Summary and References

Search issues revisited

Lessons learned

List of references

SEARCH MATTERS

Problem size

May be considerable for some NLP tasks

(symbolic machine translation)

May be even overwhelming in specific ones

(statistical machine translation, especially for advanced language models)

Search techniques beneficial

Clever techniques may achieve huge savings

(lexical interpretation - Hunter Gatherer)

Clever organization may make heterogeneous search spaces manageable

(text planning, orchestrating subprocesses in sentence planning)

SEARCH STRATEGIES

Degrees of dependences/independences

Splitting the problem (Hunter Gatherer, syntactic generation)

Assume indepdendence where reasonable and

add features to capture crucial cases of dependence (probabilistic parsing)

Recognize dominances among alternative choices

Transform the linguistic problem into an abstract one

where efficient procedures exist (e.g., constraint problem)

Discover search space properties

Associate relevant properties with "observables"

(semantically-based readings with word frequencies in parsing)

SEARCH ORGANIZATION

Representation techniques

Compact representations exploiting commonalities (stochastic generation, involved feature structures)

Efficient data structures (e.g., bit vectors, structure sharing)

Process organization

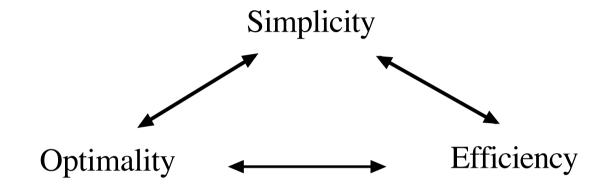
Off-line precompilation of static information (taxonomic relations and inferences, for diverse uses)

Order of operations

Aim at quick refutation – machines rather achieve disproves than proofs (unification)

Adding cheap tests (unification, text planning)

SOMIE EXPERIENCES


- 1. Adaptation of methods search needed
 - Straightforward re-use may result in ineffective processing (syntactic parsing with unification grammars for generation)
- 2. Self-organizing control structures typically not effective

 Blackboard architecture must be enhanced with explicit knowledge

 (experience with orchestrating sentence planning tasks)
- 3. System architecture organization

Use opportunistic control structures that exploit task specificities when the general proble is too hard (genre-specific revisions in text planning)

FUNDAMENTAL TRADE-OFFS

Compensative relations (up to certain degrees)

Most simple search techniques are

either inefficient or

lead to suboptimal solutions

Search technques can either stress efficiency or optimality

REFERENCES

- [Beale 1997] Stephen Beale. Hunter-Gatherer: Applying Constraint Satsifaction, Branch-and-Bound and Solution Synthesis to Computational Semantics. Ph. Dissertation, School of Computer Science, Carnegie-Mellon University, 1997.
- [Bohnet and Dale 2005] Bernd Bohnet, Robert Dale. Viewing Referring Expression Generation as a Search Problem. Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, 2005.
- [Carroll et al. 1999] John Carroll, Ann Copestake, Dan Flickinger, and Victor Poznanski. An Efficient Generator for (Semi-)Lexicalist Grammars. In Proc. of the 7th European Workshop on Natural Language Generation, Toulouse, France, pp. 86-95, 1999.
- [Cohen 1987] Robin Cohen. Analyzing the Structure of Argumentation. *Computational Linguistics* 13(1-2), pp. 11-24, 1987.
- [Collins 2003] Michael Collins. Head-Driven Statistical Models for Natural Language Parsing. Computational Linguistics 29(4), pp. 589-637, 2003.
- [Dale 1988] Robert Dale. Generating Referring Expressions in a Domain of Objects and Processes. PhD Thesis, Centre for Cognitive Science, University of Edinburgh, 1988.

- [Dale 1989] Robert Dale. Cooking up Referring Expressions. Proceedings of the 27th Annual Meeting of the ACL, pp. 68-75, 1989.
- [Dale and Haddock 1991] Robert Dale, Nicolas Haddock. Generating Referring Expressions Involving Relations. Proceedings of the 27th Annual Meeting of the 1991 Meeting of the European Chapter of the ACL, pp. 161-166, 1991.
- [Dale and Reiter 1995] Robert Dale and Ehud Reiter. Computational Interpretations of the Gricean Maxims in the Generation of Referring Expressions. *Cognitive Science* 18, pp. 233-263, 1995.
- [Dalianis and Hovy 1996] Hercules Dalianis, Eduard Hovy. Aggregation in Natural Language Generation. In G. Adorni, M. Zock (eds.), Trends in Natural Language Generation An Artificial Intelligence Perspective, pp. 88-105, Springer, 1996.
- [Earley 1970] J. Earley. An Efficient Context-Free Parsing Algorithm. In *Communications of the ACM* 13(2), pp. 94-102, 1970.
- [Feng Hirst 2014] Vanessa Wei Feng, Graeme Hirst. A Linear-Time Bottom-Up Discourse Parser with Constraints and Post-Editing. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 511–521, Baltimore, Maryland, USA, June 23-25, 2014.

