
Syntactic generationSyntactic generation

Problems with syntactic generation

Generation algorithms – techniques and efficiency

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

THE ROLE OF NATURAL LANGUAGE GENERATIONTHE ROLE OF NATURAL LANGUAGE GENERATION
(here: syntactic generation, compared to parsing)(here: syntactic generation, compared to parsing)

History
Considered trivial for a long time (in comparison to parsing)
Became an issue in connection with unification-based grammars
First simple attempts to reuse parsing tools turned out very badly

Problems
Underspecification is a typical problem (for building input representations)
Expressibility (also for building input representations)
Efficiency
Exploiting reuse potential (bi-directional grammars)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

A FIRST APPROACH “SHAKE 'N BAKE” A FIRST APPROACH “SHAKE 'N BAKE”
(Whitelock 1988)(Whitelock 1988)

Motivation
Very flexible – all combinations considered prior to testing feasibility
Originally used within symbolic machine translation

Functionality
Lexical entries are retrieved from lexicon by semantic relations of the input
All combinations of all words and phrases are tried by a shift-reduce parser
All phrases are returned which use up all of the input semantics

Assessment
Virtually no information about semantic relations in the input specification
Can be very expensive

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

SEMANTIC HEAD-DRIVEN GENERATION SEMANTIC HEAD-DRIVEN GENERATION
(Shieber et al. 1990)(Shieber et al. 1990)

Motivation
Same problems with top-down generation as with top-down parsing
Feasible bottom-up generation requires semantic monotonicity - strong

Functionality
Combined top-down and bottom-up traversal oriented on semantic head node
Looks for “pivot“ – “lowest“ node which shares semantics with root
Tries to connect “pivot” to root node
Recursively expands sister nodes in the course of the connection to root

Assessment
Rather efficient
Requirements on grammars - semantic headedness

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

THE ALGORITHM (1)THE ALGORITHM (1)
THE TOP-LEVEL PROCEDURETHE TOP-LEVEL PROCEDURE

It consists of three subprocedure calls:

generate(Root) :-
% choose non-chain rule

applicable_non_chain_rule(Root,Pivot,RHS),

% generate all subconstituents
generate_rhs(RHS),

% generate material on path to root
connect(Pivot,Root).

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

THE ALGORITHM (2)THE ALGORITHM (2)
THE RECURSIVE CALL VIA RIGHT HAND SIDESTHE RECURSIVE CALL VIA RIGHT HAND SIDES

It consists of a base case and a simple recursive call:

generate_rhs([]).

generate_rhs([First | Rest]) :-

generate(First),

generate_rhs(Rest).

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

THE ALGORITHM (3)THE ALGORITHM (3)
CONNECTING THE PIVOT TO THE ROOTCONNECTING THE PIVOT TO THE ROOT

It consists of a base case and the general one, with three subprocedure calls:

connect(Pivot,Root) :-
% choose chain rule

applicable_chain_rule(Pivot,LHS,Root,RHS),
% generate remaining siblings

generate_rhs(RHS),
% connect the new parent to the root

connect(LHS,Root).

connect(Pivot,Root) :-
% trivially connect pivot to root

unify(Pivot,Root).

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

THE ALGORITHM (4)THE ALGORITHM (4)
FIND APPLICABLE NON-CHAIN RULESFIND APPLICABLE NON-CHAIN RULES

It checks the semantics and picks a suitable rule:

applicable_non_chain_rule(Root,Pivot,RHS) :-
% semantics of root and pivot are the same

node_semantics(Root,Sem),
node_semantics(Pivot,Sem),

% choose a nonchain rule
non_chain_rule(LHS,RHS),

% … whose lhs matches the pivot
unify(Pivot,LHS),

% make sure the categories can connect
chained_nodes(Pivot,Root).

