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Abstract. Today, the major challenge in medical imaging is the so-
called knowledge acquisition bottleneck. We cannot acquire the necessary
medical image knowledge that ought to be used in the software applica-
tion easily as it is hidden in the heads of medical experts. In this paper,
we provide an example of how an incremental knowledge acquisition
process for radiology images can be implemented to solve this problem.
Thereby, we integrated Semantic Web technologies with a variety of au-
tomatic and manual annotation tools for radiology images. According
to the complex medical finding process, the different annotation tools
should be used for very specific purposes. This divide-and-conquer strat-
egy turns out to be very effective in the radiology domain, but produces
many infrastructure requirements and relies on high-end intelligent user
interfaces such as dialogue systems which are not always available.

1 Introduction

A prior usability analysis to identify the requirements for industrial applications,
where image semantics play a role, is very useful. In many circumstances, differ-
ent requirements have to be met during knowledge acquisition, refinement, and
retrieval. In addition, work from the area of the Semantic Web should be inte-
grated in such a way that the process of using image semantics, and relying on
it, does not produce too much knowledge engineering overhead. Unfortunately,
in many industrial domains such as medical radiology, a vast amount of images
is produced and manual annotations are not feasible. In addition, these medical
image annotations must be refined and augmented during a complex medical
workflow.

Our clinical partner,the University Hospital Erlangen in Germany, has a to-
tal of about 50 TB of medical images. They are currently doing about 150,000
medical examinations producing 13 TB of data per year. Many 2D and 3D image
series in radiology, and individual images in particular, require specific seman-
tic annotations of the image contents which cannot be automatically provided
(figure 1). These annotations are extremely helpful and increase the quality of
patient treatment processes; in addition to satisfying the trend to store and
organise all patient data, including health records, laboratory reports, and med-
ical images in digital libraries, effective retrieval of images builds on the semantic
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annotation of image contents. In the medical domain, the proper selection of spe-
cific image contents can improve the treatment process to a large degree since
the doctor can consult similar cases and other doctors’ treatment plans. This
case-based reasoning is very effective in the medical domain. At the same time it
is crucial that clinicians have access to a coherent view of image data within their
particular diagnosis or treatment context. Semantic annotations should provide
the necessary image (region) information.

In order to address these issues, namely the knowledge acquisition bottleneck
and different user interface requirements at different medical workflow stages, we
designed and implemented an incremental knowledge acquisition process for ra-
diology images. This process relies on an integrated ontology-based approach
of structured knowledge for medical images (section 2) and takes the special
requirements of the radiology department into account. Based on these require-
ments, automatic and manual annotation frameworks can be constructed (sec-
tions 3 and 4) and combined, thereby implementing an incremental knowledge
acquisition process (section 5). Section 6 provides a conclusion.

Fig. 1. Image series and semantic annotation requirements
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2 Structured Knowledge for Medical Images

Structured knowledge in radiology has a multitude of different aspects, which
can be divided into different representational ontologies in RDFS and OWL. The
annotations for medical images are based on the assumption that those elements
at higher levels are more stable, shared among more people, and thus change
less often than those at lower levels. For example, the Upper Ontology describes
very general concepts like time, space, organization, person, and event, which are
the same across all domains. The Information Element Ontology represents the
information elements of the incremental knowledge acquisition process (figure
2). For the Medical Ontologies, a separation into mid- and low-level ontologies
is not so clear since they usually cover a broad spectrum of concepts ranging
from very abstract ones like “heart” (which are not very likely to change) to
macromolecules (which are updated and added frequently). However, the medical
ontologies are

– the Foundational Model of Anatomy (FMA) ontology [7] for anatomical
annotations;

– the International Classification of Diseases (ICD-10)1 for disease annota-
tions; and

– Radlex to express visual features of the visual manifestation of a particular
anatomical entity or disease [6].

