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Abstract Today, clinicians rely more and more on

medical images for screening, diagnosis, treatment plan-

ning, and follow-up examinations. While medical images

provide a wealth of information for clinicians, content

information cannot be automatically integrated into

advanced medical applications such as those for the clinical

decision support. The implementation of advanced medical

applications requires means for the automated post-pro-

cessing of medical image annotations. In this article we

describe how we made use of reasoning technologies to

post-process medical image annotations in the context of

the automated staging process of lymphoma patients. First,

we describe how automatic anatomy detectors and OWL

reasoning processes can be used to preprocess medical

images automatically and in a way that makes accurate

input to further, more complex reasoning processes possi-

ble. Second, we enhance and integrate patients’ image

metadata by formalized practical clinical knowledge

sources. The resulting combined data serve as input to an

automatic reasoning process in order to stage lymphoma

patients automatically.

Keywords Image metadata reasoning � Clinical decision

support � Medical ontologies � Medical images

1 Introduction

The range of current different imaging technologies and

modalities spans 4D 64-slice computer tomography (CT),

whole-body magnet resonance imaging (MRI), 4D ultra-

sound, and the fusion of positron emission tomography and

CT (PET or CT). These modalities provide a detailed

insight into the human anatomy, its function, and respec-

tive disease associations. Moreover, advanced techniques

for analyzing imaging data generate additional quantitative

parameters, thus paving the way for improved clinical

practice and diagnosis.

Advanced medical applications rely on semantic

descriptions of clinical data such as medical images or

patient records. There are several existing approaches

addressing the challenge of semantic medical image

annotation. For example, Seifert et al (2009) introduced a

new method for automatic image parsing (anatomy and

specific tissue detectors) and Möller et al. (2009) an

approach for information extraction from DICOM headers

and DICOM structured reports. Channin et al. (2009) and

Rubin et al. (2008) aimed at integrating manual image

annotation into the reporting workflow of radiologists, and

Hu et al. (2003) introduced an image annotation approach

suitable for improving breast cancer diagnosis. All these

approaches make an important contribution to improve the

access to medical image information by specifying the

‘‘semantics’’ of specific image regions.

In our application, we rely on image metadata generated

by Seifert et al. (2009) and combine it with additional

clinical knowledge. Automatic anatomy detectors and

OWL reasoning processes can be used to preprocess

medical images automatically and in a way that makes

accurate input to further, more complex reasoning pro-

cesses possible. Our goal is to use medical image content
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information for the automatic staging of cancer patients.

We concern ourselves with the explicit descriptive

knowledge of how an image finding (e.g., the number of

enlarged lymph nodes) relates to the patient staging degree.

The staging information is paramount when clinicians

assess an individual patient’s progress and decide on sub-

sequent treatment steps. The medical application scenario

is defined by the specific patient context: patients suffering

from lymphoma. Lymphoma, a type of cancer originating

in lymphocytes, is a systematic disease with manifestations

in multiple organs. The stage of lymphoma patients is

determined by the number, location, and distribution of

lymphatic occurrences. Therefore, automated staging of

patients requires (pre/post) processing steps that explicitly

describe the precise number as well the spatial positions of

lymphatic occurrences captured by medical images.

This article’s main contribution is to introduce a new

medical application for the automated classification of

lymphoma patients in well-defined categories that relies on

image metadata information. Image metadata information

are extracted from the DICOM headers and/or extracted

from the image regions automatically (preprocessing). The

post-processing steps of the image metadata information

rely on specific OWL1 reasoning steps: In particular, we

• utilize automatic plausibility checks to learn about the

spatial position of lymphoma occurrences; and

• develop a formal and explicit representation of the

Ann-Arbor staging system that allows us to discover

new classification results by means of existing reason-

ing procedures.

The remainder of this article is organized as follows: In

Sect. 2 we give an account on the three different

knowledge resources required for the implementation of

the staging scenario. Section 3 introduces our approach

of anatomical reasoning to learn about the spatial position

of lymphoma occurrences. In Sect. 4 we will describe the

automated staging of lymphoma patients in more detail and

introduce our approach for aligning and integrating various

heterogeneous knowledge resources. Section 5 sketches a

clinical evaluation of the application and Sect. 6 concludes

this article with an outlook on future work.