- [Gardent 2002] Claire Gardent. Generating Minimal Definite Descriptions. In Proc. of *ACL-2002*, pp. 96-103, 2002.
- [Germann et al. 2001] U. Germann, M. Jahr, Kevin Knight, Kenji Yamada. Fast Decoding and Optimal Decoding for Machine Translation. In Proc. of *ACL-2001*, 2001.
- [Grote, Stede 1998] Brigitte Grote, Manfred Stede. Discourse Marker Choice in Sentence Planning. In Proc. of the 9th International Workshop on Natural Language Generation, pp. 128-137, 1998.
- [Horacek 1998] Helmut Horacek. Generating Inference-Rich Discourse Through Revisions of RST-Trees. In Proc. of *AAAI-98*, pp. 814-820, 1998.
- [Horacek 2002] Helmut Horacek. Aggregation with Strong Regularities and Alternatives. Second International Natural Language Generation Conference, 2002.
- [Horacek 2003] Helmut Horacek. A Best-First Search Algorithm for Generating Referring Expressions. In Proc. of *EACL'2003*, pp. 206-213, 2003.
- [Horacek 2004] Helmut Horacek. On Referring to Sets of Objects Naturally. Third International Natural Language Generation Conference, 2004.
- [Horacek 2006] Helmut Horacek. Handling Dependencies in Reorganizing Content Specifications A Case Study of Case Analysis. *Logic and Computation*, 2006.
- [Marcu 2000] Daniel Marcu. The Rhetorical Parsing of Unrestricted Texts: A Surface-Based

- Approach. Computational Linguistics 26(3), pp. 395-448, 2000.
- [Kasami 1965] T. Kasami. An Efficient Recognition and Syntax Algorithm for Context-Free Languages. Technical report AF-CRL-65-758, Air Force Cambridge Research Laboratory, Bedform, MA, 1965.
- [Kay 1996] Martin Kay. Chart Generation. In Proc. of *ACL-96*, Santa Cruz, CA, pp. 200-204, 1996.
- [Kiefer et al. 1999] Bernd Kiefer, Hans-Ulrich Krieger, John Carroll, and Rob Malouf. A Bag of Useful Techniques for Efficient and Robust Parsing. In Proc. of *ACL-99*, University of Maryland, 1999.
- [Kuhn and Rohrer 1997] J. Kuhn, C. Rohrer. Approaching Ambiguity in Real-Life Sentences the Application of an Optimality Theory-Inspired Constraint Ranking in a Large-Scale LFG Grammar. DGFS-CL-Jahrestagung, 1997.
- [Langer 2001] Hagen Langer. Parsing-Experimente. Praxisorientierte Untersuchungen zur automatischen Analyse des Deutschen. Peter Lang, Frankfurt/M. 2001.
- [Le Thang, Abeysinghe, and Huyck 2004] Huong Le Thang, Greetha Abeysinghe, and Christain Huyck. Generating Discourse Structures for Written Texts. In Proc. of the 20th International Conference on Computational Linguistics, 2004.
- [Li, Wang, Cao, Li 2014] Sujian Li, Liang Wang, Ziqiang Cao, Wenjie Li. Text-level Discourse