On the images, any combination of anatomical, disease, and visual annota-
tions is allowed and multiple annotations of the same image region are possible.
As a result, all messages transferred between internal and external components
which deal with image contents are then based on RDF data structures which
are modelled in the respective ontology instances (also cf. [1, 4, 14]). This is only
possible when all the annotation ontologies are available in the respective for-
mat. Especially for the most critical disease part, the ICD-10 was not available in
OWL, although the biomedical ontology community has focussed on establish-
ing interoperability and data integration. Several country- and language-specific
adaptations of ICD-10 exist which share the general structure of the WHO ver-
sion but differ in certain details. We presented an approach for modelling the
hierarchy of the ICD-10 using OWL so that we can easily use it in our ontology
framework and have enough expressivity to convey special data relations (fig-
ure 2(1)). For example, specialties such as “Exclusion” statements, which make
statements about the disjointness of certain ICD-10 categories, are modelled in
a formal way. The important thing is that we crawled the necessary data from
the language-specific ICD-10 web pages, and this procedure can be transferred
to other image semantic domains, as far as the necessary image terminology is
available online. Noy and Rubin have also presented an approach for translating
the Foundational Model of Anatomy ontology (FMA) to OWL [10]. (From their
approach we adopted the idea to split the generated ontology into an OWL-DL

1 http://www.who.int/classifications/apps/icd/icd10online
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and an OWL-Full component.) The resulting integrated data model is a prereq-
uisite to get accurate annotations on decision-relevant image contents in medical
imaging.

Fig. 2. Knowledge structure and automatic and manual annotation

3 Automatic Annotation

Automatic annotation of medical images has three basic components. First, you
can extract knowledge from metadata that is produced during the image genera-
tion process. Second, you can use image recognition software to detect anatomical
concepts and landmarks. Third, you can try to reason about the plausibility of
special configurations being detected while using ontological background knowl-
edge.

DICOM Standard The Digital Imaging and Communications in Medicine (DI-
COM) Standard (http://medical.nema.org/) ensures the interoperability of in-
formation on medical images. Manufacturers of imaging equipment and imaging
information systems and manufacturers of peripheral equipment (e.g., computer
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monitors and image archives) conform to this standard. The Siemens computer
tomography (CT) and magnetic resonance imaging (MRI), which we used to
produce our image material, use this standard to encode a multitude of image
metadata about the image generation process. Figure 3 shows the subset of these
data we extract from the image headers in order to create ontology instances
automatically (cf.the ontology model in figure 2(2)). As can be seen, we can
extract about fifty image features in the context of the image study, the patient,
and low level image characteristics. These metadata provide the necessary in-
formation to create the patient image instances to be augmented by the image
content semantics of specific image regions.

Fig. 3. DICOM data that can be extracted from the image header

Image Recognition The CT and MRI systems produce detailed pictures of
organs, soft tissues, bone, and virtually all other internal body structures. To-
day, organs of the chest and abdomen—including the heart, liver, biliary tract,
kidneys, spleen, bowel, pancreas—can be detected with great accuracy. But the
automatic detection of image semantic of, e.g., malicious tissue in the context of
cancer, is extremely difficult. Although we use state-of-the-art organ and land-
mark detection software [12] with a special focus on organs, landmarks (also cf.
top left of figure 2), and lymph node segmentation [2], many further reasoning
and manual annotation steps are necessary.

Reasoning with Special Configurations The ontology knowledge structures
become effective when axiomatic relations apart from subsumptions can be ex-
ploited. Spatial relations are a promising area of research in this automatic rea-
soning area since they complement well-known linguistic phenomena being put
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into the ontology context (e.g., Wordnet relations) and at the same time allow
both the automatic modelling of special configurations and the human judge-
ment/evaluation for plausibility. One idea we evaluated is the incorporation of a
spatio-anatomical ontology for automatic plausibility checks of the found config-
uration of automatically detected organs [8]. We first learned a model of plausible
organ constellations inductively from an annotated corpus of 3D volume data
sets. The model, an ontology-based canonical representation of the spatial re-
lationships of organs in the human body, can be used to check the results of a
state-of-the-art medical object recognition system for 3D CT volume data sets
for spatial plausibility.

The interesting thing is that, on a dataset of 1118 instances, the model pro-
duces only 76 false positives and 213 false negatives. This means that while
precision is relatively high, the recall is moderate with 65.5%. As a result, a lot
of further manual control is needed to find the erroneous automatic recognition
results. This is one of the reasons why manual annotations are needed not only
for the disease, but also for the anatomical level on medical images in radiology.

4 Manual Annotation

Manual annotation means that the radiologist must use a special human-computer
interaction system to perform the required image annotations. This process re-
veals many usability issues. We will first describe what the desktop workstation
and the special multi-touch installation in combination with a dialogue system
looks like, before we discuss the usability issues in the context of the combined
incremental process.

