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Inferencing in Artificial Intelligence and Computational Linguistics

BASICS OF DEFAULT LOGIC
(NON-MIONOTONIC REASONING)

What is non-monotonic reasoning
Some approaches to non-monotonic reasoning
Some problems with non-monotonic reasoning

Consistency-based diagnosis
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NON-MONOTONIC REASONING

Motivations
. Decisions with incomplete knowledge
. Rules with exceptions
. Handling inconsistent information
Monotonicity

Al-q=AU{p}l-q

Types of non-monotonic reasoning

. Default reasoning — rules with exceptions
. Autoepistemic reasoning — knowledge about knowledge and non-knowledge
. Reasoning on the basis of communication conventions
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SONIE BASIC PROBLENIS (1)

Closed world assumption (CWA)

p is derivable from T under CWA means that
TU{~qlqatomicandnotT |- q} |- p

Problem with inconsistent CWAs, e.g., T = {a v b}

Frame problem
Specifying what does not change when an event occurs

Using persistence defaults
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SONIE BASIC PROBLENS (2)

Qualification problem

Defaults for describing normal effects of actions

Negation as failure

flies(_x) :- bird(_x), not abnormal(_x).
abnormal(_x) :- penguin(_x).
bird(tweety).

flies(tweety)? = SUCCESS

If we add penguin(tweety).
flies(tweety)? = FAIL
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PRINCIPLED APPROACEIES

Reiter's default logic

Modal approach
(McDermott, Doyle, Moore)

Circumscription
(McCarthy, Lifschitz)

Inconsistency-tolerant

reasoning

Representation of defaults

Non-classical inference rules

Modal operator for beliefs

Validity in minimal models

Inconsistent sets of premises

Derivation techniques

Fixpoint construction

to define theorems

Elimination of
uninteresting models

by axiom schema

Derivation w.r.t.

preferred sets of premises
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REITER"'S DEFAULT LOGIC

Components
Defaults theorys is a pair (D,W)
. W: set of facts (formulas in 1. order pred. logic)
. D: set of "inference rules" (defaults)
A:B,,...B,/C

If A derivable, and =B, not, then infer C

Example

W = {penguin(x) = abnormal(x), bird(tweety)}
D = {bird(x): abnormal(x)/flies(x)}

Default theories generate extensions
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EXTENSIONS IN REITER'S DEFAULT LOGIC

Desirable properties of extensions

1 contain W
2 deductively closed (classically)
3 uses as many defaults as possible
4 contain no unjustified facts
Fixpoint construction
E, =W

E,.,=Th(E) U {cl a:b,,...b,/cin D, a in E,, =b, not in E}
E is an extension of (D,W) iff E = U E,

SS 2017 Language Technoogy



Helmut Horacek Inferencing in Artificial Intelligence and Computational Linguistics

PROPERTIES OF EXTENSIONS

Building extensions

Theories may have several extensions

Example: W={pvq} D = {:7p, :7q} E1={p,~q}, E:={-p,q}
p q

Automated construction process in the general case NP hard

Position towards extensions

Credulous reasoner —  Valid in at least one extension

Sceptical reasoner — Valid in at all extensions

SS 2017 Language Technoogy



Helmut Horacek Inferencing in Artificial Intelligence and Computational Linguistics

PROBLEN WITEH DEFAULT LOGIC - ALTERNATIVES

Too weak: Case distinctions

Emu:runs Ostrich:runs Emu v Ostrich
runs runs

runs derivable?

SS 2017 Language Technoogy



Helmut Horacek Inferencing in Artificial Intelligence and Computational Linguistics

PROBLEN WITEH DEFAULT LOGIC - ALTERNATIVES

Too weak: Case distinctions

Emu:runs Ostrich:runs Emu v Ostrich
runs runs

runs derivable? - No.
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PROBLEN WITEH DEFAULT LOGIC - ALTERNATIVES

Too weak: Case distinctions

Emu:runs Ostrich:runs Emu v Ostrich
runs runs

runs derivable — No.

