
Distributed NLP and Machine Learning for

Question Answering Grid

Daniel Sonntag

DaimlerChrysler Research and Technology RIC/AM, 89013 Ulm Germany
daniel.sonntag@daimlerchrysler.com

Abstract. We regard question answering as Semantic Grid application
in which the answering process is best expressed as a distributed comput-
ing task and show, how the workflow control of this distributed QA task
can be learned automatically. Since the control protocol contains infor-
mation about each resource and service, this information can be mined to
reveal semantics about the components. We address the question, which
question answering components should be applied for a specific query.
The inferred knowledge is machine-processable and is part of the work-
flow control of the distributed application. We thereby address semantics
in the Grid by planning techniques for Grid Computing. For the learning
task, we suggest the usage of association rule mining algorithms.

1 Introduction

Large-scale natural language processing (NLP) problems require to use resources
from many isolated individual group of researchers. This point is a clear frame-
work for distributed resource sharing which leads, on a more abstract level, to
carry out NLP processes as a community. In technical terms, it leads to using
a distributed Grid computing architecture. In this paper we propose a possible
connection between Distributed NLP, Java Technologies for Distributed Com-
puting and Machine Learning (ML) techniques for Question Answering (QA).
In a natural process, knowledge bases and processing components for natural
language are loosely coupled, instead of hard-wired. We will discuss the learning
of a distributed QA system, more precisely, the mining of the master control pro-
tocol that logs the order in which the processing and language resources (confer
Computational-Grid vs. Data-Grid) are to be applied during the learning phase.
We then argue in favour of such an architecture by explaining how to benefit from
the inferred meta data of Grid components. In this question answering process,
the question is which components are to be applied in which order. Expressing
the QA process as a distributed computing task, we allow for parallel processing
and do not restrict the order by a predefined stream of QA components. After
applying data mining methods to the control protocol, we can decide on the
most suitable components for answering a specific query.



1.1 Survey on Question Answering

Question Answering is the task of finding answers to natural language questions
by searching large document collections. Unlike information retrieval systems,
question answering systems do not retrieve documents, but instead provide short,
relevant answers located in small fragments of text.
In NLP and QA, computational complexity of sentence parsing constrained by
complex linguistic grammars has always been an issue. Unfortunately, compu-
tational intensive components are part of most good performing state-of-the-
art QA systems. On that account question answering is a good application for
our approach, not to forget that QA incorporates a document retrieval stage,
which is in functionality very similar to the Data-Grid. Modern QA systems de-
fine different processing steps for different QA types (e.g. fact-based questions,
template-based questions, thematic-oriented questions). Because of the variety
of processing steps and components involved (see section 2.1) and the different
possibilities for answering a query, QA can be a complex, composite process, for
which the best way of selecting and applying single components is not obvious
and for which no closed approach is known. In addition, data access, data avail-
ability and good performances of single QA components cannot be guaranteed
for all accepted natural language questions, which make the QA workflow and
best solution rather undeterministic.

The central idea to enhance performance and robustness is the following de-
scribed in [1]. The idea is that processing steps can be varied depending on the
complexity of the query, i.e. shallow and deep QA strategies can be selected
corresponding to different levels of linguistic processing. Using different process-
ing stages for different query types is good to answer simple fact-based question
for which shallow QA strategies work quite well. This was shown for Person,
Location, Date and Quantity questions in [2] and in [3]. On the other hand,
robustness to accept more difficult queries (e.g. queries for entity classes such
as duration and measures, very short queries, very long queries, ungrammatical
queries, queries containing unrecognised tokens, queries where no appropriate
answer is in the knowledge base) and scalability in terms of efficient processing
cannot be achieved by this coarse-grained distinction. The major reason and
central idea of this paper is, that the computational and conceptual difficulty to
answer a certain query is more a question of the availability of the processing and
information resources to answer the question, and less a question of the type of
the posed query or similar characteristics based on the query. In our distributed
QA architecture, we address exactly this question. We argue, that the best way
to answer a query is to decide on the QA strategy not only by a query/answer
type dependent feature at an early stage of the QA process, but during pro-
cessing in a freely coupled architecture which takes the (current) availability of
resources into account and treats every question instance individually.