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

THE ALGORITHM (5)THE ALGORITHM (5)
FIND APPLICABLE CHAIN RULESFIND APPLICABLE CHAIN RULES

It picks a suitable rule and tests it:

applicable_chain_rule(Pivot,Parent,Root,RHS) :-

% choose a chain rule
chain_rule(Parent,RHS,SemHead),

% … whose semantic head matches the pivot
unify(Pivot,SemHead),

% make sure the categories can connect
chained_nodes(Parent,Root).

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (1)AN EXAMPLE (1)
FRAGMENT OF A TOY GRAMMARFRAGMENT OF A TOY GRAMMAR

Conventions
“/“ separates syntax and semantics
subcategorization for complements performed lexically

Sentence/decl(S) → s(finite)/S. (1)

Sentence/imp(S) → vp(nonfinite[np(_)/you])/S.

s(form)S → s(finite)/S. (2)

vp(Form,Subcat)/S → vp(Form,[Compl | Subcat])/S,Compl. (3)

vp(finite,[np(_)/O,p/up,np(3-sing)/S])/call_up(S,O) → calls. (4)

np(3-sing)john → [john]. (5)

np(3-pl)friends → [friends]. (6)

p/up → [up]. (7)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (2)AN EXAMPLE (2)
sentence
 /decl(call_up(john,friends))

(1)

s(finite)
 /call_up(john,friends)

Generation starting with the category
sentence

and the semantics
decl(call_up(john,friends))

which ultimately yields

“John calls friends up”

The first step is finding a nonchain rule
that will define the pivot (rule (1))
resulting in

s(finite)/call_up(john,friends)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (3)AN EXAMPLE (3)
sentence
 /decl(call_up(john,friends))

(1)

s(finite)
 /call_up(john,friends)

(4)

calls

vp(finite,[np(_)/friends,
 p/up,np(3-sing)/John])
 /call_up(John,friends)

Generation continues recursively
from the child node

s(finite)/call_up(john,friends)

The next step is finding a nonchain rule
that will define the pivot (rule (4))
resulting in a temporarily dangling node:

vp(finite,[np(_)/O.p/up,np(3-sing)/S])
/call_up(S,O)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (4)AN EXAMPLE (4)
sentence
 /decl(call_up(john,friends))

(1)

s(finite)
 /call_up(john,friends)

(3)

(4)

calls

vp(finite,[p/up,np(3-sing)/John])
 /call_up(john,friends)

vp(finite,[np(_)/friends,
 p/up,np(3-sing)/John])
 /call_up(john,friends)

Next, the pivot

vp(finite,[np(_)/friends.
p/up,np(3-sing)/John])
/call_up(John,friends)

must be connected to the root

s(finite)/call_up(john,friends)

The only suitable chain rule
with matching semantic head is (3)
resulting in another node one level up:

vp(finite,[p/up,np(3-sing)/John])
/call_up(John,friends)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (5)AN EXAMPLE (5)
sentence
 /decl(call_up(john,friends))

(1)

s(finite)
 /call_up(john,friends)

(3)

friends

(4)

calls

vp(finite,[p/up,np(3-sing)/John])
 /call_up(john,friends)

vp(finite,[np(3-pl)/friends,
 p/up,np(3-sing)/John])
 /call_up(john,friends)

np(3-pl)
/friends

(6)

Unifying the pivot, recursive generation of
the remaining RHS element

np(_)/friends

must be carried out, by rule (6)
Application of this rule yields
the number of this constituent
which is percolated in the tree
through unification

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (6)AN EXAMPLE (6)
sentence
 /decl(call_up(john,friends))

(1)

s(finite)
 /call_up(john,friends)

vp(finite,[np(3-sing)/John])
 /call_up(john,friends)

(3)

(3)

friends

(4)

calls

vp(finite,[p/up,np(3-sing)/John])
 /call_up(john,friends)

vp(finite,[np(3-pl)/friends,
 p/up,np(3-sing)/John])
 /call_up(john,friends)

np(3-pl)
/friends

(6)