Too strong— No global consistency

:usable(x)&-broken(x) broken(l-arm) v broken(r-arm)
usable(x)

usable(l-arm) & usable(r-arm) derivable?
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PROBLEN WITEH DEFAULT LOGIC - ALTERNATIVES

Too weak: Case distinctions

Emu:runs Ostrich:runs Emu v Ostrich
runs runs

runs derivable? - No.

Too strong— No global consistency

:usable(x)&-broken(x) broken(l-arm) v broken(r-arm)
usable(x)

usable(l-arm) & usable(r-arm) derivable? -  Yes.
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FLOATING CONCLUSIONS (Elorty)

. Witness John says: the suspect shot the victim to death
. If a witness says P then usually P is the case

. So, the suspect shot the victim to death

. So, the suspect killed the victim

. Witness Bob says: the suspect stabbed the victim to death
. If a witness says P then usually P is the case

. So, the suspect stabbed the victim to death

. So, the suspect killed the victim

Is the conclusion warranted?

SS 2017 Language Technoogy



Helmut Horacek Inferencing in Artificial Intelligence and Computational Linguistics

FLOATING CONCLUSIONS (2)

D1: People live where they work.

D2: People live where their partners live.

W1: Jan works in Amsterdam.

W2: Jan's wife Mary works in Arnheim.

Where do Jan and Mary live?
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ANOTEER EXANPLE

. American civil law:

evidence has to prove claim ‘““on the balance of probabilities

. (Imaginary) statistics:

51% of American husbands commit adultey within 10 years

. Mary has been married to John for 10 years:

Can she sue John for divorce?

Is the conclusion warranted?
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PROBILEN WITE DEFAULT LOGIC - PRIORITIES

Priorities among defaults required

hurts(x,y) = guilty(x)

hurts(x,y) & notwehr(x) = —guilty(x)
attacks(x,y) = notwehr(x)
hurts(Peter,Hans)
attacks(Hans,Peter)

derivable: guilty(Peter), 7guilty(Peter), -notwehr(Peter)
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NMIODELING ACTIONS

Situation calculus (McCarthy, Hayes) — components

. Situations — real world snapshots, causes of actions
. Fluents — time-dependent properties
. Actions — lead from situations to successor situations

Holds(f,s) — atomic formula: fluent f true in situation s
Result(a,s) — term: situation after executing action a in s

Example — Blocksworld

1) Holds(On(C,Table),S0) move(x,y) move x on top of y

2) Holds(On(B,C),S0) 8) Holds(Clear(x),s) & Holds(Clear(y),s) &
3) Holds(On(A,B),S0) x#y & x # Table =

4) Holds(On(D,Table),S0) Holds(On(x,y),Result(Move(x.,y),s)

5) Holds(Clear(A),S0) 9) Holds(Clear(x),s) & Holds(Clear(y),s) &
6) Holds(Clear(D),50) Holds(On(x,z),s) & xzy & yzz =

7) Holds(Clear(Table),50) Holds(Clear(z),Result(Move(x,y),s)
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YALE SEOOTING PROBLEWNM

Example — Definitions

1) S1 = Result(LOAD,SO0) 5) Vs Holds(LOADED,RESULT(LOAD,s))
2) S2 = Result(WAIT,S1) 6) Vs Holds(LOADED,s) =

3) S3 = Result(SHOOT,S2) - Hold2s(ALIVE,Result(SHOOT,s))

4) Holds(Alive,S0) 7) Vs ="Holds(LOADED,Result(SHOOT,s))

8) [m]Holds(f,s): ["]Holds(f, Result(e,s)) /
[-]Holds(f, Result(e,s))
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YALE SEOOTING PROBLEWNM

Example — Definitions

1) S1 = Result(LOAD,S0) 5) Vs Holds(LOADED,RESULT(LOAD,s))
2) S2 = Result(WAIT,S1) 6) Vs Holds(LOADED,s) =
3) S3 = Result(SHOOT,S2) ~Hold2s(ALIVE,Result(SHOOT,s))

7) Vs ="Holds(LOADED,Result(SHOOT,s))
8) [m]Holds(f,s): ["]Holds(f, Result(e,s)) /
[-]Holds(f, Result(e,s))

4) Holds(Alive,S0)

