
Syntactic analysisSyntactic analysis

Probabilities in syntactic parsing

Efficiency in parsing with unification grammars

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

PROBABILISTIC (CONTEXT-FREE) PARSING PROBABILISTIC (CONTEXT-FREE) PARSING

Motivation

Ambiguity in natural language considerable
(for syntactic parsing)

Not all grammar rules are of equal right (preferences)
Some express rather uncommon patterns

Potential for speeding up

Possible remedies

First parse only with common rules
Use remaining ones only if needed

Better: every rules has a weight
Pick the overall “lightest” parse (weights are accummulated)

Potential for learning/accommodating weights

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

PROBABILISTIC CONTEXT-FREE GRAMMARS PROBABILISTIC CONTEXT-FREE GRAMMARS

Basic idea

Modification of context-free grammars

Associating a probability P(β | X) with each grammar rule

Probability of expanding X using the rule X → β rather than some other rule

Computation

Probability of a derivation is the product of the probabilities

associated with the rules applied in the derivation

Probablility of a tree-sentence pair (T,S)

derived by n applications of context-free rules LHSi → RHSi

P(T,S) = Πi = 1 , n P(RHSi | LHSi)

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

PARSING WITH WEIGHTS (1)PARSING WITH WEIGHTS (1)

0

1

2

3
4

NP 3
Vst 3

NP 4
VP 4

Det 1

P 2
V 5

N 8

1 S -> NP VP
6 S -> Vst NP
2 S -> S PP
1 VP -> V NP
2 VP -> VP PP
1 NP -> Det N
2 NP -> NP PP
3 NP -> NP NP
0 PP -> P NP

time 1 2flies like 3 an 4 arrow 5

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

PARSING WITH WEIGHTS (2)PARSING WITH WEIGHTS (2)

0

1

2

3
4

NP 10

Det 1

P 2
V 5

N 8

1 S -> NP VP
6 S -> Vst NP
2 S -> S PP
1 VP -> V NP
2 VP -> VP PP
1 NP -> Det N
2 NP -> NP PP
3 NP -> NP NP
0 PP -> P NP

time 1 2flies like 3 an 4 arrow 5

NP 3
Vst 3

NP 4
VP 4

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

PARSING WITH WEIGHTS (3)PARSING WITH WEIGHTS (3)

0

1

2

3
4

NP 3
Vst 3

NP 10
S 8
S 13

–

NP 4
VP 4

–

–

–

–

Det 1

P 2
V 5

NP 10
N 8

PP 12
VP 16

NP 18
S 21
VP 18

NP 24

NP 24

S 22
S 27

S 27
S 22
S 27 1 S -> NP VP

6 S -> Vst NP
2 S -> S PP
1 VP -> V NP
2 VP -> VP PP
1 NP -> Det N
2 NP -> NP PP
3 NP -> NP NP
0 PP -> P NP

time 1 2flies like 3 an 4 arrow 5

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

PARSING WITH WEIGHTS (4)PARSING WITH WEIGHTS (4)

0

1

2

3
4

NP 3
Vst 3

NP 10
S 8

–

NP 4
VP 4

–

–

–

–

Det 1

P 2
V 5

NP 10
N 8

PP 12
VP 16

NP 18
S 21
VP 18

NP 24

NP 24

S 22

S 22
1 S -> NP VP
6 S -> Vst NP
2 S -> S PP
1 VP -> V NP
2 VP -> VP PP
1 NP -> Det N
2 NP -> NP PP
3 NP -> NP NP
0 PP -> P NP

time 1 2flies like 3 an 4 arrow 5

S 13 S 27

S 27

S 27

inferior entries

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

PROPERTIES OF PROPERTIES OF

SIMPLE PROBABILISTIC GRAMMARS (I)SIMPLE PROBABILISTIC GRAMMARS (I)

Assumptions

Independent of the place

(e.g., pronouns mostly appear in subject position)

Independent of the context

(words embedding)

Independent of the structural embedding (derivation tree embedding)

Hence, statistics is a simple count how often local tree configurations occurred

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

PROPERTIES OF PROPERTIES OF

SIMPLE PROBABILISTIC GRAMMARS (II)SIMPLE PROBABILISTIC GRAMMARS (II)

