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Abstract. We implemented a generic dialogue shell that can be config-
ured for and applied to domain-specific dialogue applications. A toolbox
for ontology-based dialogue engineering provides a technical solution for
the two challenges of engineering ontological domain extensions and de-
bugging functional modules. We support a rapid implementation cycle
until the dialogue systems works robustly for a new domain, e.g., the
dialogue-based retrieval of medical images.

1 Introduction

The idea of the Semantic Web [Fensel et al., 2003] provides new opportunities for
semantically-enabled user interfaces. The explicit representation of the meaning

of data allows us to (1) transcend traditional keyboard and mouse interaction
metaphors, and (2) provide representation structures for more complex, collab-
orative interaction scenarios that may even combine mobile and terminal-based
interaction [Sonntag et al., 2009a]. Over the last years, we have adhered strictly
to the developed rule “No presentation without representation.” The idea is to
implement a generic, and semantic, dialogue shell that can be configured for and
applied to domain-specific dialogue applications.1

In this paper, we discuss the parts of a toolbox we implemented that sup-
ports a rapid dialogue engineering process to access multimedia repositories.
(Following a domain knowledge acquisition methodology, the necessary domain
knowledge can be acquired, e.g., the necessary medical knowledge about medical
image contents [Sonntag et al., 2009b].) A workbench provides the support for
task dialogue development and the knowledge engineering process for a domain-
specific (multimodal) dialogue interface. This toolbox is based on the industry
standard Eclipse and other established open source software development tools.
We will describe a rapid dialogue engineering task and its challenges (section
2) and provide a technical solution for the two challenges of engineering ontolo-
gical domain extensions (section 3) and debugging functional modules (section
4). The particular challenge we address is to speed up the implementation cycle
until the dialogue systems works robustly. Section 5 provides a conclusion.

1 This work is part of THESEUS-CTC (see www.theseus-programm.de) to implement
dialogue applications for use case scenarios. It has been supported by the German
Federal Ministry of Economics and Technology (01MQ07016). The responsibility for
this publication lies with the authors.



2 Rapid Dialogue Engineering Task and Challenges

We implemented a situation-aware dialogue shell for semantic access to image
media, their annotations, and additional textual material. We use a distributed,
ontology-based, dialogue system architecture, where every major component
can be run on a different host, increasing the scalability of the overall system.
Thereby, the dialogue system also acts as the middleware between the clients
and the backend services that hide complexity from the user by presenting ag-
gregated ontological data. Figure 1 provides a high-level view and rough sketch
of the basic processing chain within the typical interaction cycle.
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Fig. 1: Basic building blocks and core workflow of multimodal dialogue processing

The dialogue engineering task is to provide a dialogue-based access to an-
swer questions about the domain of interest. The spoken dialogue input is used
to generate SPARQL queries on ontology instances (using a Sesame repository,
see www.openrdf.org) and following the guidelines in [Sonntag et al., 2007]).
Prominent examples of integration platforms include OOA [Martin et al., 1999],
TRIPS [Allen et al., 2000], and Galaxy Communicator [Seneff et al., 1999]; these
infrastructures mainly address the interconnection of heterogeneous software
components. In THESEUS, the main challenges we encountered in supporting
a rapid dialogue system engineering process, i.e., implementing a new dialogue
for a new domain, can be summarised as follows:

– providing a common basis for task-specific processing;
– accessing the entire application backend via a layered approach;
– engineering ontological domain extensions;
– debugging functional modules such as natural language understanding (NLU),

fusion, and management (and external text-to-speech (TTS) synthesis).

The first two, more technical, challenges have been solved by implement-
ing the core of a dialogue runtime environment, the ODP framework and its
platform API (the DFKI spin-off company SemVox, see www.semvox.de, offers
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Fig. 2: Overall design of the multimodal dialogue shell: ODP framework and workbench

a commercial version), as well as providing configurable adaptor components.
These translate between conventional answer data structures and ontology-based
representations (in the case of, e.g., a SPARQL backend repository) or Web Ser-
vices (WS)—ranging from simple HTTP-based REST services to Semantic Web
Services, driven by declarative specifications [Sonntag and Möller, 2009]. How-
ever, using the dialogue framework for the implementation of domain dialogue
requires domain extensions and the adaptation of functional modules while im-
plementing a new dialogue for a new domain or use case. Hence, an integrated
toolbox is required, as depicted in figure 2. The ODP workbench builds upon
the industry standard Eclipse and also integrates other established open source
software development tools to support dialogue application development, auto-
mated testing, and interactive debugging. A distinguishing feature of the toolbox
is the built-in support for eTFS (extended Typed Feature Structures), the opti-
mised ODP-internal data representation for knowledge structures. This enables
ontology-aware tools for the knowledge engineer and application developer.