Desktop Workstation For the manual semantic annotation on a regular desk-
top workstation we developed a new medical semantic annotation and retrieval
tool RadSem [9]. It consists of a component that implements a method to anno-
tate images and upload/maintain a remote RDF repository of the images and
image semantics. In order to ease the task of finding appropriate annotations,
we use auto-completing combo-boxes.

A screenshot of parts of the annotation tool is depicted in figure 2 (right)
which shows a simple orthopaedic example. The broken bone of the index finger
can easily be annotated while using the auto-completion combo-boxes with a
search-as-you-type functionality. The resulting annotation is accurate but very
time-consuming.

Radiology Dialogue System It is crucial that clinicians have access to a
coherent view of image data within their particular diagnosis or treatment con-
text (we experimented with a large touchscreen installation). These data include
previous (rudimentary) annotations. A semantic dialogue shell should be used
to ask questions about the image annotations and refine them while engaging
the clinician in a natural speech dialogue at the same time. In the construction
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of a dialogue system for radiologists, we learned some lessons which we used as
guidelines in the development of semantic dialogue systems [11, 15]; over the last
years, we have adhered strictly to the developed rule “No presentation without
representation.” All the items presented on the touchscreen are basically surface
representations of more complex ontological entities according to the described
knowledge structure. This knowledge structure (section 2) allows a specific user
to ask questions about the displayed image content and other region-based image
elements. The domain-specific dialogue application for the radiology department
(also cf. [16]), which uses a touchscreen (figure 4, upper right) to display the med-
ical image windows, is able to process the following dialogue:

– U: “Show me the CTs, last examination, patient XY.”
– S: Shows corresponding patient CT studies as DICOM picture series and

MR videos.
– U: “This lymph node here (+ pointing gesture) is enlarged; so add the

annotation: lymphoblastic.”
– S: Shows new annotation on the image and confirms database update.

The dialogue-based annotation can be done at a rate of approximately 6 an-
notations per minute (including the visual feedback phase) whereas the desktop-
based annotation comes to a rate of approximately 3 annotations per minute.
Most importantly, the prototype dialogue system delivers new semantic anno-
tations instantly which are unavailable in the current clinical finding process so
that the (senior) radiologist can directly detect errors visually.

5 Incremental Knowledge Acquisition Process

The incremental knowledge acquisition process (figure 4) relies on the structured
ontological knowledge as introduced in the first section. Based on this prereq-
uisite, we have been trying to formulate the process of automatic and manual
image annotation. Hereby, two factors play a major role: the quality of automatic
annotations and the usability of different intelligent user interfaces to control,
correct, and add annotations. For us, usability means that people can use an
Artificial Intelligence (AI) prototype easily and efficiently to accomplish their
tasks. Prototypes that are usable enable clinicians to concentrate on their tasks
rather than paying attention to the tools they use to perform their tasks. The
prevalent interaction design issue that follows this definition is that the intelli-
gent interfaces are

– efficient to use;
– quick to recover from errors; and
– visually pleasing.

To achieve all three of these a careful selection of involved components for
manual annotation is vital. This can be substantiated by the current develop-
ments in clinical practice where structured reporting should be introduced. This
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means that the radiologists fill in special standardised forms. Radiologists feel
restricted by these standardised forms and fear a decrease in focus and eye dwell
time on the images [3, 17]. As a result, the acceptance for structured reporting
is still low among radiologists while referring physicians and hospital adminis-
trative staff are generally supportive of structured standardised reporting since
it can be used more easily for further processing. As a matter of course, the
image semantics with RDF are a further step in this direction. These issues are
explained in the context of industrial usability and our basic process steps for
industrial dissemination.

5.1 Binocular View and Industrial Usability

As [5] point out, many research prototypes that use technically advanced but
unimportant or unrealistic functionality for the specific domain or personal activ-
ities do not provide the AI support that users would appreciate most. This can,
e.g., make a complex speech dialogue system languish as an infertile research
prototype on demonstration computers which cannot be used in the context
of industrial prototypes or real-world industrial dissemination. Accordingly, the
binocular view of intelligent interfaces for industrial dissemination should study
not only the suitability of a single algorithm and a component performance for
a given user task, but also the industry user’s interaction requirement in which
the interaction will be used. In our specific radiology case, the feature that only
a senior radiologist is responsible for the treatment plan, implicates that his
or her interaction with the annotation system must be designed to be very ef-
fective. Although it is widely reductive to put it this way, a senior radiologist
has three main goals: (1) access the images and image (region) annotations (a
summary can also be synthesised), (2) complete them, and (3) refine existing
annotations. These tasks can best be fulfilled while using a multimodal dialogue
system. In contrast, less demanding manual annotation tasks, such as the cor-
rection of organ detection algorithms of image region selection can be done by,
e.g., a first-year resident with the help of our desktop-based annotation tool.
This tool can also easily be installed on virtually every computer in a hospital,
whereas a speech dialogue system requires a specific hardware infrastructure.