Next, we give an account of the underlying software principles and patterns,
before we draw attention to the connection between the QA requirements and
the conceptual and computational processing resources.

1.2 Distributed Computing and JavaSpaces

We define Distributed Computing as co-operation of several computers work-
ing together on a particularly processing-intensive problem. A single computer
accounts for local processing needs and is linked toward other computers by a
communication network. The object-oriented view of distributed computing is
that several component objects (e.g. Java objects) work on the same problem
which, in turn, is implemented as an exchange object. We propose JavaSpaces
[4] for this task. The JavaSpaces model involves persistent object exchange ar-
eas in which remote processes can co-ordinate their actions and exchange data,
thus providing a necessary ubiquitous, cross-platform framework for distributed
computing. The benefits of distributed computing, such as increased compu-
tation power with parallel CPU’s can be encountered, too. Especially for QA,
the benefits in scalability, resource sharing and availability of resources come
into account. Scalability is here to be understood in terms of adding new QA
components (possibly lightweight annotators or databases) to match the size of
a single question processing problem or parallel questions processing problem
and especially the answer retrieval problem: If the amount of data exceeds the
processing power or the document server, we can simply replace a component or
add a new server without changing the client application and without changing
the other servers. This addresses the question how to manage resources possibly
distributed over many sides in a generic Grid infrastructure [5], but does not
address the computational resource problem properly. Although different QA
processes can be started in parallel1, it is a very valuable information to know,
which process workflows perform best for a given query instance. This might
be unknown in advance, or unexpected because of e.g. unexpected availability
problems of resources or unexpected problems of coverage. We will address these
questions in Sect. 3.

2 QA Components

We introduce the QA components, how they are modelled and which kind of
input and output behaviour they show. Declarations on this questions are vital,
we need a classification of interchangeable, exchangeable, and decomposable pro-
cessing components to define the workflow for QA and the possible variations in
the workflow. We begin by a definition what exactly is meant by QA processing
components. In our Grid architecture the components will have the following

1 Deep NLP components could be started in parallel and will only be used when
appropriate and delivered in time.



form: We will adopt the following terminology [6] to refer to special types of
NLP components. Language Resources (LRs) refer to data-only resources such
as lexicons, corpora, thesauri or ontologies. Processing resources (PRs) refer to
resources whose character is principally programmatic or algorithmic, such as
part-of-speech tagger, named-entity-recognisers, or sentence parsers. PRs typi-
cally include LRs such as a lexicon. For the JavaSpace QA architecture, both
LRs and PRs are to be considered as possible QA components.
Focusing on PRs, the requirements stated in [6] look like the following - we will
directly relate them to the requirements of a distributed system architecture:
Families of components share certain characteristics which should be modelled.
In our architecture, this modelling plays the central role and is directly related
to the PR Management: If a component falls into a certain family of compo-
nents (the equivalence classes of PRs/LRs), it can be replaced by an equivalent
component in the sense of its input/output behaviour. On the other hand, the
equivalent component might be more suitable for the specific query instance.
The idea we propose in this paper is to mine the workflow protocol of suitable
components based on the component communalities and individual component
properties. We want to decide on suitable individual components and compo-
nent classes and try to learn, which components should be applied for a query
instance, learned by the output of the QA components (and the overall result) on
the test instances. Additional meta data of the components or their interaction
are not compulsory, but desirable, e.g. information about the performance of a
component or component class on a certain class of questions, such as Person-
Question. The component communalities described in the next section plus the
meta data they induce during processing initiate the ML task we identify and
present in Sect. 3.

