left kidney, Left lung 0.0427 0.1753 0.0427 0.1753 0.0427 0.1753
Left lung, Right lung 0.1556 0.3319 0.1556 0.3319 0.2617 0.3967
Left lung, Top of left lung 0.2322 0.3526 0.2322 0.3526 0.2322 0.3526
Prostate, Top of pubic symphysis 0.0116 0.0922 0.0116 0.0922 0.0116 0.0922
Prostate, Urinary bladder 0.2647 0.4035 0.2647 0.4035 0.7442 0.3408
Right kidney, Right lung 0.0376 0.1788 0.0376 0.1788 0.0383 0.1796
Right lung, Top of right lung 0.2900 0.3985 0.2900 0.3985 0.2900 0.3985
Right lung, Top point of liver 0.2288 0.3522 0.2288 0.3522 0.2288 0.3522
Top of pubic symphysis, Urinary bladder 0.0114 0.0918 0.0114 0.0918 0.0114 0.0918

Table 3: Mean values and standard deviations for fuzzy membership values for the adjacency relation depending on the choice
of the t-norm
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Figure 3: Graph of the fuzzy membership function for the
linguistic variable adjacent

are not adjacent anymore. To formulate those circum-
stances using fuzzy sets, we comprised the degree of
non-intersection and the neighborhood measure using
a fuzzy t-norm (Klir and Yuan, 1994):

µad j(A,B) = t[µ¬Int(A,B),sup
x∈A

sup
y∈B

nxy]

where the non-intersection is computed using the
fuzzy logical not. Currently, three different t-norm
based logic definitions are implemented, namely Lu-
kasiewicz Logic, Gödel Logic, and Product Logic.
The details of their definitions can be derived from
(Klir and Yuan, 1994). Table 3 compares the average
and standard deviations between the different logics.
We decided to use the Lukasiewicz logic because it
provides the highest average of actual adjacent con-
cepts determined during a manual data examination.
Additionally, the logic also yields the lowest standard
deviations in comparison to the average value.

6 QUALITATIVE ANATOMICAL
MODEL

Figure 4 illustrates our modeling of instantiated
fuzzy spatial relations. It is loosely oriented on the
formalism in the FMA for storing spatial relations.
However, the value for each spatial relation is stored
separately. Another difference is the representation
with a term further qualifying the relation together
with a truth value in a separate instance. Currently,
we integrate orientation and adjacency in a qualitative
model.

In order to create a qualitative anatomical model,
we extracted instances containing the spatial relations
described in Sect. 5. An instance describes the rela-
tion between two spatial entities occurring in a vol-
ume data set. To transform a relation into the model,
a truth value is computed representing the mean of all
extracted values of this relation. Thereby, the orienta-
tion is stated using a directional term, i. e., left, right,
in front, etc. determined by the linguistic variables.
On the other hand, the adjacency only gets a simple
boolean qualifier. We determined a threshold of 0.2
(see Table 3) to distinguish between adjacent and not
adjacent.

7 EVALUATION AND RESULTS

When an actual detector result is to be checked
against the generic qualitative anatomical model, we
first represent all its inherent spatial relations us-
ing the same formalism that we use for the generic
anatomical model. This yields a set of OWL in-
stances. Next, we iterate over all instances of the
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Figure 4: Illustration of the extended structure for storing the six linguistic variables separately and represent truth values in
the ontology

Figure 5: Visualization of the organ and landmark locations
for an incorrect detector results (cf. the location of the uri-
nary bladder)

detector result and compare their directions and truth
values to the generic model. We consider a spatial
relation instance to be not conform with the model if
the truth values differ by at least 50%. We then count
the occurrences of the anatomical concepts among the
non-conform instances. The higher this number is for
a given anatomical concept, the more likely the re-
spective organ has been located incorrectly.

Figure 5 shows the visualization of an incorrect
detector result. In the upper part you can see the two
lungs and a number of landmarks. In the lower half
you see one kidney and, to the right of the kidney, the
urinary bladder has been located. This is clearly in-
correct; in fact the urinary bladder should lie much
further below. The other kidney has not been detected
at all. Figure 6 shows a histogram of the differences
in percent between the model and the spatial relation
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Figure 6: Distribution of the differences of the truth values
between model and the detector result presented in Figure 5

instances of this volume data set. Apparently, most of
the relation instances have a comparably low differ-
ence to the model. Among all relation instances with
a difference to the model of more than 50%, those
with relation to urinary bladder account for 11 out of
16. This information gives evidence that the location
of the urinary bladder is very likely to be incorrect.

Validation on Controlled Corpus

We performed a systematic evaluation of the spatial
consistency check on our manually labeled corpus us-
ing four-fold cross evaluation. Our results show that
the average difference in percent between the spa-
tial relation instances in the learned model and the
instances generated for an element from the evalua-
tion set is an appropriate measure for the spatial con-
sistency. The average difference to the truth value
in the model for correct detector results was 2.77%
whereas the average difference to the truth value in the
model for incorrect detector results was 9%. Using
5% as a threshold to distinguish spatially consistent
(< 5%) from inconsistent (>= 5%) yields a precision
of 85.7% with a recall of 65.5% for the detection of
spatially inconsistent detector results.



true positives 407
true negatives 431
false positives 67
false negatives 213

avg. difference correct detector results 2.7%
avg. difference incorrect detector results 9.0%
precision 85.7%
recall 65.5%

Table 4: Results of the spatial consistency check evaluation

8 CONCLUSION AND FUTURE
WORK

We presented an approach fusing state-of-the-art
object recognition algorithms for 3D medical volume
data sets with technologies from the Semantic Web.
In a two-stage process we augmented the FMA as
the most comprehensive reference ontology for hu-
man anatomy with spatial relations. These relations
were acquired inductively from a corpus of semanti-
cally annotated CT volume data sets. The first stage
of this process abstracted relational information using
a fuzzy set representation formalism. In the second
stage we further abstracted from the fuzzy anatomi-
cal atlas to a symbolic level using an extension of the
spatial relation model of the FMA.

In our evaluation we were able to show that this
spatio-anatomical model can be applied successfully
to check the results of automatic object detection al-
gorithms. The detection of incorrect object recogni-
tion constellations can be performed with a high pre-
cision of 85.6% and a recall of 65.5%. The presented
method can thus improve existing statistical object
recognition algorithms by contributing a method to
sort out incorrect results and increase the overall per-
formance by reducing the number of incorrect results.
Currently our anatomical model only covers direc-
tional information for pairs of spatial entities in our
corpus. We plan to add spatial inclusion and intersec-
tion between entities.

Among our next steps is also a user evaluation
of clinical applications making use of the reasoning,
e. g., to support radiologists by suggesting anatomi-
cal concepts and relations during manual image an-
notation. Furthermore, our approach could be used to
generate warnings for manually generated image an-
notations in case they do not conform to the spatial
anatomical model. A clinical evaluation of these fea-
tures is planned in the near future.
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