2 Used knowledge resources

The implementation of the staging application relies on

(a) the formalized clinical knowledge about disease stages

(here the Ann-Arbor staging system), (b) the consistent

processing of concepts used for labeling image information

(the involved medical ontologies), and (c) the availability

of semantic image annotations, i.e., the medical image

metadata (e.g., about specific anatomical structures).

2.1 Ann-Arbor staging system

The Ann-Arbor staging system (Wittekind et al. 2005)

establishes an explicit classification of lymphoma patients

in terms of disease progression.

The staging system depends on two criteria. The first

criterion is the location, the number and distribution of the

malignant tissue, which can be identified by located biopsy

as well as medical imaging methods, such as CT scanning

and positron emission tomography (here, we assume the

manual examination of the image material by a radiology

expert). Four different stages can be recognized: Stage I

indicates that the cancer is located in a single region and

Stage II that it is located in two separated regions confined

to one side of the diaphragm.2 Stage III denotes that the

cancer has spread to both sides of the diaphragm and Stage

IV shows diffuse or disseminated involvement of one or

more extra lymphatic organs (see Fig. 1)

We established a staging ontology in OWL DL fol-

lowing the rational of Ann-Arbor staging system (for the

detailed knowledge engineering steps and knowledge

model we refer to Zillner (2010) that allows to determine

the patient data classification within the reasoning process

(see Sect. 4). Each staging class is described as a defined

OWL class that specifies all necessary and sufficient con-

ditions and enabled the patient to be classified in accor-

dance with the above mentioned criteria, that is, according

to the number, type, and relative position of lymphatic

occurrences. All concepts relating to anatomical informa-

tion were labeled with the appropriate medical ontology,

i.e. Radlex or FMA, in order to provide the basis for

seamless integration of various data sources. The onto-

logical model that captures the rational of the Ann-Arbor

staging system was modeled manually (for more details see

Zillner 2009).

2.2 Medical ontologies

To achieve re-usability and interoperability, we required

third-party taxonomies or ontologies to inform our appli-

cation of ontological concepts describing possible regions

of lymphatic occurrences: lymph node regions as well as

extra lymphatic organs and sites. Two ontologies—the
1 As a formal representation language, we use the Web Ontology

Language (OWL). More precisely, we rely on the sublanguage OWL

DL that is based on description logics (Baader et al. 2003).

description logics, a family of formal representation languages for

ontologies, are designed for classification-based reasoning.

2 A sheet-form-like internal skeletal muscle that extends across the

bottom of the rib cage. The diaphragm separates the thoracic cavity

(heart, lungs, and ribs) from the abdominal cavity.
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Foundational Model of Anatomy (FMA) and the Radiology

Lexicon (Radlex)—describe anatomical entities and pro-

vide the required coverage of anatomical concepts for the

staging scenario.

The FMA (Rosse and Mejino 2003) is a comprehensive

specification of anatomy taxonomy, namely an inheritance

hierarchy of anatomical entities with different kinds of

relationships. It covers approximately 70,000 distinct ana-

tomical concepts and more than 1.5 million relations

instances of 170 relation types. It provides concepts that

describe single lymph nodes, such as ‘axilliary_lymph_

node’, as well as concepts that describe multiple lymph

nodes, such as ‘set_of_ axilliary_lymph_node’. (It also

contains 425 concepts representing singular lymph nodes

and 404 concepts describing sets of lymph nodes which

distinction can be relevant as input to the reasoning

processes.)

Radlex3 is a terminology developed and maintained by

the Radiological Society of North America (RSNA) for the

purpose of achieving a uniform mode of indexing and

retrieving radiology information, including medical ima-

ges. Radlex contains over 8,000 anatomical and patholog-

ical concepts, including imaging techniques, difficulties,

and diagnostic image qualities. Its purpose is to provide a

standardized terminology for radiological practice.