2.1 Distributed Question Answering Grid Architecture

The central piece of the software architecture is a JavaSpace [4] that serves as
NLP/QA data exchange area. Components can deposit data and wait for other
data to process. The central issues are data communication and data synchro-
nisation of data entries which tie together processes in a distributed program.
We will provide the conceptual framework of their usage in the following: It
turns out that one standard application scenario discussed in [4] accounts for
the requirements of the QA process. Accordingly, the architecture consists of 1.)
QA components as services of wide-spread network programs 2.) a JavaSpace
data exchange area2 and 3.) a master process that controls the application of
individual components and decides when the answering process terminates and
which result is to be returned. The concept can be seen in Fig. 1. While the QA
process is running, every NLP/QA component listens for a task in its dedicated
task area and performs an apparent task immediately (if allowed by the master

2 The Javaspace itself is represented as data objects that can be independently ac-
cessed and altered by the QA components in a concurrent manner. The provided
JavaSpace implementation takes care for transaction security and state consistency.



Fig. 1. JavaSpace Concept for Question Answering

control). The components thus communicate by the task and result areas within
the JavaSpace. The crucial point is that the components only interact indirectly,
through the space as data exchange area. This uncouples the data (i.e. partly
results of components) in the space as well as the components themselves. This
offers the additional freedom to choose components out of a set of equivalent
components on a specific task to freely decide on the QA process workflow. The
architecture proposed resembles the implementation of a classical blackboard
pattern [7], which was already successfully applied to speech recognition prob-
lems [8]. With the help of JavaSpaces, the implementation is straightforward,
and let us focus on the specific workflow control needed for QA.
Each of the processing components, which are connected to the JavaSpace, has
to be started only at certain processing stages. This stages must be fulfilled
chronologically, but can freely combine several PRs and LRs. We identify the
following QA processing stages.

– Answer Type Detection

– Answer Template Filling

– Answer Document, Sentence, or Paragraph Retrieval3

– Answer Zooming4

– Answer Verification

Our concrete architecture consists of the following top-level processing com-
ponents to implement the processing stages: A Question Analyser QR, a Query

3 The retrieval stage often follows a text summarisation step.
4 May include answer tiling.



Expansion component QE, a Document Retrieval Component DR, a Passage Re-
trieval Component PR, an Answer Extractor AE, and an Answer Verifier AV. To
that effect the basic QA process workflow looks like this: All top-level processing
components are connected to the PRs and LRs they require, which is illustrated
in Fig. 2.

Fig. 2. Basic Question Answering Process Workflow

In addition, Fig. 2 shows, that the top-level processing components are not
directly connected, but indirectly by a data input. The angular boxes represent
the actual textual data input, e.g. the question string or the retrieved docu-
ments. These data items are represented as entries in the space. We will not
address this issue here and focus again on the QA components. Every top-level
component p ∈ P = {QE, DR, PR, AE, AV } has a set of associated PRs and
LRs, for example associates(QE, {PR1, LR1}), whereby PR1 could be a mor-
phological analyser and LR1 an ontology. A very important point is, that every
top-level component can have more than one associated set of PRs and LRs. It
is not clear, which PRs or LRs should be applied at a certain stage, because
they modify the input document and add possibly wrong or misleading infor-
mation. It is e.g. not clear, whether document similarity should be calculated
on filtered or unfiltered documents. We try to find out, which sets of associated
PRs and LRs work best for specific queries, taking into account the associated
sets of other top-level components. The set elements of different stages declare
the valid processing streams of a QA process.

We will treat both PRs and LRs in the same way, because they exhibit the



same input/output behaviour. Now think of a PR or LR component as an item
set PR, and LR respectively, which we define recursively. Each PR may con-
tain several other PRs and LRs. To keep thinks simple, each LR is atomic and
defined by {LR}. Then PRs might have the form {PR, PR}, {PR, LR}, or
{PR, {PR, PR}} for example. Each embraced PR or LR defines a subtask and
different top-level components may have the same subtasks associated. We then
ascertain two problems which count as optimisation criteria.