Benefits

Partial solution for grammar ambiguity (some idea of plausibility)

Robustness (also everything with low probabilities can be admitted)

Potential to combine probabilistic grammars with trigram models

Deficits

In the simple case, a worse language model for English than trigrams

Encodes certain biases (e.g., smaller trees are normally more probable)

Enrichments for grammar needed (most state-of-the-art parser are so)

Independent of lexical material used

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

LEXICALIZED CONTEXT-FREE GRAMMARS LEXICALIZED CONTEXT-FREE GRAMMARS

Motivation – Exploiting lexical information

Attempts with lexical grammars

Associating syntactic categories with lexical heads

Incorporating lexical heads of mother constituent into probabilities

No corpus big enough to train (very sparse for some word combinations)

Choice of head sometimes linguistically controversial

Exploiting structural information

Preference for right-branching structures in English

Basic idea

Associating a word w and a part-of-speech (POS) tag t with each nonterminal X

Nonterminals then become X(w,t)

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

LEXICALIZEDLEXICALIZED CONTEXT-FREECONTEXT-FREE GRAMMARGRAMMAR

AN EXAMPLE (1)AN EXAMPLE (1)

A non-lexicalized parse tree

TOP

S

NPNP VP

JJ NN NNP VBD NP

Last week IBM bought

Lotus

NNP

A list of derivation rules

Internal rules Lexical rules

TOP → S JJ → Last

S → NP NP VP NN → week

NP → JJ NN NNP → IBM

NP → NNP VBD → bought

VP → VBD NP NNP → Lotus

NP → NNP

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

LEXICALIZEDLEXICALIZED CONTEXT-FREECONTEXT-FREE GRAMMARGRAMMAR
AN EXAMPLE (2)AN EXAMPLE (2)

TOP

S(bought,VBD)

NP(IBM,NNP)NP(week,NN) VP(bought,VBD)

JJ(Last,JJ) NN(week,NN) NNP(IBM,NNP) VBD(bought,VBD) NP(Lotus,NNP)

Last week IBM bought

Lotus

NNP(Lotus,NNP)

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

LEXICALIZEDLEXICALIZED CONTEXT-FREECONTEXT-FREE GRAMMARGRAMMAR
AN EXAMPLE (3)AN EXAMPLE (3)

Internal rules

TOP → S(bought,VBD)
S(bought,VBD) → NP(week,NN)NP(IBM,NNP) VP(bought,VBD)
NP(week,NN) → JJ(Last,JJ) NN(week,NN)
NP(IBM,NNP) → NNP(IBM,NNP)
VP(bought,VBD) → VBD(bought,VBD) NP(Lotus,NNP)
NP(Lotus,NNP) → NNP(Lotus,NNP)

Lexical rules

JJ(Last,JJ) → Last
NN(week,NN) → week
NNP(IBM,NNP) → IBM
VBD(bought,VBD) → bought
NNP(Lotus,NNP) → Lotus

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

CONSEQUENCES OF THE LEXICALIZATION CONSEQUENCES OF THE LEXICALIZATION

Problem

Expanding the number of non-terminals increases the number of rules

Parameter estimation of the probabilities severely affected

Data for maximum likelihood becomes very sparse

Example

P(NP(week,NN) NP(IBM,NNP) VP(bought,VBD)) | S(bought,VBD) =

Count(S(bought,VBD) → NP(week,NN) NP(IBM,NNP) VP(bought,VBD))
Count(S(bought,VBD)

Solution

Breaking down the right hand side of the rules into a sequence of smaller steps

Size of steps should be small enough for the parameter estimation to be feasible

The independence assumption should be linguistically plausible

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

BREAKING DOWN RULES BREAKING DOWN RULES

Idea

Centered around the head child of a rule

Partitioning a rule into its head and its left and right modifiers

Probability of the rule becomes product of the probabilities of

the head and all modifiers

Extensions

Incorporating “distance features”

(weakening the independence assumption between modifiers)

Complement/Adjunct distinction and subcategorization

Traces and wh-movement

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

FURTHER EXTENSIONS FURTHER EXTENSIONS

Preferences

Right-branching structures (dependencies between adjacent words)