SO S1 S2 S3
1. ALIVE ALIVE ALIVE =ALIVE
LOADED LOADED -LOADED
Apply persistence default chronologically
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YALE SEOOTING PROBLEWNM

Example — Definitions

1) S1 = Result(LOAD,SO0) 5) Vs Holds(LOADED,RESULT(LOAD,s))
2) S2 = Result(WAIT,S1) 6) Vs Holds(LOADED,s) =

3) S3 = Result(SHOOT,S2) - Hold2s(ALIVE,Result(SHOOT,s))

4) Holds(Alive,S0) 7) Vs "Holds(LOADED,Result(SHOOT,s))

8) [m]Holds(f,s): ["]Holds(f, Result(e,s)) /
[-]Holds(f, Result(e,s))
S0 S1 S2 S3
1. ALIVE ALIVE ALIVE =“ALIVE
LOADED LOADED -=-LOADED

Apply persistence default chronologically

SO S1 S2 S3
2. ALIVE ALIVE ALIVE ALIVE
LOADED -LOADED -LOADED
Apply persistence default for ALIVE up to S3, then derive "LOADED in S2 (6, 8)
Unintended — gun unloads mysteriously
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YALE SEHOOTING PROBLEN - ASSIESSNIENT

Early simple (naive?) formalization

. Based on minimizing the changes
. Changes in the fluents over time are as minimal as possible

A severe obstacle to the use of logic for formalizing dynamical scenarios
Better formalizations provide solutions

. Predicate completion in the specification of actions: according to this solution, the
fact that shooting causes Fred to die is formalized by the preconditions: alive and
loaded, and the effect is that alive changes value

. Erik Sandewall includes a new condition of occlusion, which formalizes the
“permission to change” for a fluent. What is minimized is not the set of changes,
but the set of occlusions being true.

Several authors obtain prices and publish in Al journal

SS 2017 Language Technoogy



Helmut Horacek Inferencing in Artificial Intelligence and Computational Linguistics

PROBLEWNI WITE GLOBAL INCONSISTENCY

Properties of extensions

* Consistency of applied default in single extension

* Global consistency of defaults not guaranteed

e E.g., lottery paradox: a lot does'nt win I~ no lot wins
e Undesired and unintuitive results may occur

Important property — cumulativity

 Adding a theorem does'nt change derivable formulas
e IfXI~athen X {a} I~bif and only if X I~ b
e Essential if inferencing meant as 'making explicit'

Counterexample
1) true:p/p
2) pv q:p/p
Extension contains p, hence p v q
Adding p v q to the premises yields an extension —p
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OVERCONMING GLOBAL INCONSISTENCY

Extensions — Brewka's cumulative default logic

 Logic based on assertions (p,Q), with p being a formula and Q a set of consistency
constraints

Also possible — restrictions on feasible defaults (disallowing disjunctions)
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CONSISTENCY-BASED DIAGNOSIS

Information
. Set of components (K)
. Effect of components if error-free (model M)

. Observations (N)

Explanation for O, i.e., minimal set of components K',

such correctness of K \ K' is consistent with M U O

Default theory
K' is diagnosis iff
there is an extension E of default theory (D,W) with
. W= MUO

. D = {true: OK(x)/OK(x) | x in K}
. =OK(x) for all k in K'

Well suited for error diagnosis (e.g., electronic circuits)
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CONSISTENCY-BASED DIAGNOSIS

Example — semiadder

e

Types of components

ADD(C1), OR(C2), NOT(C3), AND(C4)

Topology

x = inputl(C1) = inputl(C2)
y = input2(C1) = input2(C2)
U = output(C1) = input(C3)
output(C3) = inputl(C4)
output(C2) = input2(C4)

z = output(C4)
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CONSISTENCY-BASED DIAGNOSIS (2)

Normal behavior
AND(x) A OK(x) = [output(x) =1 < (inputl(x) =1 A input2(x) =1)]
OR(x) A OK(x) = [output(x) =1 < (inputl(x) =1 v input2(x) =1)]
NOT(x) A OK(x) = [output(x) =1 < =input(x) = 1]

Defaults for correct behavior

true: OK(x)/OK(x) forallx=Cl1,... C4

Observations (example)

x=l,y=1,z=1

Extensions (only 1 component faulty)