Implementing a Medical Domain Dialogue Dialogue engineering is an in-
teractive process between the dialogue engineer and the domain expert. The dia-
logue engineer has to provide the domain user, e.g., a radiologist in the medical
domain, with the desired dialogue competence (also cf. the THESEUS MEDICO
use case).

The following medical dialogue illustrates the doctor’s practical interest in
using a dialogue interface on top of a semantic image search engine. The dialogue
concentrates around the questions about the media contents, i.e., the body parts



and the anatomy shown in computer tomography (CT) picture series (also see
DICOM, medical.nema.org) and magnetic resonance (MR) videos.
1 U: “Show me the CTs, last examination, patient Peter Meier.”
2 S: Shows corresponding patient CT studies in DICOM picture series and MR

videos.
3 U: “Show me the internal organs: lungs, liver, then spleen and colon.”
4 S: Shows corresponding patient image data according to referral record.
5 U: “Summarise the patient’s findings.”
6 S: Synthesises a summary of the patient’s findings.

3 Engineering Ontological Domain Extensions

The workbench for the ontology-based dialogue platform provides an editor to
extend and modify the upper-level ontology with domain-specific content. The
upper-level ODP ontology provides (1) interpretation structures resulting from a
stepwise analysis of user input; (2) presentation structures that are employed for
the declaration and generation of (multimodal) system output; (3) context infor-
mation to improve the conversational competence in interaction management;
and (4) dialogue task structures that function as templates for the implementa-
tion of domain-specific dialogue acts. We will focus on these templates.

Figure 3 (left) shows the class view of the domain-specific dialogue acts (as
implemented in the Comet music retrieval system [Sonntag et al., 2009a] and in
the dialogue system for the medical domain [Sonntag and Möller, 2009]); these
are ontology class extensions of the ODP#UserTask class. Additional colour in-
formation about namespaces highlights the class embeddings concerning the GUI
representation of the task goals, i.e., controlling GUI elements named Spotlets in
the Comet subdomain (AddSpotlet, CloseSpotlet, UpdateSpotlet). Based on the
dialogue management rules for the general ODP concepts, we can automatically
handle the update of tasks and their results in the current display context.

New user tasks and concepts for GUI representations are created with the
Ontology Class Editor shown in figure 3 (right). With this editor, the names
and namespaces of new classes are defined. Furthermore, new slots can be added
or their ranges restricted. Our Eclipse plugin allows dialogue engineers to write
down ontological domain extensions and test them in the running system in
a unique programming environment (Eclipse) without the need for an external
ontology tool such as Protégé (http://protege.stanford.edu/). This is particularly
beneficial when debugging functional modules.

4 Debugging Functional Modules

In order to ease the task of writing domain-specific natural language under-
standing (NLU) rules in ontology form, we use auto-completing combo-boxes for
writing down automatic speech recognition (ASR) and NLU rules. While typing
in an ontology concept or slot, concept and slot names with matching prefixes



Fig. 3: Graphical User Interface of the Ontology Engineering Tool

are shown. In addition, this procedure helps validate the ontology structures the
user creates. Figure 4 shows the online engineering and debugging cycle.

First, the user writes ASR rules in ontological form. Figure 4 (left) shows
the rules for recognising and interpreting utterance (5) in the example dialogue:
“Summarise the patient’s findings.” We interpret the utterance as a deictic one,
where the determination of the (patient) referent is dependent on the context in
which it is said. Here, of course, the context is the patient “Peter Meier”, stored
in the discourse context.

Second, this missing information, named the refProp property, is added by
the FUSION module in the process pipeline, after the message is sent over the
ODP dialogue platform. Most importantly, a complex dialogue ontology instance
(cf. figure 3 (left)) is built up by the modules in this processing pipeline, whereby
the abstract ontology instance is easily created by the ODP upper class template.
This means the user has to fill in only the slots which are specific for the domain
task.

Third, the fully instantiated ontology instance can be inspected in another
special Eclipse plugin. This plugin (figure 4 (right)) allows a dialogue engineer
to inspect the ontological interpretation result when a user tests the running
system. If an incorrect ASR or NLU rule is encountered, or the wrong dialogue
task instance is built up, the dialogue engineer can directly change (revise) the
corresponding rules and let the user “say again” (repeat her/himself) without
interrupting the dialogue session. In this way, the debugging of functional mod-
ules, such as the speech recognition, interpretation, and fusion modules, can be
extremely facilitated, especially when complex ontology structures are used for
knowledge representation and message transfer.