Again, the pivot

vp(finite,[p/up,np(3-sing)/John])
/call_up(John,friends)

must be connected to the root

s(finite)/call_up(john,friends)

The only suitable chain rule
with matching semantic head still is (3)
resulting in another node one level up:

vp(finite,[np(3-sing)/John])
/call_up(John,friends)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (7)AN EXAMPLE (7)
sentence
 /decl(call_up(john,friends))

(1)

s(finite)
 /call_up(john,friends)

vp(finite,[np(3-sing)/John])
 /call_up(john,friends)

up

p/up

(3)

(3)

friends

(4)

calls

vp(finite,[p/up,np(3-sing)/John])
 /call_up(john,friends)

vp(finite,[np(3-pl)/friends,
 p/up,np(3-sing)/John])
 /call_up(john,friends)

(7)

np(3-pl)
/friends

(6)

Again, unifying the pivot,

recursive generation of
the remaining RHS element

p/up

must be carried out, by rule (7)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (8)AN EXAMPLE (8)
sentence
 /decl(call_up(john,friends))

(1)

s(finite)
 /call_up(john,friends)

vp(finite,[np(3-sing)/John])
 /call_up(john,friends)

(2)

up

p/up

(3)

(3)

friends

(4)

calls

vp(finite,[p/up,np(3-sing)/John])
 /call_up(john,friends)

vp(finite,[np(3-pl)/friends,
 p/up,np(3-sing)/John])
 /call_up(john,friends)

(7)

np(3-pl)
/friends

(6)

Ultimately, the pivot

vp(finite,[np(3-sing)/John])
/call_up(John,friends)

can be connected to the root

s(finite)/call_up(john,friends)

The only suitable chain rule
with matching semantic head here is (2)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (9)AN EXAMPLE (9)
sentence
 /decl(call_up(john,friends))

(1)

s(finite)
 /call_up(john,friends)

John

vp(finite,[np(3-sing)/John])
 /call_up(john,friends)

(2)

up

p/up

(3)

(3)

friends

(4)

calls

vp(finite,[p/up,np(3-sing)/John])
 /call_up(john,friends)

vp(finite,[np(3-pl)/friends,
 p/up,np(3-sing)/John])
 /call_up(john,friends)

np(3-sing)
/John

(5)

(7)

np(3-pl)
/friends

(6)

Finally, recursive generation of

the LHS element

np(_)/friends

must be carried out, by rule (5)
Moreover, the pivot

s(finite)/call_up(john,friends)

can be connected to the root

s(finite)/call_up(john,friends)

via identity

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

THE EXAMPLE – SUMMARYTHE EXAMPLE – SUMMARY
sentence
 /decl(call_up(john,friends))

(1)

s(finite)
 /call_up(john,friends)

John

vp(finite,[np(3-sing)/John])
 /call_up(john,friends)

(2)

up

p/up

(3)

(3)

friends

(4)

calls

vp(finite,[p/up,np(3-sing)/John])
 /call_up(john,friends)

vp(finite,[np(3-pl)/friends,
 p/up,np(3-sing)/John])
 /call_up(john,friends)

np(3-sing)
/John

(5)

(7)

np(3-pl)
/friends

(6)

[a]

[b]

[c]

[d]

[e]

[f]

[g]

[h]

Semantics
decl(call_up(john,friends))

Sentence
“John calls friends up”

Order of processing
1. Expand pivot [a] to [b]
2. Pivot for [b] is [f]
3. Connecting to [b] goes over [e]
4. Recursive expansion to [g]
5. Further connecting to [b] goes over [d]
6. Recursive expansion to [h]
7. Recursive expansion to [c]

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

THE CHART AS A DATA STRUCTURETHE CHART AS A DATA STRUCTURE

Components - edges
A two-dimensional matrix of edges
Edges are possibly partial rule instantion over a substring
Edges are indexed by start and end string positions