Problem 1. Decide on the best performing set of associated PRs and LRs for
each top-level component given a specific query.5

Problem 2. In addition, we have to decide, if the result of an executed PR can
be reused at a later processing stage, like in dynamic programming, or if a PR
has to be started again.

We prove the adequacy of the problems/optimisation criteria for QA: In a QA
process, it might be advisable to skip a (preprocessing) PR or reverse the order
in which some (preprocessing) PRs are applied to a query, as shown in [9] for
tagging and partial parsing. In [9] a statistical sentence parser worked best if
the tagging was postponed, when some parse trees delivered by a sentence tree
parser already existed. This example shows variation of PRs order on a very
low level. But even the more abstract QA workflow level can be varied or partly
reversed. Experiments in [3] show that even though linguistic filters have been
used thus far as post-processing filters, further improvements can be made by
applying the filters at the document retrieval stage. In order to test on different
QA streams, recent QA systems implement answer selection as a multi-stream
[10] system. This poses another difficult question, how to select among the differ-
ent answers returned by different streams. In our approach, we circumvent this
problem by only allowing for one final answer, though it is not clear, whether
this produces better results.

Consider the basic workflow in Fig. 2 again. While processing, the master process
supervises whether a PR or LR is available over the distributed system, whether
it should be applied at the current stage of processing (the PR/LR is element of
the set associated with the current top-level component), and whether it returns
a proper result in time. Additionally, the master process may take up control,
whether a specific unsatisfactory subtask must be processed again. This intro-
duces a third optimisation criterion for our system. Regarding top-level compo-
nents we are interested in loops that may be reasonable. We then ascertain the
following decision problem to be solved:

Problem 3. A decision must be made, if the process pipeline should be processed
further, or returned to an earlier stage, i.e. a top-level component out of L,
whereby L is the set of all top-level components, and PRs and LRs consulted
for the specific question so far.

5 This set can also be empty. This means, that we skip a processing stage. For example,
in a simple fact-book lookup, query expansion is not appropriate.



This can best be explained in the case of the Answer Verifier. When the master
control decides that a proper result cannot be returned yet, we must return to a
former processing step, e.g. the document retrieval stage in order to enhance the
recall (see e.g. [11]) of relevant documents. Consider that Problem 3 is similar to
Problem 2 but concerns a different processing level, and is completely indepen-
dent from Problem 2. Having defined the occurring problems and corresponding
three optimisation criteria, we go on to look for how they can be expressed in
the distributed question answering process. Consider again Fig. 1 and the last
and most important part for discussion, the process control. The master process
listens for the result entries from the result bags being filled by the components,
decides on the next processing step(s) and delivers a final query result. What
we aim to do is to exploit the protocols of successfully processed QA queries,
that means all protocols derived from QA processes that produce the correct
answer according to a supervised test set. For the rest of this paper, we con-
centrate on mining the protocol for the selection of appropriate sets associated
with top-level components (Problem 1). The decision on a best performing set
of PRs/LRs cannot be made reliably with our learning step. But in our case,
an unreliable decision suffices, because the sets only define the plan to subse-
quent workflow steps in part and do not present a deterministic solution. The
freely coupled architecture is still preserved and needs a criterion for termination
(Problem 2), which we do not address in this paper.

3 Machine Learning and the QA Grid

Since the QA process involves a variety of single NLP processing resources such
as tokeniser, morphology parser, NE recogniser, and chunk parser and since many
of these have many adjustable parameters (e.g. HMM-based POS-Tagger), ma-
chine learning algorithms6 are principally suitable to adjust these parameters.
The majority of researchers developing state-of-the-art QA tools have focused on
optimising single components, e.g. finer-grained NE rules or probabilistic gram-
mar rules by ML techniques to improve their systems [12]. For some tasks, like
detecting the expected answer type, one can easily agree with this option, since
these tasks can be expressed as classical classification tasks that can be solved
by SVMs, for example [13]. And the process of classifying a query is rather in-
dependent from the answer process, once the answer type is detected.
However, it cannot be assumed in principle that improving a single component
also improves the overall performance as shown for passage retrieval [14]. To that
effect, using machine learning to improve a single QA PR does not necessarily
improve the QA system.