Fig. 4: Online Engineering and Debugging Cycle

4.1 Editing the GUI Ontology Model

A central building block for component development and an integral part of
the ODP middleware is the included application programming interface for the
efficient representation of ontology-based data using extended Typed Feature
Structures (eTFS). As described in [Pfleger and Schehl, 2006], the eTFS API
is tightly integrated into a production rule system which enables a declarative
specification of the processing logic in terms of production rules. The eTFS
structures are also used to encode semantic presentation structures. The display
context comprises of a more complex GUI ontology model. This means we specify
the functionality of all visible GUI components in a GUI model; this model
is ontology-based and can be extended by an appropriate authoring tool, the
display context editor. Figure 5 shows the display context of a specific GUI frame
which displays a SIE which stands for Semantic Interface Element (the generic
term for the Comet Spotlets).

The screenshot in figure 5 shows how the SIE’s functionality model can be
extended by multiple object types available in ODP. An auto-completion box
depicts all available options. In this case, the ASR push-to-talk functionality is
available. This means we can easily add a push-to-talk functionality to any SIE
object displayed on the screen. This is particularly beneficial for testing different
ASR activations which are more user-centred than traditional buttons on the
screen. This applies to other physical devices which are often not convenient in
the application domain, too. The GUI Ontology Model also includes the semantic
model of the referred entities (e.g., the patient or the patient file) which offers



additional flexibilities in defining the rule conditions or effects, especially for
information update rules.

Fig. 5: Display Context Editor

The medical scenario should illustrate this: the screenshot (figure 6) shows
how the dialogue system is embedded into the use case specific application en-
vironment. The user can ask questions using speech and refer to displayed ele-
ments as deictic expressions. The current display context frame sets the dialogue
context in the form of a simple information state in order to resolve (deictic)
references. (The information state is not discussed in this paper. The fusion
rules, however, are explained in more detail in section 4.2). The current display
context is the dotted frame in figure 6. The displayed SIEs make up the display
context (cf. figure 6). While using the display context editor, the push-to-talk
functionality can be easily attached to a SIE. In this way, implicit ASR activa-
tion can be tested according to clinical usability issues. The clinician can, for
example, click on a CT image where several landmarks are displayed to activate
the ASR. Then, he or she selects a landmark and asks specific questions such
as “Summarise the patient’s findings here.” In this example, the user is able to
implicitly activate the ASR (please note that this is independent of the indi-
vidual integration pattern of the user). Finally, the output of the FUSION step
is transferred to the backend system. The generated SPARQL queries (section
4.3) are then processed by the backend system in order to retrieve the medical
images of the patient in the current dialogue focus.



Fig. 6: Multimodal (Touchscreen) Installation for the Radiologist

4.2 Maintaining Fusion Rules and Deictic References

A modality fusion component keeps track of the ongoing discourse, completes
different types of anaphora, and merges input from different modalities. We use a
production rule system, FADE, which is part of the ODP distribution. With the
increasing number of involved rules for dialogue input fusion, developing rules
can become error-prone and controlling their effects quite difficult. To support
rule authoring for maintaining the correct fusion behaviour of the system while
adapting to a new domain, we implemented a graphical user interface to monitor
and edit fusion requests. With the help of a dialogue fusion input editor, the user
can adapt system states or rule contents during runtime.

The fusion input editor in figure 7 shows the state of the dialogue system after
calculating the set of applicable rules (figure 7, left) for resolving deictic references
in utterance (5) “Summarise the patient’s findings.” + Click on specific landmark

in a medical image. The task is to find the correct patient reference and the
correct deictic reference for the word “findings” which corresponds to the image
region the user clicked on.

The example ontology structure in the rule inspector (figure 7, right) shows
the state of the fusion reference module before resolving the missing deictic infor-
mation of the summarisation request. (It is the rule with the highest weighting
that ranks first and is displayed.) The patient object, embedded into the task re-
quest, is annotated with a deictic refProp property. This rule gives an overview of



Fig. 7: Dialogue Fusion Input Editor

the rule conditions and actions and allows developers to follow the actions which
are performed in the next fusion steps (in this example a reference resolution of
an unresolved embedded object, the patient).

4.3 Generating SPARQL Queries

Many systems are available that translate natural language input into struc-
tured ontological representations (e.g., AquaLog [Lopez et al., 2007]), port the
language to specific domains, e.g., ORAKEL [Cimiano et al., 2007], or use refor-
mulated semantic structures NLION [Ramachandran and Krishnamurthi, 2009].
AquaLog, e.g., presents a solution for a rapid customisation of the system for a
particular ontology; with ORAKEL a system engineer can adapt the NLU com-
ponent in several cycles thereby customising the interface to a certain knowledge
domain; and NLION uses shallow natural language processing techniques (i.e.,
spell checking, stemming, and compound detection) to realise a single semantic
concept or an ontology property. All of them support the translation to SPARQL
queries in principal. However, all of them deal with written keywords or simple
semantic relations, e.g., X isDefinedAs Y. They do not focus on the much more
complex ASR/NLU process needed for natural speech input while using a dia-
logue system. In addition, these systems directly transfer the input to the desired
SPARQL queries without dealing with the complex influences of message passing
in dialogue frameworks or input fusion. In our dialogue domain, however, these
influences demand a complex online engineering and debugging cycle. The re-
sult should be an instantiation of a complex query object from which a SPARQL
query can be derived.