2.3 Medical image metadata

Our application takes patient data of the MEDICO4 pro-

ject, in particular image metadata, as input for deducing the

Fig. 1 Ann-Arbor staging

system (Source:

http://training.seer.cancer.gov)

3 http://www.radlex.org.
4 http://theseus-programm.de/en-us/theseus-application-scenarios/

medico/default.aspx.
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patient’s progress of the disease. In MEDICO, multiple

ways to generate semantic image annotations have been

implemented.

For example, methods for automated image parsing,

such as (Seifert et al. 2009), enable the hierarchical parsing

of whole body CT images (by starting with the head and

subsequently moving down the body) and the efficient

segmentation of multiple organs while taking contextual

information into account.

While automated image parsing remains incomplete (in

many cases, crucial anatomy or disease information cannot

be detected accurately), manual image annotation by the

radiology expert is an important complement to automatic

procedures. For example, MEDICO users can manually

add semantic image annotation by selecting or defining

arbitrary regions or respective volumes of interest by using

the MEDICO image annotation tool (see Fig. 2) which can

also be embedded into a more complex knowledge acqui-

sition process for radiology images (Sonntag 2010). One of

our aim is that clinical experts can indicate lymphatic

occurrences by marking them on the image and subse-

quently labeling the body region with the corresponding

Radlex or FMA concept. The semantic annotations are

stored within a dedicated annotation ontology (Sascha

et al. 2010) that links each semantic annotation to a cor-

responding concept of one of the two mentioned medical

ontologies.

3 Spatial–anatomical reasoning

In lymphoma staging, one differentiates between patients

that show lymphatic occurrences either only above, only

below, or on both sides of the diaphragm. Thus, the relative

position of lymphatic occurrences constitutes an important

decision criteria of the staging system and needs to be

considered in the reasoning procedure. In other words, the

relative position of lymphatic occurrences in relation to the

diaphragm need to be represented explictely. Our aim is to

compute the spatial position of lymphatic occurrences by

means of spatial–anatomical reasoning.

We define spatio-anatomical reasoning as follows: spa-

tial–anatomical reasoning means to use ontology-based

knowledge to verify or falsify the spatial configurations

that are found by independent automatic detectors.

For example, in a two-stage process, we augmented the

FMA as the most comprehensive reference ontology for

human anatomy with spatial relations (these relations were

Fig. 2 Medico image annotation tool
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acquired inductively from a corpus of semantically anno-

tated CT volume data sets). The first stage of this process

abstracted relational information using a fuzzy set repre-

sentation formalism. In the second stage we further

abstracted from the fuzzy anatomical atlas to a symbolic

level using an extension of the spatial relation model of the

FMA (details can be found in Möller et al. 2011). This

approach (Möller et al. 2011) augments medical domain

ontologies and allows for an automatic detection of ana-

tomically implausible constellations in the results of a

state-of-the-art system for automatic object recognition in

3D CT scans. The output of this preprocessing step is a

feedback on which anatomical entities are most likely to

have been located incorrectly (thereby, the necessary spa-

tio-anatomical knowledge is learned from a large corpus of

annotated medical image volume data sets). Quantitative

spatial models are the foundation of digital anatomical

atlases.

The approach in Hudelot et al. (2008) is complementary

to this work in so far as the authors also propose to add

spatial relations to an existing anatomical ontology. Their

use case is the automatic recognition of brain structures in

3D MRI scans. Fuzzy logic has been proven as an appro-

priate formalism which allows for quantitative representa-

tions of spatial models (Bloch 2005). Krishnapuram et al.

(1993) expressed spatial features and relations of object

regions using fuzzy logic. Bloch and Ralescu (2003) and

Bloch (1999) describe generalizations of this approach

and compare different options to express relative positions

and distances between 3D objects with fuzzy logic. From

this atlas we then abstract the information further onto a

purely symbolic level to generate a generic qualitative

model of the spatial relations in human anatomy. In our first

evaluation we describe how this model can be used to check

the results of a state-of-the-art medical object recognition

system for 3D CT volume data sets for spatial plausibility.