Dependencies do not cross a verb

Refinements

Nonrecursive NPs

Coordination

Punctuation

Sentences with empty subjects

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

RESULTSRESULTS

Dependency accuracy for major subtypes of dependencies

Recall Precision

Complement to a verb 93,76% 92,96%

Other complements 94,47% 94,12%

PP modification 82,29% 81,51%

Coordination 61,47% 62,20%

Modification within Base-NPs 93,20% 92,59%

Modification to NPs 73,20% 75,49%

Sentential head 94,99% 94,99%

Adjunct to a verb 75,11% 78,44%

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

PARALLEL PARSING WITH CYK - MOTIVATIONS PARALLEL PARSING WITH CYK - MOTIVATIONS

State-of-the-art-analysis

Weighted context-free grammar (CFG), that is learned from a treebank

Complexity O(|G|n3), the grammar constant |G| typically dominates the runtime

Thousands of nonterminal symbols and millions of context-free rules, n ≈ 20

Number of processing cores doubles every 2nd year, clock frequency ≈ 3 GHz

Basic insights about parallelization

Over grammar rules rather than chart cells

Some parallelization options are architecture dependent

Understanding of programming model and hardware needed

Speed-up between 14 and 26 depending, depending on processor unit

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

 CYK - SEQUENTIAL VERSION CYK - SEQUENTIAL VERSION

Algorithm: parse(sen, lex, gr)
Input: sen /* the input sentence */

lex /* the lexicon */
gr /* the grammar */

Output: tree /* the most probable parse tree */

1 scores[][][] = initScores();
2 nW ords = readSentence(sen);
3 lexiconScores(scores, sen, nW ords, lex);
4 for length = 2 to nW ords
5 binaryRelax(scores, nW ords, length, gr);
6 unaryRelax(scores, nW ords, length, gr);
7 tree = backtrackBestParseTree(scores);
8 return tree;

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

Algorithm: binaryRelax(scores, nW ords, length, gr)
Input: scores /* the 3-dimensional scores */

nW ords /* the number of total words */
length /* the current span */
gr /* the grammar */

Output: None
1 for start = 0 to nW ords - length
2 end = start + length;
3 foreach symbol ∈ gr
4 max = FLOAT MIN;
5 foreach rule r per symbol // defined by gr
6 // r is "symbol ⇒ l sym r sym"
7 for split = start + 1 to end ? 1
8 // calculate score
9 lscore = scores[start][split][l sym];
10 rscore = scores[split][end][r sym];
11 score = rule score + lscore + rscore;
12 // maximum reduction
13 if score > max
14 max = score;
15 scores[start][end][symbol] = max;

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

USE OF SPECIAL HARDWARE USE OF SPECIAL HARDWARE

Hardware properties

Graphics Processor Units (GPUs), millions of operations executed in parallel

Processing cores called stream processors (SP), organized hierarchically

Compute Unified Device Architecture (CUDA) - for other applications

Single Instruction Multiple Threads (SIMT). executed in bundles (called warps)

A thread cannot advance to the next instruction if other threads

in the same warp have not yet completed their own execution

Hardware usage techniques

Inside a warp, if some threads follow different execution paths than others,

the execution of the threads with different paths is serialized - avoid it!

Global memory access is expensive, but shared data within the same block

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

CANDIDATES FOR PARALLELIZATION CANDIDATES FOR PARALLELIZATION

Principled alternatives

Loop in the CYK top level inappropriate

All loops in BinaryRelax are good candidates, in principle

1. Symbols to threads (first loop in BinaryRelax)

Does not provide enough paralellism

load imbalance – each symbol has a varying number of rules associated with it

2. Rules to threads (nested loops lines 3 & 5 in BinaryRelax)
Avoids disadvantages of symbol mapping

Disadvantage - synchronization needed for rules with same parent symbol

3. Exploiting granularity in hardware (line 3 to thread blocks & line 5 to threads)
Each symbol to a thread block, rules associated to local threads
Solves all the disadvantages, no synchronization needed

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

MAPPING RULES TO THREADS MAPPING RULES TO THREADS

Algorithm: threadBasedRulesBR(scores, nW ords, length, gr)
…
1 for start = 0 to nW ords - length in parallel
2 end = start + length;
3 foreach rule r ∈ gr in parallel
4 shared ... int.sh.max[NUM.SYMBOL] = FLOAT MIN;