OK(C1), OK(C2), OK(C3) = "0OK(C4)
OK(C1), OK(C2), OK(C4) = ~0OK(C3)
OK(C1), OK(C3), OK(C4) = ~0OK(C2)
OK(C2), OK(C3), OK(C4) = ~OK(C1)
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CONSISTENCY-BASED DIAGNOSIS (3)

Addidional observation (example) Alternative observation (example)
output(C3) =1 output(C3) =0
OK(C1), OK(C2), OK(C4) = ~0OK(C3) OK(C1), OK(C2), OK(C3) = ~0OK(C4)

OK(C2), OK(C3), OK(C4) = ~0OK(C1)

Additional domain knowledge — Some components are more reliable than others
Iterative building of extensions (D,, ..., D,_,, W)
E extension of (D,, ..., D,, W) iff
n =1 and E is extension of (D,, W)
n > 1 and there is extension E' of (D,, ..., D, ,, W) such that E is extension of (D,, E')

Example — NOT component more reliable than others
Default theory (D,, D,, W)

D, = {{:OK(C3)/OK(C3)}

D, = {OK(C)/OK(Ci))} i=1,2,0r4

W=MUO

Yields only extensions with OK(C3)
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EXTENSIONS FOR INCOMPLETE OBSERVATIONS
(Elayel 2010)

Assumptions

Models may be complex
Not all components (easily) observable
Hierarchical models of systems are meaningful

Motivation

Assessing the competence of diagnosis with limited resources
Simplification of the diagnostic model

Ideas

Assessing components as observable or not (given set of observable points)
Abstracting away components that cannot be diagnosed into compound items
Future idea — segmenting the model into parts, solving by ‘“divide-and-conquer”
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TEE NOTION OF DIAGNOSIBILITY

A definition which is close to the idea of component diagnosability
We say that a system is diagnosable with a given set of sensors iff

(i) for any relevant combinations of sensor readings
there is only one minimal candidate diagnosis and

(ii) all faults of the system correspond to
a candidate diagnosis for some sensor reading

e.g., an AND-gate is observable on the basis of its output and one of its inputs

Suppose we plan to examine a system
that is expected to be observed only partially

The proposed model simplification procedure attempts to
reduce the size of the diagnostic model of a system
while preserving the diagnostic power —
with respect to the expected observation conditions
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DIAGNOSTI@ NMODEL BEFORE SINMPLIFICATION
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DIAGNOSTIG NMODEL AFTER SIVMIPLIFICATION
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CONMIPONENT DIAGNOSABILITY ALGORITEIVI

Input: a component description A in CNF, a set of health variables A, a set
of observed ports P,, and a set of unobserved ports P,,.
Output: decision whether the component is diagnosable.

1. For each assumable A from A do: A" = AU {A}.
2. Create ordering o = (O4,...,0:, Uy,.... U, Ay,..., Ay, where O4,...,0,
are members of P,, Uy,...,U; are members of P,, and A;,..., A,, members of
A in arbitrary order.
3. Perform directional resolution on theory A’, ordering o, and only over
variables in A UP,,.
4, If the result is A is unsatisfiable’,
return 'component behavior is faulty by nature’
else
store the buckets.
5 If vi,ie (1...Card(P,)) bucket; =20,
return ‘component is not diagnosable’
else
return 'component is diagnosable’.
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MODEL PRUNING ALGORITEN (1)

Input: a set of components C, a component description A and a set of as-
sumables A" for each ¢ € C, a set of nodes N, a set of observed nodes N, € N,
and projections £ : P — N of the component ports onto nodes.

Output: simplified model of the system.

1. Initialize:
Assign an initial state to every node, 'bound’ if the node is physically ob-
served, ‘'unknoun’ otherwise,
For each node n in the model do:
if state(n) # ‘bound’ and ¢ — card(n) = 1 then
set state(n) = ‘free’ and insert n into DEL.

. _— i .
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MODEL PRUNING ALGORITEN (2)

2. If DEL is not empty then

remove the first node n from DEL and go to step 3
else

stop and return the current model.