Properties of edges
Dot in a rule right-hand side indicates degree of completion
Active edges (incomplete items) partial right-hand side
Passive edges (complete items) full right-hand side

Fundamental rule
[n1,n2,A -> B1 …Bi-1 • Bi…Bn] and [n2,n3,Bi -> C+ •]

yields [n1,n3,A -> B1 …Bi • Bi+1…Bn]

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

CHART PARSING – 3 OPERATORSCHART PARSING – 3 OPERATORS

Predictor
Applied to state with a non-terminal at right of the dot – rule expansion
S -> • VP, [0,0] yields states VP -> • Verb, [0,0] and VP -> • Verb NP, [0,0]

Scanner
Applied to state with a terminal at right of the dot – top-down input
Supports disambiguation of input
VP -> • Verb NP, [0,0] yields state VP -> Verb • NP, [0,1]

Completer
Applied to state with the dot in the rightmost position – rule completion
Completer looks at states with adjacent position expecting the category parsed
NP -> Det Nominal •, [1,3] & VP -> Verb • NP, [0,1] gives VP -> Verb NP •, [0,3]

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

MODIFYING A CHART FOR GENERATION PURPOSES MODIFYING A CHART FOR GENERATION PURPOSES
(Kay 1996)(Kay 1996)

Motivation
Exploiting the chart for avoiding recomputation
Processing strategy in dependency of the state of the chart

Functionality
Chart is organized by semantic index values rather than by string positions
Each active edge is looking for a passive edge with the right index
A successful result is a passive edge that “uses up” all of the input semantics

Assessment
Much better than naive searching, but still some specific problems

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (1)AN EXAMPLE (1)

Example input expression
r:run(r),past(r),fast(r),arg1(r,j),name(j,John)

Example grammar
s(x) -> np(y) vp(x,y)
vp(x) -> vp(x) adv(x)

Lexicon entries – instantiating relevant ones yields the initial state of the chart

 John np(x) x:name(x,John)
ran vp(x,y) x:run(x),arg1(x,y),past(x)
fast adv(x) x:fast(x)
quickly adv(x) x:fast(x)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (2)AN EXAMPLE (2)

Processing steps
Interaction between “John” and “ran” yields (5)
Not finished, since not all input specifications have been consumed

 Word Category Semantics
(1) John np(j) j:name(j,John)
(2) ran vp(r,j) r:run(r),arg1(r,j),past(r)
(3) fast adv(r) r:fast(r)
(4) quickly adv(r) r:fast(r)
(5) John ran s(r) r:run(r),arg1(r,j),past(r) j:name(j,John)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (3)AN EXAMPLE (3)

Processing steps
Interaction between “ran” and “fast” yields (6)
Not finished, since no sentence found yet

 Word Category Semantics
(1) John np(j) j:name(j,John)
(2) ran vp(r,j) r:run(r),arg1(r,j),past(r)
(3) fast adv(r) r:fast(r)
(4) quickly adv(r) r:fast(r)
(5) John ran s(r) r:run(r),arg1(r,j),past(r) j:name(j,John)
(6) ran fast vp(r,j) r:run(r),arg1(r,j),past(r),fast(r)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (4)AN EXAMPLE (4)

Processing steps
Interaction between “ran” and “quickly” yields (7)
Not finished, since not all input specifications have been consumed

 Word Category Semantics
(1) John np(j) j:name(j,John)
(2) ran vp(r,j) r:run(r),arg1(r,j),past(r)
(3) fast adv(r) r:fast(r)
(4) quickly adv(r) r:fast(r)
(5) John ran s(r) r:run(r),arg1(r,j),past(r) j:name(j,John)
(6) ran fast vp(r,j) r:run(r),arg1(r,j),past(r),fast(r)
(7) ran quickly vp(r,j) r:run(r),arg1(r,j),past(r),fast(r)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (5)AN EXAMPLE (5)

