

(Christoph Benzmüller and Bruno Woltzenlogel Paleo, 2013, 2015, 2016)

Language Technology

ISSUES

- History of logic (a famous example)
- More expressive logics for NL representations
- Handling these logics for proving
- A glimpse on the state-of-the-art in logics
- Useful for modern philosophy
- Media interest (rare for technical issues)

IN A NUTSHELL

SCIENCE NEWS

TWO CITYS DECENDED REJEATE REPORT THEY LIKE MICEOUNTOF WAS ASSAULDED. THOSE PH

Researchers say they used MacBook to prove Goedel's God theorem

Oct 33, 2313 | 0:14 PM | 1 contents

Techniques

- Advanced proof techniques required (higher order, modal logic)
- Progress in use of logics obtained

Media interest

- Germany: Spiegel Online, FAZ, Die Welt, ...
- International: Austria, Italy, India, US, ...

HISTORICAL BACKGROUND

Ontological argument

- Deductive argument (for the existence of God)
- Starting from premises, justified by pure reasoning

Rich history of ontological arguments

- Pro: Descartes, Leibniz, Hegel, Gödel, ...
- Against: Th. Aquinas, Kant, Frege, ...

Gödels notion of god

"A God-like being possesses all positive properties"

->

"(Necessarily) God exists"

proved by Gödel on two hand-written pages

Reasoning about Arguments

God is an entity of which nothing greater can be conceived (*Anselm*) existence in the actual world would make such an assumed being even greater

Leibniz: the assumption should be derivable from the definition of God *Gödel* explicitly proves that God's existence is possible Gödels axioms considered too strong Ongoing philosophical debate

GÖDEL'S HAND-WRITTEN PROOF

SCOTT'S VERSION OF GÖDEL'S

AXIOMS, DEFINITIONS AND THEOREMS

A1 Either a property or its negation is positive, but	not both: $\forall \phi [P(\neg \phi) \leftrightarrow \neg P(\phi)]$
A2 A property necessarily implied	
by a positive property is positive:	$\forall \phi \forall \psi [(P(\phi) \land \Box \forall x [\phi(x) \to \psi(x)]) \to P(\psi)]$
T1 Positive properties are possibly exemplified:	$\forall \varphi [P(\varphi) \to \Diamond \exists x \varphi(x)]$
D1 A God-like being possesses all positive properties	: $G(x) \leftrightarrow \forall \phi [P(\phi) \to \phi(x)]$
A3 The property of being God-like is positive:	P(G)
C Possibly, God exists:	$\Diamond \exists x G(x)$
A4 Positive properties are necessarily positive:	$\forall \phi [P(\phi) \to \Box P(\phi)]$
D2 An essence of an individual is	
a property possessed by it and	
necessarily implying any of its properties: ϕ ess.	$x \leftrightarrow \phi(x) \land \forall \psi(\psi(x) \to \Box \forall y(\phi(y) \to \psi(y)))$
T2 Being God-like is an essence of any God-like bein	g: $\forall x[G(x) \to G \ ess. \ x]$
D3 Necessary existence of an individual is	
the necessary exemplification of all its essences:	$NE(x) \leftrightarrow \forall \phi [\phi \ ess. \ x \rightarrow \Box \exists y \phi(y)]$
A5 Necessary existence is a positive property:	P(NE)
T3 Necessarily, God exists:	$\Box \exists x G(x)$

Important results

Inconsistency in Gödel's axioms previously unknown first found by a machine (2013)
Fully automated proof (of Scotts version) of God's existence first by Leo-II in 2016 (2,5 sec)

Issues and tendencies

Proposing/discussing different axiomatizations Making them provably accessible by simpler logics Checking the validity of metaphysics arguments Providing interfaces/logical frameworks

Language Technology

ONE PROOF STEP IN DETAIL (IN NATURAL DEDUCTION STYLE)

2 If the existence of a God-like being is possible, then it is necessary:

 $\Diamond \exists z.G(z) \rightarrow \Box \exists x.G(x)$

Language Technology

PROOF DESIGN

State-of-the-art

- No prover for higher order modal logic exists
- Several (increasingly better and coordinated) provers for higher order logic exist (interactive and automated ones)

Overall strategy

- Embedding in higher order classical logic (based on experience with embedding first-order modal logic in higher order logic)
- Making use of higher-order logic theorem provers
- Interactive proof oriented on human-designed natural deduction proof

Assessment

A fully automated proof may be possible in about 3 years (2013) *Benzmüller*

The equations in Ax are given as axioms to the HOL provers!