The dominant query language for RDF repositories (which we use in the
example) is the W3C recommendation SPARQL2. Similar RDF-based query
languages are worth mentioning such as RDQL3, SERQL4, or iTQL used by

2 http://www.w3.org/TR/rdf-sparql-query/
3 http://www.w3.org/Submission/RDQL/
4 http://www.openrdf.org/doc/sesame/users/ch06.html



Kowari5. All these languages are based on the notion of RDF triple patterns
which can be connected via several query operators such as “union” or “filter”.

We used SPARQL queries because they are the de facto standard and are
supported by the two semantic repository APIs we use, namely Jena and Sesame
(Sesame for a remote medical repository). In addition, the SPARQL 2 specifica-
tion provides support for operators such as “group by” or aggregate functions
(e.g., COUNT, MIN, MAX, SUM). In the context of (unstructured) natural
language input, SPARQL also provides convenient operator extension, i.e., the
“filter” operator, to specify free test searches and even regular expressions based
on operations for regular expressions. (This includes the ability to ask SQL
“like”-operator style expressions.) Although operator extensions that deal with
regular expressions are only seldom available at public SPARQL endpoints (the
execution of such queries is rather computation-intensive), they can be easily
used when addressing internal or private remote repositories of moderate size,
as is the case for the medical example repository.

The SPARQL Query Editor, displayed in figure 8, allows dialogue engineers or
retrieval experts to specify what should happen when processing a user request.
For example, the process of retrieving a patient data file has several conditions
as slots to be filled before the technical retrieval process makes sense. In our
example, the patient name slots have to be filled. Subsequently, the mapping
to the SPARQL query can be defined, i.e., the surname variable can be added
to a SPARQL SELECT query. The interesting thing about this editor is that a
dialogue engineer and a SPARQL retrieval expert can work together seamlessly:
the dialogue engineer provides questions about the important retrieval objects.
Hereupon, the retrieval expert writes some SPARQL queries for the specific
domain. Finally, the dialogue engineer can use these example queries to insert
variables for new conditions, e.g., the surname of a patient. In this way, the
dialogue engineer can execute many application-specific SPARQL queries with
only limited knowledge of the SPARQL dialect of a semantic search engine.

5 Conclusion

Over the last several years, the market for speech technology has seen signif-
icant developments [Pieraccini and Huerta, 2008] and powerful commercial off-
the-shelf solutions for speech recognition (ASR) or speech synthesis (TTS). En-
tire voice user interface platforms (VUI) have also become available. Based on an
integration platform (ODP) for such off-the-shelf solutions and internal dialogue
modules, we described some parts of an Eclipse-based toolbox for ontology-based
dialogue engineering and provided a technical solution for the two challenges
of engineering ontological domain extensions and debugging functional modules
such as the ASR/NLU component, the fusion component, and the (very domain-
specific) SPARQL generation process.

Further application scenarios and more complex prototype systems need to
be addressed. The integrated Eclipse-based toolbox for ontology-based dialogue

5 http://www.kowari.org/



Fig. 8: SPARQL Query Editor

engineering will continue to be expanded with more tools and predefined generic
knowledge sources, facilitating the creation of new multimodal dialogue applica-
tions. From the experience we gained from the two use case prototypes (which
have the comet and medico namespaces in the ODP framework) we are now in
the process of extending the functional dialogue shell modules for a more com-
plex dialogue behaviour which includes the extensions of ASR/NLU, fusion, and
SPARQL queries, respectively. For example, the context editor allows a dialogue
engineer to specify rules to empirically evaluate different integration patterns
and adapt the fusion rules accordingly. In addition, efficient error recovery in
the dialogue assumes a complex state model of the characteristics of the re-
trieval environment. Different access and reliability models have to be updated
regularly. In both examples, machine learning plays a major role. This would
close the gap between the manual dialogue engineering support as described
here and automatic—learned—procedures to adapt to new dialogue domains
and dialogue situations while supporting a rapid implementation cycle until the
dialogue systems works robustly for a new domain or situation.

One of these situations is the dialogue-based access (as THESEUS service)
to a semantic search index. For example, Sindice, http://sindice.com/, provides
a lookup index of Semantic Web resources. Together with newer inference ca-
pabilities [Delbru et al., 2008], Sindice will provide advanced search capabilities
in the near future which can be used to answer very detailed questions about
the desired entities (e.g., clinical trails). Whereas the dialogue-based access to
keyword-based search engines has only moderate success, semantic (ontology-
based) interpretations of dialogue utterances may become the key advancement
in semantic search, thereby mediating and addressing dynamic semantic search
engines which are already freely available.
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