5.2 Process Steps

The incremental knowledge acquisition process (figure 4) has four steps.
First, the automatic metadata are extracted from the DICOM images and

instantiated according to the structured/structural knowledge model. After that,
a direct access to the RDF statements is possible while using, e.g., the query
language SPARQL.

Second, the automatic image recognition software runs over the images to
produce anatomical annotations according to the structural knowledge model.
According to the spatio-anatomical ontology, automatic spatial plausibility checks
can be executed. Hereby, the spatial reasoning process runs completely automat-
ically and only the outlier configurations are presented to the medical experts.
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Third, the experts can then use the manual annotation tool to correct or
extend these configurations. At this stage, a very comprehensive set of image
semantics, namely the study, patient, and low-level image feature information in
combination with the automatically detected anatomical concepts and manual
annotations with the desktop tool are available. These image model instances
are not accurate enough for a treatment plan, but accurate enough to be used
in a semantic search and annotation system, the dialogue shell, which the senior
radiologist can use. For this purpose, the image annotations are accurate enough.
The point is that annotation is accurate enough, or timely enough at this stage.
Then making it more accurate sooner is unnecessary and will increase costs
without increasing benefits for the treatment process.

Fourth, only when the images are retrieved and considered for a medical
treatment plan, can accurate disease annotations be added by the senior radi-
ologist while using the dialogue system which displays the image and patient
data on a large touchscreen. It is even possible to search for similar disease
annotations in other patients’ contexts for a comparable study. Currently, we
are trying to extend the high-level process of patient findings and image an-
notations to a mobile scenario, where we can use a special pen to recognise
annotations on normal paper and/or used the iPad as a mobile dialogue system
and touchscreen device for the senior radiologist (also cf. the project Radspeech,
http://www.dfki.de/RadSpeech/).

Our hope is that the resulting process successfully supports the complex
healthcare process in which radiology images are used. The development of auto-
matic processing applications is as essential as the design and implementation of
intelligent user interfaces for specific purposes. In our view, only this combination
will produce successful decision support systems for industrial dissemination.

6 Conclusion

In discussions with radiologists we found out that three typical clinical scenar-
ios are of interest for further analysis of clinical knowledge requirements and
(incremental) knowledge acquisition: (1) the clinical reporting process; (2) the
patient follow-up treatment (i.e., monitoring the patients health condition and
the development of the disease); and (3) the clinical disease staging and patient
management. In this paper we have explained a process that takes structured
medical knowledge as input and provides an incremental process for the clinical
disease staging process by addressing the bottleneck to annotate appropriate
image semantics.

We explained exemplarily how to generate a multi-lingual OWL model of the
ICD-10, and how this fits in the annotation framework as a prerequisite. In ad-
dition, we provided automatic and manual annotation scenarios and a MEDICO
server architecture with several HCIs/dialogue systems to meet the requirements
of a distributed software infrastructure and/or usability issues. These issues have
been explained in the context of our basic architecture approach for industrial
dissemination. An incremental knowledge acquisition process for radiology im-
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Fig. 4. Incremental Knowledge Acquisition Process

ages seems to be adequate. But we produced many infrastructure requirements
and relied on high-end speech-based dialogue systems which are not available in
the industrial sector today.

The question of how to integrate the acquired image knowledge with other
types of data, such as patient data, is paramount. In a further step, individual
textual findings should be organised according to a specific body region and the
disease context both of which can be interlinked to several text passages. Cur-
rently, we are evaluating the proper usage of information extraction technology
for this purpose. The main problem is that the text processing tools cannot be
easily adapted to the medical domain. Finally, educators may find our process
can help trainees learn the important elements of reports and will encourage the
proper use of radiology terms (structured reporting). We hope that structured
reporting will also help to ease the task of text mining.
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