Processing steps
Interaction between “John” and “ran fast” yields (8) (similarly (9))
Finished, since all input specifications have been consumed

 Word Category Semantics
(1) John np(j) j:name(j,John)
(2) ran vp(r,j) r:run(r),arg1(r,j),past(r)
(3) fast adv(r) r:fast(r)
(4) quickly adv(r) r:fast(r)
(5) John ran s(r) r:run(r),arg1(r,j),past(r) j:name(j,John)
(6) ran fast vp(r,j) r:run(r),arg1(r,j),past(r),fast(r)
(7) ran quickly vp(r,j) r:run(r),arg1(r,j),past(r),fast(r)
(8) John ran fast vp(r,j) r:run(r),arg1(r,j),past(r),j:name(j,John),fast(r)

 (9) John ran quickly vp(r,j) r:run(r),arg1(r,j),past(r),j:name(j,John),fast(r)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

PROCESSING THE EXAMPLE – SUMMARYPROCESSING THE EXAMPLE – SUMMARY

1. Lexical entries which subsume input specifications (variables instantiated)
2. Moving ran to the chart after moving John there (5) is built, due to the S rule
3. Since not all of the input is subsumed, it is put on the agenda
4. Moving fast to the chart yields interaction with ran (6) due to the VP rule
5. Moving quickly to the chart yields interaction with ran (7) due to the VP rule
6. No interaction between the VPs (6) or (7) and the adverbs (3) or (4),
 since this would use parts of the semantic twice
7. Interaction between John and either VP (6) or (7) yields a sentence so that
 - the entire expression is used
 - no specification is used twice

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

A PROBLEM WITH CHART GENERATIONA PROBLEM WITH CHART GENERATION

The observation
Intersective modification cause efficiency problems
Many unwanted combinations with any order of modifiers built

Reason
Both the syntactic category and the semantic index

compatible in structures before and after rule application
otherwise scope or syntactic ordering constraints prevent combinations

Measure
Separate the generation process in 2 phases

(Semi-lexicalist approach [Carroll et al. 1999])
Intersective modifiers adjoined in a postprocess (they do not change categories)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

AN EXAMPLE (THE SEMI-LEXICALIST APPROACH)AN EXAMPLE (THE SEMI-LEXICALIST APPROACH)

S

every

V PN P

N PVDet

Det
a

manager interviewed

consultant

German

German big

big

AdjAdj

N

N

N P

Det
a

consultant

N

N P

Det
a

consultant

N

German

Adj

NAdj

N

N

big

Adj

Adj

Phase 1

Processing without modifiers

Phase 2

Adjoining intersective modifiers
1. big
2. German

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

ASSESSING THE SEMI-LEXICALIST APPROACHASSESSING THE SEMI-LEXICALIST APPROACH

Efficiency measures
Corpus Standard chart Two phase generation

44 Short dialog examples 856 edges / 5.4 msec 501 edges / 3.3 msec
First sentence below 923 edges / 5.6 msec 314 edges / 1.8 msec
Second sentence below 4710 edges / 54.8 msec 776 edges / 4.3 msec

“a manager in that office interviewed a new consultant from Germany”
“our manager organized an unusual additional weekly department conference”
(modifier order not constrained by the Grammar, 4! x 2 strings generated)

Coverage
Large grammar of English (including conjunction, extraposition, ellipsis)
Linguistic Grammars online: http://hpsg.stanford.edu/hpsg/lingo.html

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

FEATURING COORDINATE STRUCTURES (White 2004)FEATURING COORDINATE STRUCTURES (White 2004)

The general approach
Similar motivation as the semi-lexicalist approach
Different format of semantics and integrated process organization

Some measures
Chunking and flattening – identify subproblems (e.g., separate relative clause)
Efficient data structures in the implementation
Lexical loop up supported by indexing scheme
Edge pruning and anytime search to address relatively free word orders

Efficiency
All measures contributing, best realizations found way under a second
OpenCCG realizer successfully used in two dialog systems