The usage of the resulting medical object recognition

system for 3D CT volume data sets in the staging use case

is straightforward. Specific lymph node affection at a

specific body part has a direct influence on the correct

staging process. The anatomical configuration we can

reconstruct according to the learned quantitative anatomi-

cal atlas and the image organ detectors of a specific patient

case lets us determine the positions of the affected lymph

nodes with great accuracy.

During our inspection we found that the quality of the

detector results exhibits a high variability. Accordingly, we

distinguished three quality classes: clearly incorrect, suf-

ficiently correct, and perfectly correct. The visualizations

in Fig. 3 show one example for each class. For the staging

cases, we rely on the configurations which are ‘‘sufficiently

correct.’’ This means we run the detectors and check the

resulting anatomical atlas for plausibility according to our

own empirical model. It is important to note that the

staging reasoning process does not need a perfect ana-

tomical model. The decision whether or not a specific

lymph node is on a specific side of the diaphragm can be

done accurately with only a few indicators in the anatom-

ical proximity such as the bronchial bifurcation and the

urinary bladder.

3.1 Example reasoning case

From the knowledge model (FMA), we know that the

organ kidney is located below the diaphragm. In addition,

we know that the relationship is_below is transitive.

KidneyY9 is below:Diaphragm

is belowY9 is type: transitive

By means of spatial reasoning, we can infer that the

lymphnode occurence X is below the organ kidney (see

Fig. 4). Addional evidence is provided by the

configurations of other landmarks such as the urinary

bladder or the bronchial bifurcation.

lymphnode occurrence XY9 is below: Kidney

Therefore, we can automatically infer that the lymph node

occurrence is below the diaphragm and provide further

input for the consequential staging reasoning step

explained further down (the reasoning step of how to

combine the individual landmarks to a combined estimate

of the location of the suspicious lymph node is left out for

simplicity).

lymphnode occurrence XY9 is below: Diaphragm

We performed a systematic evaluation of the positions on

our manually labeled corpus (anatomy detections) using

four-fold cross evaluation. In total, 1,119 detector results

have been inspected and classified manually: there are 388

sufficiently correct detector results and 147 perfect detector

results (Möller et al. 2011). Our results show that the

average difference in percent between the spatial relation

instances in the learned model and the instances generated

for an element from the evaluation set is an appropriate

measure for the spatial positions (showing that in our case,

lymphatic occurrences are either only above, only below,

or on both sides of the diaphragm).

Therefore, the detection of ‘‘above diaphragm’’ can be

performed with a precision of 85% and a recall of 65%

(according to the systematic evaluation of the positions on

our manually labeled corpus of anatomy detections. The

values were obtained by comparing the results to the

supervised test set, whereby we considered an individual

anatomy classification as either correct or incorrect. This

binary classification allowed us to create the full truth table
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with all false positives and false negatives. Given a direct

anatomy detector result (a sufficiently correct detector

result or perfect detector result), the reasoning and

detection of ‘‘above diaphragm’’ is straightforward and

does not introduce a classification bias or noise.

4 Automated patient staging

Beside the automatic detection of the spatial location of

suspicious lymphoma occurrences (as described further up),

the automated lymphoma patient staging requires further

post-processing of the knowledge resources: (a) the efficient

alignment of the used medical knowledge resources (FMA

and RadLex) and (b) the semantic integration of the various

heterogenous knowledge resources by means of reasoning.

Both tasks will be detailed in the following:

4.1 Aligning medical ontology fragments

Within the MEDICO project, the patient’s text and image

annotation relies on Radlex and FMA. Thus, for the con-

sistent processing of the data, we needed to establish

alignments between concepts of the two ontologies. As

both knowledge models are large in size, we restricted the

Fig. 3 Visualizations of

detector results: a incorrect;

b sufficient; c perfect

Fig. 4 Locating lymphoma occurrence X by means of spatial

reasoning
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scope of the mapping to the part of the information which

is of relevance for the specific lymphoma staging appli-

cation, i.e., the concepts that relate to lymph node occur-

rences. We use text mining methods for extracting all

concepts containing the concept ‘‘lymph node’’ or ‘‘node’’

as part of their preferred name. The resulting list encom-

passes 104 Radlex and 807 FMA concepts representing

relevant lymph node occurrences (in singular form).