In our approach, we improve the QA system by mining the process control of the
QA process, which reveals meta data about the input, the applied components
(e.g. availability and performance), and the overall result. First, we recapitulate,

6 Most of the methods are referred to as statistical NLP in the linguistic literature.



what we target to model and learn automatically, is the behaviour of the sys-
tem to correctly decide which components are to be applied for specific query
instances. In a plan-driven architecture, that means to learn to decide which
PRs and LRs is to be applied at a certain workflow stage. Consider, that the
application of LRs and PRs at a certain workflow stage is restricted by the LRs
and PRs that suit this workflow stage. This must be specified in advance. For
example, during query expansion, all components working on answer verification
are rather useless. Now let, for example, s(QE) be the set of suitable PRs/LRs
for query extraction. Then s(QE)×s(DR)×s(PR)×s(AE)×s(AV ) defines the
solution space.7 The process protocol is mined for patterns that allow to min-
imise s(QE) ∪ s(DR) ∪ s(PR) ∪ s(AE) ∪ s(AV ) for a particular query instance
(the particular words play a major role) or query class (the question type or
semantic type of question headwords play a major role).
To accomplish this task, we need to know about the qualitative result of a
specific workflow on a particular question. This qualitative result is basically
represented by the correct or incorrect final answer. In addition, the qualitative
result of each involved component can be measured. A recent approach in this
direction is called introspection in QA systems, where intermediate results are
evaluated to decide on feedback loops to redo a QA step which turned out to
be unsatisfactory. In [15] this is used to decide whether the hit list of an un-
derlying search engine contains an appropriate answer passage or not. Then it
can be decided, if a new search (e.g. with the prior use of a query expansion
operator) should be started or the question should be rejected. However, in our
methodology the answering process is not predefined by a prior classification
model that restricts the process pipeline. All we constrain is, that we have to
follow the workflow illustrated in Fig. 2, but at each stage, all suitable PRs and
LRs are considered in principle. During application, many different workflows
may occur. We are interested in the set of involved components that constitute
a successful workflow, which results in a correct answer. Then the set of possible
LRs and PRs to be applied at a certain QA stage can be restricted to the most
convenient subsets, which can all be started in parallel without computational
explosion.

3.1 Master Control Protocol

The content of the master control protocol we propose is best explained by ex-
ample. Imagine we pose the simple fact-based question When was Frank Sinatra
born? and also know the answer December 12, 1915. Thus the control proto-
col might consist of the following information (Actually the log entry for one
question would be much longer.)

1. (When) (was) (Frank) (Sinatra) (born)
2. {Date} ... {Person}
3. input#PR1#output#quality ...

input#{PR2,{PR3, LR1}}#output#quality

7 For simplicity, we do not regard loops here.



4. overall result quality

The entry log contains the question tokens and meta information about the
expected answer type {Date} and that information about a person {Person}
is being asked. In addition, the application of each PR and LR is traced. It is
important to mention, that the input and output to and from each component
is also logged. This information can later be explored to get quality information
of each component in addition to the overall result quality. Next, we briefly
sketch a suitable class of machine learning algorithms for that purpose, in which
in contrary to classification and clustering, an association between features is
sought.

Association Rule Learning. Association rule learning is a typical data min-
ing technique, established methods can be found in [16], [17], [18]. Association
rules are expressions like X ⇒ Y , where X and Y are disjoint sets of items. A
transaction T is a set of items, given a database D of all transactions T ∈ D.
We are primarily interested in the conditional probability p(Y ⊆ T | X ⊆ T )
which expresses the probability, that whenever a transaction contains X , it also
contains Y . For mining the master control protocol, we declare that the log of a
single answering process is an abstract transaction. After filtering out features
in which we are not interested, we extract and load a (virtual) database Da of
question answering transactions.