Find component ¢, connected to node n.
If two or more ports of ¢, share a node then
replace all with one substitutive port.
For each port p of component ¢, do:
if state(e(p)) = 'free’ then
insert p into the set of unobserved ports Pg»
else

insert p into the set of observed ports Pg".

Decide component diagnosability of the component ¢, using component
description A", set of health variables H®*, and sets of ports PS® and Pg~.
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=

NIODEL PRUNING ALGORITEW (3)

If the result is ‘'component is diagnosable’ then
set state(n) = 'hound’ and go back to step 2.

Delete the component ¢, and the node n from the model.
For each other node n’ previously connected to the component ¢, do:
if n’ is in DEL then
remove n' from DEL and delete it from the model
else
if ¢ — card(n') = 0 then delete n’ from the model
if ¢ — card(n’) = 1 and state(n’) # 'bound’ then
set state(n’) = 'free’ and insert n' into DEL.
(Go back to step 2.
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EXANVIPLE NIODEL PRUNNG SEQUENCE (1)

(e )—o—{C )0 | DEL={N;. No]
I"'h.\_\_._._,.-l"l | EI—
evaluating C,
diagnosable
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H.q _H\. H'
”JE : .
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EXANIPLE NIODEL PRUNING SEQUENCIE (2)

DEL=[N]

evaluating Cs
non-diagnosable

. {Cr ) -
S
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EXANIPLE NWIODEL PRUNING SEQUENCIE (3)

T

DEL={MNs)

evaluating C,
non-ciagnosable

N, - N, N
o} —o—(C.}—e
A o/
NY RN
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EXANIPLE NIODEL PRUNING SEQUENCIE (4)

Nk »—~ N ,~—~ N .
o—(Cy }—o—(C;}—e DEL=(N,]
- "'{x L
x'\.“".\,\.x N ."il h‘ N E-'_---"i E:i'ﬂl-l,];-lrlnl_] C.
L ] » : non-diagnosable
'“{’# le"' —~ H."'"

SS 2017 Language Technoogy



Helmut Horacek Inferencing in Artificial Intelligence and Computational Linguistics

EXANIPLE NMIODEL PRUNING SEQUENCE (S5)

M M- —, M _
—{C, }—0—C,}—e DEL=(]
roCedure slops
NS AN .
L [ ]
N wa
> L 3 { Cr ] L
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LINVIITATIONS OF TEE NMODEL

The pruning algorithm examines only diagnosability of individual components
the only chance to remove any undiagnosable component is only

when at least one of its ports is a free dead-end

To cut the model not only from dead-ends but also from inside,

one must examine not only individual components but groups of components

Nodes of a component group are classified into
e inner nodes of the group,
* boundary nodes connected to both components in the group and outside the group, and

* outer nodes not incident to the group
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DIAGNOSABILITY OF CONMPONENT GROUPS

diagnosable

(s

non-diagnosable
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ALGORITEWVI MIODIFICATION FOR

DIAGNOSABILITY OF COMPONENT GROUPS

The adaptation of the original component diagnosability algorithm to the

component-group diagnosability algorithm comprises:

substitution of individual component port variables

for corresponding system node variables,

replacement of single component descriptions (behavior equations)
with the group’s joint description,

consideration of the physically observed nodes and boundary nodes
as observed for this evaluation,

consideration of the unobserved inner nodes

as unobserved for this evaluation, and finally

performing directional resolution as it is done in the original algorithm.
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EXTENDED MODEL PRONING ALGORITERI

Input: a model M = (C,N, A, A, P,E) and a set of observed nodes N, C N,
Output: simplified model of the system.

1. Let R =0 is the set of removed components.
2. For every component group G, G C C, do

3. Let G = G ~ R (ignore components already removed from the model)
If G =0 then

continue with the next group.

4. Decide component-group diagnosability of G, using component
descriptions A°; Ve € G, sets of assumables A%; Ve € G, set of group’s
inner nodes N, set of group’s boundary nodes NS, set of group's
observed nodes N = N, N (NE UNF), and projections £°: Ve € G.

=

If the result is ‘component-group is not diagnosable’ then
remove all components in G from the model and

let R=RUG,
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