A variety of methods for ontology alignments in the

medical domain have been proposed (e.g., Sonntag et al.

2009) and have been reported in general surveys (Euzenat

and Shvaiko 2007; Doan et al. 2003; Rahm and Bernstein

2001; Noy 2004). However, complex methods for ontology

alignment in the medical domain turned out to be infeasible

due to the large size and complexity of medical ontologies.

There exist pragmatic approaches for handling the com-

plexity of the medical domain. For instance, Baumgartner

et al. (2006) take an information retrieval approach to dis-

cover relationships between different medical ontologies by

indexed ontology concept using Lucene (http://lucene.

apache.org/) and, subsequently, matching them against the

search queries (the concepts of the target ontologies).

Although this approach is efficient and easy to implement (it

can successfully applied to large medical ontologies), it does

not account for the complex linguistic structure typically

observed in the concept labels of the medical ontologies and

may result in inaccurate matches.

For discovering the relationships between Radlex and

FMA concepts, we extended the alignment approach of

Baumgartner et al. (2006) by incorporating mapping rules

that reflect linguistic features of the natural language

phrases which describe a particular concept (Zillner and

Sonntag 2011). As most concept labels in medical ontol-

ogies are multi-word terms that are usually rich with

implicit semantic relations (such as the FMA concept

‘‘Superior deep lateral cervical lymph node’’), we can

(only) rely on more complex linguistic rules to exploit the

implicit semantics for identifying automatically ontology

alignment correspondences. In addition, the analysis of

user feedback results provided us guidance in fine-tuning

the initial mapping results. For improving the precision of

our alignment, we formalized relevant context information

(e.g., information about antonym terms) which has been

used to filter out incorrect mappings.

4.2 Knowledge integration by means of reasoning

The seamless integration of the three different knowledge

resources requires specific pre-processing steps. Figure 5

provides an overview of the five steps to achieve automatic

patient staging. The five steps are indicated by a number:

As first step, we established a staging ontology in OWL

DL following the rational of Ann-Arbor staging system (for

the detailed knowledge engineering steps we refer to Zill-

ner (2010) that allows us to determine the patient data

classification within the reasoning process. The Ann-Arbor

ontology consists of a set of defined classes (OWL classes

described by necessary and sufficient constraints) capturing

the information that leads to a patient’s lymphoma stage

(i.e., the number, types and distribution of patients’ indi-

cated lymphatic occurrences). As already mentioned, in

order to provide data items with precise semantics, any

concept in the ontology that is related to anatomical

knowledge, was labeled by the corresponding concept of

the RadLex or FMA ontology. According to the semantics

of each patient class, it will be classified within the rea-

soning process (by using the OWL reasoner Pellet5). In

addition, the concepts describing anatomical information

are labeled by the

In a second step, we transformed the patient data of the

annotation procedure in Seifert et al. (2009) into an OWL

representation. Emanating from a flat view of the patient

data, i.e., the patient identifier and the patient’s list of

lymphatic occurrences, we create an OWL view with each

patient being a class and each elected lymphatic occur-

rences represented as a restriction class axiom.

Within the third step we identified the relevant ontology

fragments and established the required ontology align-

ments as described in the preceding subsection.

The fourth step focuses on the integration of all created

ontologies, i.e., the aligned medical ontology fragments,

the patient ontology, and the Ann-Arbor ontology as well

as the execution of the reasoning process on top of the

integrated ontological model for staging. The seamless

integration of the information stored in all created ontol-

ogies basically relies on two factors: First, the concepts of

all created ontologies are linked by one of two medical

ontologies, and secondly we established a mapping

between the FMA and RadLex concepts (see Sect. 4) that

are relevant for our application. By providing precise

semantics of each data item integrated, the integration of

data can be realized seamlessly.