11 // local maximum reduction
12 if score > local.max
13 local.max = score;
14 atomicMax(&sh max[symbol], local max);
15 // global maximum reduction
16 foreach symbol ∈ gr in parallel

17 atomicMax(&scores[start][end][symbol], sh max[symbol]);

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

MAPPING TO BLOCKS AND THREADS MAPPING TO BLOCKS AND THREADS

Algorithm: blockBasedRulesBR(scores, nW ords, length, gr)
…
1 for start = 0 to nW ords - length in parallel
2 end = start + length;
3 foreach symbol ∈ gr in parallel
4 shared ... int.sh.max[NUM.SYMBOL] = FLOAT MIN;
5 foreach rule r per symbol in parallel

11 // local maximum reduction
12 if score > local.max
13 local.max = score;
14 atomicMax(&sh max[symbol], local.max);
15 // global maximum reduction
16 foreach symbol ∈ gr in parallel

17 atomicMax(&scores[start][end][symbol], sh.max);

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

FURTHER COMPLEMENTARY MEASURES FURTHER COMPLEMENTARY MEASURES

1. Span level parallelism (first loop in BinaryRelax)

Spans in same level of the chart are independent of each other

2. Amomic operations (lines 14 & 17 in threadBasedRulesBR)
Creating shared variables, percolating down references

3. Amomic operations on shared memory (lines 15 & 18 in blockBasedRulesBR)
Only one shared variable per thread block
Requires only a fraction of shared memory,
costly operation on global memory performed only once

4. Reducing global memory access - adapt memory access pattern (right instead of left)

for split = start + 1 to end - 1
lscore = scores[start][split][l sym];
rscore = scores[split][end][r sym];
score = rule score + lscore + rscore;

for k = 1 to len - 1
lscore = sh scores L[k][unique l sym];
rscore = sh scores R[k][unique r sym];
score = rule score + lscore + rscore;

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

FURTHER EFFICIENCY-EMPHASIZING MEASURESFURTHER EFFICIENCY-EMPHASIZING MEASURES

Agenda-based parsing
Best-first and A* variants, depending on admissibility of heuristics
Also local variations, to keep agenda managing effort low

Beam search parsing
Local pruning, based on learning and posterior probabilities

Course-to-fine parsing (multiple pass parsing)
First-step parsing with a course grammar, to obtain good parameters

 Builfing a course grammar out of a fine one is not easy

Chart constraints
Skipping entire chart cells on the basis of trained tagging data (start or end)

CCG parsing
Considerably harder than CFG; supported by supertagging, A* methods

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

UNIFICATION-BASED PARSINGUNIFICATION-BASED PARSING

Motivation
Rule explosion for expressing features as subcategories (e.g., for agreement)
Categories are generalized into feature strucures

Modifications in processing
Make all elements of the grammar components feature structures
Substitute unification and equivalence tests for category comparison
Unify category of passive edges with argument position of active edges
Test spanning passive edges for compatibility against start symbol S

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

UNIFICATION-BASED PARSING – EFFICIENCYUNIFICATION-BASED PARSING – EFFICIENCY

Motivation
90+% of parsing time typically go to directed acyclic graph manipulation

Observations
Most unifications fail: predict failure cheaply, where possible
- rule filter: rule feeding relations
- quick check: most likely failure paths
Lexicalization: argument positions in rules may be highly underpecified
- head driven: instantiate right-hand side bidirectionally, starting from head
Many unifications fail very early: copy more expensive than unify
- memory is expensive: redo a couple of unifications instead of copying

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

TECHNIQUES FOR EFFICIENT PARSING (I)TECHNIQUES FOR EFFICIENT PARSING (I)

Pre-compiling the lexicon
Expansion and application of lexical rules done off-line
Parts of feature structures for internal use of lexical rules deleted
Loading a compiled file for data about each stem, caching most frequent ones

Improvements in unification
Destructive, but reversible check testing compatibility between structures
Output structure built only in case of success
Reusing parts of the input structure in building the output structure
Disjunctions re-expressed in the type hierarchy or in disjunctive normal forms