Learning of the Master Control Protocol. We try to bring forward as-
sociation rule learning to the problem of mining interesting patterns from the
QA master control protocol. Learning the master control protocol is the idea of
modelling process control from the features space obtained from Da and to infer
knowledge by inferring rules over the transactions Ta ∈ Da.
A second constraint we define concerns the process properties. For simplicity,
we concentrate on a special type of patterns we are likely to find, patterns of
flat simple items. For this purpose, we abstract from the process order which is
logged in the control protocol, as well as from the inherent syntactic structure
of PRs. For example, the processing component PR1 = {PR2, {PR3, LR1}} is
reduced to the process properties set {PR1, PR2, PR3, LR1}. We basically filter
statistically relevant implications and association rules of the special sort:

[instance properties..., PRs..., LRs...] -> [successful answer]

We want to find out which input words, classes of input words like {Date} and
{Person}, and PRs and LRs result in a successful answer process. Likewise, we
are interested in implications, which additional PRs and LRs should be invoked
in a consecutive fashion:

[PRs..., LRs...] -> [PRs..., LRs..., successful answer]



We briefly discuss the input words and input class properties, too. As such
we take all query information available, that is the actual input word strings
and all meta data available. We believe that some very interesting rules can be
inferred with actual input words, at least question words and abstract terms.
While running the association rule algorithm, we adopt a trick to filter out un-
interesting patterns. We prune every rule in which not all the processes came up
with qualitative results. Having produced a set of association rules, we directly
relate them to the semantics of the actual Grid architecture. For first, the asso-
ciation rules are meant to reveal patterns about the strength of applying specific
workflows and distributed components. For second, reconsider that every compo-
nent stems from an equivalence class of components. By comparing the rules for
each PR and LR in the same equivalence class, we get meta information about
the exchangeability of components in the Grid. For last, the inferred meta data
about the distributed components can be directly used by the master process to
decide on the workflow of new incoming questions - consider a simple rule that
gives direction to take by the system at an early processing stage Person ->

PR4 (Lookup in fact book) that supposes a simple lookup in a fact book as
data retrieval task.

In our opinion, the applicability of association rules is appropriate for this task.
Although they are unfocused, may easily return noise and may need a lot of
input to be useful, they can supply interesting patterns from the input space.
We are furthermore only interested in association rules with few items, and by
restricting rule generation to rules, which result in a correct answer, the final
rules are much more focussed as in unsupervised experiments with association
rules. In related tasks, even more complicated sequence patterns have proved to
correctly predict failures in plan executions [19]. One point is left, to speculate on
further developments in Grid semantics based on our QA system requirements.
The last point is deferred to the outlook.

4 Conclusion and Outlook

We conclude that the high conceptual and computational demands of QA sys-
tems can be solved in a distributed computing architecture, for which JavaSpace
technology provides the necessary concepts. We implement an opportunistic
problem solving strategy for semantic Grid application, expressed as blackboard
pattern. The Grid serves for specialised QA components to assemble their knowl-
edge. The learned control protocol of the specialised subsystems, i.e. top-level
components, PRs, and LRs, deliver the semantics for Grid Computing in Ques-
tion Answering and show a methodology to assemble special purpose Grids via
an automatic training approach. Results of the evaluation will be presented as
soon as possible.

Finally, we give an outlook to further QA Grid potentials by the usage of taxo-
nomic association rules: These rules account for taxonomies which embrace items



hierarchically to item sets. Recall the definition of the PRs, which we defined ac-
cordingly. With the help of generalised association rules [20], rule items can have
taxonomic structure and comprise items from different levels of abstraction, such
as complex PRs. It is then possible to infer rules about more complex processing
workflows. This knowledge allows for planning more than one subsequent step
of processing, and hence allows for even better PR and LR co-ordination.