The automatic reasoning process enables us to auto-

matically classify the stage of a patient by integrating

knowledge captured by the medical ontologies. The

resulting ontological model then explicitly captures the

inferred staging of individual patient records.

Fifth, the knowledge captured in the inferred model, in

particular the deduced staging information of a patient

database, can now be queried by means of SPARQL.6

5 http://clarkparsia.com/pellet/.
6 http://www.w3.org/TR/rdf-sparql-query/on the semantic RDF

counterpart.
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5 Clinical evaluation

We conducted a proof-of-concept study on the basis of

more than 10 real patient records to analyze the practical

potential of the automatic anatomy detection and staging

approach. With the help of our clinical experts, the corre-

sponding medical images were manually annotated by

Radlex as well as FMA concepts and the semantic anno-

tations integrated into our knowledge base. In addition,

information in discharge letters covering diagnose and

findings was fed into the knowledge model.

We presented and discussed the automated patient

staging scenarios with our clinical project partners at the

Friedrich-Alexander-University of Erlangen. The response

towards the staging applications was very positive. It is

important to note that the automatic reasoning procedure

does not give the clinician new information that he or she

would not know after (re)examining the CT images—yet

the doctors acknowledged the relevance of inferred staging

knowledge for the purposes of quality control in clinical

diagnosis, e.g. the analysis of real patient records often

reveals the fact that there are patient cases with a clini-

cian’s diagnosis in the discharge letter that contradicts the

automated staging result based on the image annotation.

5.1 Automatic reasoning case

In the context of one particular patient, we can identify a

contradiction between the clinicians manual diagnosis

(Stage I–IV) and the automated staging results based on the

image annotation: consider advanced stage lymphoma

patient who was already treated with three chemotherapies

using the CHOP-protocol. As the accomplished treatments

did not help to improve the patient’s health condition, he or

she has been referred to a specialist hospital.

• The patient’s discharge letter covers details about the

diagnose, past medical diagnose, as well as findings,

assessment, progression, and recent therapy. Our

example patient’s discharge letter indicates a diagnose

of Ann-Arbor IV-Stage.

• In the specialist hospital, the patient was screened using

CT. By analyzing and annotating the medical images,

16 enlarged and pathological lymph nodes on both

sides of the diaphragm could be identified. However, no

indication of the involvement of extra lymphatic organs

was noted. Relying on the formal Ann-Arbor Classifi-

cation criteria, the ontology-based staging approach

classifies Patient Speck as Ann-Arbor III-Stage.

In our clinical, albeit realistic example, the clinician’s

diagnosis contradicts the results of the automated reasoning

application (Fig. 6).

As the staging grade strongly influences clinicians in

their sequential treatment decisions, this issue is of con-

siderable importance for achieving effective diagnostics

and treatments. By highlighting such contradictory results,

special clinical cases can be spotted out and potential

medical treatment errors can be reduced. In our interviews,

the clinicians emphasized that, in medical settings in par-

ticular, contradictions do not necessarily have to be

Fig. 5 Integration and reasoning steps
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considered as mistakes that need to be corrected. Instead,

contradictions provide either a second opinion to be con-

sidered, or an indication that a more detailed analysis is

required. The doctors explained that usually two different

explanations can be given as ‘‘good’’ reasons for a

contradiction:

1. The patient’s health condition has improved signifi-

cantly, but the changes were not explicitly documented

in the findings. Such incidents are not exceptional, as

clinicians typically avoid to make definite statements

about the patient’s health condition, but concentrate on

the documentation of related indications.

2. The discharging physician has come to a different

conclusion after intensive investigation.

In both cases, the patients’ symptoms and findings need to

be analyzed again. By highlighting clinical contradictions,

the quality of medical care can be improved. The patient

examples show the impact of the automatic processing of

image metadata to improve clinical decision support

systems.

6 Conclusions

There is a growing interest in the automatic processing of

medical image content and the semantic integration of

explicitly expressed content into clinical applications. In

this paper, we introduced an application for the automated

staging of lymphoma patients using image metadata

information. In our future work, we aim to formalize and

integrate related staging systems, such as the TNM clas-

sification, into advanced medical applications.
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