1.4 - 3 times more rules German VERBMOBIL
 &

2-5 overall speed-up Japanese grammars

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

TECHNIQUES FOR EFFICIENT PARSING (II)TECHNIQUES FOR EFFICIENT PARSING (II)

Pre-compiling type unification
50% of unification and copying time for computing greatest lower bound (GLB)
6,000 types in VERBMOBIL result in 36,000,000 possible GLBs
Only GLBs of the 0.5-2.0% successful unifications needs to be stored in tables
Computing a unique key for each combination, storing in a hash table
Off-line computation expensive (naively 50 hours)
Exploiting symmetry and hierarchical 'consistency' reduces this to 1 hour

Pre-compiling rule filters
Quick checking operations that avoid using unification
Filter realized as a three-dimensional boolean array (unary, binary schemas)
Off-line computation of rule filters < 1 minute for all three languages
Rule out 50-60% of failed unifications, saving 45% of parsing time

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

TECHNIQUES FOR EFFICIENT PARSING (III)TECHNIQUES FOR EFFICIENT PARSING (III)

Dynamic unification filtering
Unification failure reasons unevenly distributed (CAT are frequent cases)
Quick check of most frequent failure points , stored as a feature path
Saving the paths with the highest failure rate in off-line parses
13 to 22 paths for the 3 languages, some very long and unintuitive
Avoids almost all unsuccessful unification, adds 75% savings to rule filtering

Reducing feature structure size via restrictors
Large (theoretically-motivated) structures without effect on searching
All relevant information in SYNSEM feature of mother node
Paths specifications to guide deletion (positive and negative restrictors)
Speed gain of 30% for German and 45% for English

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

TECHNIQUES FOR EFFICIENT PARSING (IV)TECHNIQUES FOR EFFICIENT PARSING (IV)

Limiting the number of initial chart items
Number of lexical items per stem may increase parsing hypotheses
Cooccurrence requirements of items for plausible readings motivate deletions

(e.g., prefixed verbs reuiqre a separable prefix, and vice-versa)
Global operation context (the whole chart) – realized by exclusive-or operations
Example: “Ich komme morgen an” – only 8 of 97 readings of “komme” remain

 “Der Mann wartet an der Tür” only prepositional readings for “an”

Computing best partial analyses
Deficient or spontaneous input may not yield a successful parse
Best partial results are maintained and combined
Best paths are (sub)trees with utterance state, second best are lexical items
Combination of partial parses that overarches the full utterance (minimal costs)

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

RESULTSRESULTS

Combined effect
Deep linguistic analysis coupled with speech processing
Overall speed-up by a factor of 10 to 25

 German English Japanese
sentences 5106 1261 1917
words 7 6.7 7.2
lexical entries 40.9 25.6 69.8
chart items 1024 234 565
results 5.8 12.4 53.6
time first 1.46 s 0.24s 0.9 s
time overall 4.53 s 1.38 s 4.42 s

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

REDUCING CONTEXT-FREE PARSING BY REDUCING CONTEXT-FREE PARSING BY
CONSTRAINTS (Roark, Hollingshead, Bodenstab)CONSTRAINTS (Roark, Hollingshead, Bodenstab)

Motivation
Many options of compositions in a chart "linguistically/lexically implausible"
Constraints about prominent positions of words found out cheaply

General approach
Evidence about start and end of a constituent (as possible positions) crucial
Incompatibilities of words with these positions derived in fast pre-processing
Incompatibilities used to cut-off options in chart processing
Considerable savings can be obtained / proofs on complexity bounds
Demonstrated for rather differently structured languages (English, Chinese)

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

RESULTS FOR CONSTRAINTS ON WORDSRESULTS FOR CONSTRAINTS ON WORDS

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

BASIC SEARCH RESULTS FOR ENGLISHBASIC SEARCH RESULTS FOR ENGLISH

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

BASIC SEARCH RESULTS FOR CHINESEBASIC SEARCH RESULTS FOR CHINESE

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

COMPETITIVE TEST RESULTS FOR ENGLISHCOMPETITIVE TEST RESULTS FOR ENGLISH

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

COMPETITIVE TEST RESULTS FOR CHINESECOMPETITIVE TEST RESULTS FOR CHINESE

Helmut Horacek Search methods in natural language processing

SS 2018 Language Technology