References

1. Neumann, G., Xu, F.: Mining answers in german web pages. In: Proceedings of
International Conference on Web Intelligence, Halifax, Canada, IEEE/WIC WI-
2003 (2003)

2. Abney, S., Collins, M., Singhal, A.: Answer extraction. In: Proceedings of Applied
Natural Language Processing (ANLP) Conference. (2000)

3. Cardie, C., Ng, V., Pierce, D., Buckley, C.: Examining the role of statistical and
linguistic knowledge sources in a general-knowledge question-answering system.
In: Proceedings of the Sixth Applied Natural Language Processing Conference
(ANLP-2000). Volume 180-187,ACL/Morgan Kaufmann. (2000)

4. Eric Freeman, Susanne Hupfer, K.A.: JavaSpaces Principles, Patterns and Practice.
Addison Wesley (1999)

5. Foster, I., Kesselman, C.: The GRID. Morgan Kaufmann Publishers, Inc., San
Francisco (1999)

6. Cunningham, H., Bontcheva, K., Tablan, V., Wilks, Y.: Software infrastructure
for language resources: a taxonomy of previous work and a requirements analysis.
Technical report, Department of Computer Science and Institute for Language,
Speech and Hearing, University of Sheffield, UK (2000)

7. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture. A System of Patterns. John Wiley and Sons,
West Sussex (1996)

8. Erman, L.D., Hayes-Roth, F., Lesser, V.R., Reddy, R.: The Hearsay-II Speech-
Understanding System: Integrating Knowledge to Resolve Uncertainty. In: Pro-
ceedings of ACM Comput. Surv. 12(2). (1980)

9. Charniak, E.: Statistical parsing with a context-free grammar and word statistics.
In: Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI ’97). (1997) 598–603

10. Jijkoun, V., de Rijke, M.: Answer selection in a multi-stream open domain question
answering system. In: Proceedings of ECIR 2004, pp 99-111. (2004)

11. Lancaster, F.W.: Information retrieval systems: characteristics, testing and evalu-
ation, 2 nd Ed. John Wiley and Sons, New York (1979)

12. Neumann, G., Sacaleanu, B.: A Cross-Language Question/Answering-System for
German and English. Technical report, LT-Lab, DFKI, Saarbrücken, Germany
(2003)

13. Zhang, D., Lee, W.S.: Question classification using support vector machines. In:
Proceedings of the 26th annual international ACM SIGIR conference on Research
and development in informaion retrieval, ACM Press (2003) 26–32

14. Monz, C.: Document retrieval in the context of question answering. In: Proceedings
of the 25th European Conference on Information Retrieval Research (ECIR-03),
Springer (2003)



15. Czuba, K.: A machine learning approach to introspection in a question answering
system (2002)

16. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Advances
in knowledge discovery and data mining. In: Fast discovery of association rules.
AAAI/MIT Press (1996) 307–328

17. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing asso-
ciation rules to correlations. In: Proceedings of ACM SIGMOID. (1997) 265–276

18. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In Chen, W., Naughton, J., Bernstein, P.A., eds.: Proceedings of ACM SIGMOD
Intl. Conference on Management of Data, ACM Press (2000) 1–12

19. Zaki, M.J., Lesh, N., Ogihara, M.: Planmine: Sequence mining for plan failures.
In Agrawal, R., Stolorz, P., Piatetsky-Shapiro, G., eds.: Proceedings of Fourth
International Conference on Knowledge Discovery and Data Mining (KDD’98),
New York, NY, ACM Press (1998) 369–373. A more detailed version appears in
Artificial Intelligence Review, special issue on the Application of Data Mining,
1999

20. Srikant, R., Agrawal, R.: Mining generalized association rules. In: Proceedings of
the 21st International Conference on Very Large Databases, Zurich, Switzerland
(1995)