(Remark: Note that we are here dealing with constant domain quantification)

Example for embedding modal logic (operators)

$$\Box \forall x P x \equiv \Box \Pi'(\lambda x.\lambda w.P x w)$$

$$\equiv \Box((\lambda \Phi.\lambda w.\Pi(\lambda x.\Phi x w))(\lambda x.\lambda w.P x w))$$

$$\equiv \Box(\lambda w.\Pi(\lambda x.(\lambda x.\lambda w.P x w) x w))$$

$$\equiv (\lambda w.\Pi(\lambda x.P x w))$$

$$\equiv (\lambda \varphi.\lambda w.\forall v.(R w v \to \varphi v))(\lambda w.\Pi(\lambda x.P x w))$$

$$\equiv (\lambda \varphi.\lambda w.\Pi(\lambda v.R w v \to \varphi v))(\lambda w.\Pi(\lambda x.P x w))$$

$$\equiv (\lambda w.\Pi(\lambda v.R w v \to (\lambda w.\Pi(\lambda x.P x w))v))$$

$$\equiv (\lambda w.\Pi(\lambda v.R w v \to \Pi(\lambda x.P x v)))$$

$$\equiv (\lambda w.\forall v.R w v \to \forall x.P x v)$$

$$\equiv (\lambda w.\forall v.R w v \to P x v)$$

Getting [] transformed, followed by simplifications

COURSE OF THE PROOF

Subproof

Prover responsible

. .

Nitpick (model checker)
LEO II (ATP)
Nitpick (model checker)
LEO II (ATP)
LEO II (ATP)
LEO II (ATP)
TPS (ATP)

Main Findings

The axioms and definitions in Scotts formulation are consistent A simpler logic is sufficient to prove sub theorems A modal logic is needed to prove the main theorems (thus disproves some criticism on Gödel's formalization) Only the main theorems is challenging for theorem provers **Gödel's original version is inconsistent (definition of essence)** Gödel's axioms imply modal collapse ($\phi \supset []\phi$) contingent truth implies necessary truth (can even be interpreted as an argument against free will); Gödel's axioms imply monotheism

CRITICISM & OUTLOOK

Problematic assumptions

- Everything that is the case is so necessarily. ∀P.[P → P] (follows from T2, T3, D2, proved by higher order ATPs) Then everything is determined, there is no free will ...
- Either a property or its negation is positive in the morale sense, according to Gödel

Results

- Powerful infrastucture to reason in higher-order modal logic
- Several insights about the strength of logics needed or not needed
- Difficult benchmark problems for higher-order theorem provers
- Major step towards computer-assisted theoretical philosophy
- Further ontological arguments to be tested (in particular, related to Gödel)

(see http://page.mi.fu-berlin.de/cbenzmueller/, link presentations)

STATE OF AFFAIRS OF THEOREM PROVERS

Capabilities

- Occasional success with proofs of prominent theorems (usually tedious and extremely longish, but first known formal result)
- Some specialized provers (taxonomic reasoners, equation provers)
- Considerable progress in efficiency recently

Variety of uses

- Remote access to several ATPs (first-order, higher order)
- Calling several (distinct) provers in parallel (hoping at least one succeeds)
- Combining reasoning techniques (proving + computer algebra)
- Interactive proving (adding control for the prover, software verification)
- **Proof planning provers supported by proof schemas that encapsulate knowledge**