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

HANDLING DISJUNCTIVE INPUTS (White 2006)HANDLING DISJUNCTIVE INPUTS (White 2006)

Motivation
Language planning components produce sets of reasonable expressions
• Paraphrases with no preferences among them
• Alternatives within context widely interchangable
• Surface realizer may decide

Representation alternatives
Underspecified expressions
Explicit disjunctions (the alternative used here)

Functionality
Generate most alternatives in parallel (overlapping substructures)
Decide on the basis of corpus frequencies of surface expressions

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

EXAMPLE REPRESENTATION (1)EXAMPLE REPRESENTATION (1)

be

design based_on

collection

Funny_Day Villeroy_and_Boch

<ARG> <PROP>

<SOURCE>
<ARTIFACT>

<HASPROP>
<CREATOR>

<TENSE=pres,MOD=def>

<DET=the,NUM=sg>

<DET=the,NUM=sg>

e

d p

c

f v

Semantic dependency graph for
“The design is based on the Funny Day collection by Villeroy and Boch”

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

EXAMPLE REPRESENTATION (2)EXAMPLE REPRESENTATION (2)

be

design based_on

series

Funny_Day Villeroy_and_Boch

<ARG> <PROP>

<SOURCE>
<ARTIFACT>

<HASPROP>
<GENOWNER>

<TENSE=pres,MOD=def>

<DET=the,NUM=sg>

<NUM=sg>

e

d p

c

f v

Semantic dependency graph for
“The design is based on Villeroy and Boch's Funny Day series”

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

EXAMPLE REPRESENTATION (3)EXAMPLE REPRESENTATION (3)

be

design based_on

collection | series

Funny_Day Villeroy_and_Boch

<ARG> <PROP>

<SOURCE>
<ARTIFACT>

<HASPROP>
<CREATOR>

<TENSE=pres,MOD=def>

<DET=the,NUM=sg>

<(DET=the),NUM=sg>

e

d p

c

f v<GENOWNER>
Disjunctive Semantic dependency graph covering

“The design is based on (the Funny Day (collection | series)
 by Villeroy and Boch | Villeroy and Boch's Funny Day (collection | series))”

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

THE PROCEDURE (SKETCH)THE PROCEDURE (SKETCH)

Flattening
Preprocessing step - array of elementary predications, alternations and options
Through tree traversal with incrementally building alternative groups

Edges
Edges associated with bit vectors to record coverage of alternatives

Lexical instantiation
Returns non-overlapping matches with coverage indicating bit vectors

Derivation
Edges may be introduced as alternatives
Edge combination involves a coverage check

Unpacking
Realizations recursively unpacked, filtering duplications

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

EVALUATIONEVALUATION

Setting
Trigram language model used for scoring alternatives
Single best output and 10-best realizations
Efficiency gain measured against sequential processing

Results
10-best two-stage 1-best anytime

time edges time edges

disjunctive 1.1 602 0.5 281

 sequential 5.6 3550 4.1 2854

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

FUF/SURGE (Elhadad, Robin 1999)FUF/SURGE (Elhadad, Robin 1999)

A tool for surface realization (in English) – based on FUF [Kay 1979]
Flexible input specification (supports different ontologies)

thematic roles (plan language; e.g., SPL)

 cat clause
 process type material

effect-type creative
lex “score“

 participants agent cat proper
created …

subcategorization (grammar; e.g., HPSG)

 cat clause
 process type lexical

lex “score“
subcat 1 [1] …

 lex-roles agent [1] cat proper
created …

Some properties
Incorporates concepts of several theories (HPSG, SFL, MTT)
Theory-neutral extensions (e.g., for complex noun phrases)
Use of defaults (e.g., specifying pronominalization or leaving that implicit)
Various control mechanisms (goal freezing, intelligent back-tracking)

Helmut Horacek Syntactic generation Natural language generation

SS 2016 Language Technology