- Dependency Parsing Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages25–35, Baltimore, Maryland, USA, June 23-25, 2014.
- [Lemon, Gruenstein, and Peters 2002] Oliver Lemon, Alexander Gruenstein, Stanley Peters. Collaborative Activities and Multi-Tasking in Dialogue Systems. TAL Vol 43, pp. 131-154, 2002.
- [Levelt 1989] W. Levelt. Speaking: From Intention to Articulation. MIT Press, 1989.
- [Lüneburg 1981] H. Lüneburg. Vorlesungen über Analysis. BI Wissenschaftsverlag, 1981.
- [Mann and Moore 1980] Bill Mann, J. Moore. Computer as Author Results and Prospects. Research Report ISI/ RR-79-82, University of Southern California, Information Sciences Institute, Marina del Rey, 1980.
- [Matthiessen, Thompson 1987] Christian Matthiessen, Sandra Thompson. The Structure of Discourse and Subordination. Technical Report, ISI/RR-87-183, ISI at University of Southern California, 1987.
- [Meteer 1992] Marie Meteer. Expressibility and the Problem of Efficient Text Planning. Pinter Publishers, London, 1992.
- [Och, Ueffing, and Ney 2001] Franz-Josef Och, Nicola Ueffing, Hermann Ney. An Efficient A* Search Algorithm for Statistical Machine Translation. Data-driven Machine Translation Workshop, pp. 53-62, 2001.

- [Pechmann 1989] Thomas Pechmann. Incremental Speech Production and Referential Overspecification. *Linguistics* 27, pp. 89-110, 1989.
- [Reiter 1990] Ehud Reiter. The Computational Complexity of Avoiding Conversational Implicatures. In Proc. of *ACL-90*, Pittsburgh, 1990.
- [Roark, Hollingshead, and Bodenstab 2012] Brian Roark, Kristy Hollingshead, and Nathan Bodenstab. Finite-State Chart Constraints for Reduced Complexity Context-Free Parsing Pipelines. *Computational Linguistics* 38, pp. 719-753, 2012.
- [Robin and McKeown 1996] Jacques Robin and Kathleen McKeown. Empirically Designing and Evaluating a New Revision-Based Model for Summary Generation. *Artificial Intelligence* 85, Special Issue on Empirical Methods, 1996.
- [Sadock 1977] John Sadock.Modus Brevis: The Truncated Argument. In Papers from the 13th Regional Meeting, Chicago Linguistics Society, 1977.
- [Scott, de Souza 1992] Donia Scott, Clarisse de Souza. Getting the Message Across in RST-Based Text Generation. In *Current Research in Natural Language Generation*, pp. 47-73, Cognitive Science Series, Academic Press, 1992.
- [Shaw 1998a] James Shaw. Segregatory Coordination and Ellipsis in Text Generation. In Proc. of the 36th Association for Computational Linguistics and the 17th International Conference on Computational Linguistics, pp. 1220-1226, Montreal, Canada, 1998.

- [Shaw 1998b] James Shaw. Clause Aggregation Using Linguistic Knowledge. In Proc. of the 9th International Workshop on Natural Language Generation, pp. 18-147, Niagara-on-the-lake, Canada, 1998.
- [Shieber et al. 1990] Stuart Shieber, Fernando Pereira, Gertjan van Noord, and Robert Moore. Semantic-Head-Driven Generation. *Computational Linguistics* 16, 30-42, 1990.
- [Soricut and Marcu 2006] Radu Soricut, Daniel Marcu. Stochastic Language Generation Using WIDL-Expressions and its Application in Machine translation and Summarization. In Proc. of *ACL-2006*, pp. 1105-1112, 2006.
- [Thüring, Wender 1985] Manfred Thüring, Kurt Wender. Über kausale Inferenzen beim Lesen. In *Sprache und Kognition* 2, pp. 76-86, 1985.
- [van Deemter 2002] Kees van Deemter. Generating Referring Expressions: Boolean Extensions of the Incremental Algorithm. *Computational Linguistics*, 28(1), pp. 37-52, 2002.
- [Whitelock 1988] Peter Whitelock. Shake-and-Bake Generation. In Proc. of *COLING* 88, Budapest, 1988.
- [White 2004] Michael White. Reining in CCG Chart Generation. Third International Natural Language Generation Conference, 2004.
- [White 2006] Michael White. CCG Chart Generation with Disjunctive Inputs. Fourth International Natural Language Generation Conference, Sydney, pp. 12-19, 2006.

- [Yamada and Knight 2002] Kenji Yamada, Kevin Knight. A Decoder fro Syntax-Based Statistical MT. In Proc. of *ACL-2002*, 2002.
- [Younger 1967] D. Younger. Recognition and Parsing of Context-Free Languages in Time n³. *Information and Control* 10(2), pp. 189-208, 1967.

SS 2015 Language Technology